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Abstract—The prefrontal cortex (PFC), amygdala and hip-

pocampus display a coordinated activity during acquisition

of associative fear memories. Evidence indicates that PFC
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engagement in aversive memory formation does not pro-

gress linearly as previously thought. Instead, it seems to

be recruited at specific time windows after memory acquisi-

tion, which has implications for the treatment of post-

traumatic stress disorders. Cannabidiol (CBD), the major

non-psychotomimetic phytocannabinoid of the Cannabis

sativa plant, is known to modulate contextual fear memory

acquisition in rodents. However, it is still not clear how

CBD interferes with PFC-dependent processes during

post-training memory consolidation. Here, we tested

whether intra-PFC infusions of CBD immediately after or

5 h following contextual fear conditioning was able to inter-

fere with memory consolidation. Neurochemical and cellular

correlates of the CBD treatment were evaluated by the quan-

tification of extracellular levels of dopamine (DA), serotonin,

and their metabolites in the PFC and by measuring the cellu-

lar expression of activity-dependent transcription factors in

cortical and limbic regions. Our results indicate that bilateral

intra-PFC CBD infusion impaired contextual fear memory

consolidation when applied 5 h after conditioning, but had

no effect when applied immediately after it. This effect was

associated with a reduction in DA turnover in the PFC fol-

lowing retrieval 5 days after training. We also observed that

post-conditioning infusion of CBD reduced c-fos and zif-268

protein expression in the hippocampus, PFC, and thalamus.

Our findings support that CBD interferes with contextual

fear memory consolidation by reducing PFC influence on

cortico-limbic circuits. � 2017 IBRO. Published by Elsevier

Ltd. All rights reserved.

Key words: cannabidiol, contextual fear memory, medial pr-

efrontal cortex, dopamine, C-fos.

INTRODUCTION

Long-term memory consolidation of emotional events is

essential for the organism survival. Impairment of its

mechanisms is thought to be associated with

maladaptive retrieval of traumatic events present in

some psychiatric conditions, such as post-traumatic

stress disorder (Parsons and Ressler, 2013). The encod-

ing of emotional events is known to require the coordina-

tion of activity in limbic, thalamic and prefrontal cortical

(PFC) circuits (Tayler and Wiltgen, 2013; Tovote et al.,

2015). It has been demonstrated that the consolidation

of some forms of memories can be modulated at distinct

post-training time-windows (Dudai et al., 2015). For
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instance, pharmacological manipulations of the PFC of

rats at 3–6 h after conditioning are more effective in dis-

rupting associative fear memory consolidation than treat-

ments performed immediately after conditioning (Souza

et al., 2000; Izquierdo et al., 2006, 2007; Gonzalez

et al., 2014). A possible mechanism involves the synthe-

sis of new proteins required for strengthening synaptic

connections in fear-related circuits. In addition,

microstructural changes (Sandkühler and Lee, 2013)

and activity-dependent gene expression have particular

time-courses during memory consolidation (Bero et al.,

2014; Aceti et al., 2015). These findings suggest that

post-learning ‘‘sensitive” periods are windows of opportu-

nity during which traumatic memories can be

manipulated.

Cannabidiol (CBD) is the major non-psychotomimetic

phytocannabinoid component of the Cannabis sativa
plant (Mechoulam and Hanuš, 2002). Despite its broad

pharmacological action, CBD has been considered a

potential therapeutic agent for treating some neurological

and psychiatric disorders (Izzo et al., 2009; Devinsky

et al., 2014) (Pertwee, 2008; Campos et al., 2012). CBD

is known to act on multiple molecular targets and regulate

dopaminergic and serotoninergic systems (Murillo-

Rodrı́guez et al., 2011; Fogaça et al., 2014). In particular,

it is known to regulate DA release in limbic structures and

serotonin subtype 1A receptor (5-HT1A)-mediated neuro-

transmission in PFC (Murillo-Rodrı́guez et al., 2011;

Fogaça et al., 2014).

Behavioral pharmacology experiments have shown

that CBD can modulate the acquisition and extinction of

a contextual fear conditioning (Resstel et al., 2006;

Bitencourt et al., 2008). Direct infusion of CBD into the

PFC prior to conditioning is sufficient to disrupt associa-

tive fear memory in rats (Lemos et al., 2010; Do Monte

et al., 2013). However, it remains to be elucidated

whether CBD can influence PFC-dependent processing

between the period of 3–6 h of consolidation phase. Here,

we tested whether intra-PFC infusion of CBD immediately

after or 5 h following contextual fear conditioning was able

to interfere with the formation of an aversive memory. In

order to explore the possible mechanisms associated with

the intra-PFC CBD infusion, we also evaluated the extra-

cellular levels of monoamines and their metabolites in the

PFC and the cellular expression of activity-dependent

proteins c-fos and zif-268 in relevant brain regions. We

hypothesized that intra-PFC CBD infusion differentially

impacts associative memory consolidation depending on

the selected post-conditioning temporal window.
EXPERIMENTAL PROCEDURES

Animals

We used seventy-three adult male Wistar rats (250–

400 g) housed in standard rodent cages (2–3 rats/cage).

Animals were maintained at 25 ± 2 �C temperature and

a 12-h light/dark cycle with lights on at 07:00 h. During

all experiments, food and water were freely available.

Each behavioral test was conducted during the light

phase using independent experimental groups

consisting of 9–19 rats per group. All procedures were
performed according to the Brazilian College of Animal

Experimentation (COBEA) guidelines for animal

research, affiliated with the International Council for

Laboratory Animal Science (ICLAS). Experiments were

approved by the Ethics Commission at the University of

São Paulo and performed to minimize animal suffering.
Stereotaxic surgery

Rats were anesthetized with ketamine (100 mg/kg i.p.)

and xylazine (15 mg/kg i.p.) and head-fixed in a

stereotaxic frame (Insight, Brazil). Body temperature

was maintained at 37 ± 0.5 �C by using a heating pad,

and the level of anesthesia was verified by the tail pinch

reflex. In brief, the skull was exposed, cleaned and two

stainless steel guide cannulae (23 gauge, length

12 mm) were implanted bilaterally 1 mm above the

prelimbic region of the medial PFC (mPFC; AP =

+3.0 mm; ML =±0.5 mm; DV = �2.3 mm), according

to the rat brain atlas (Paxinos and Watson, 2007). Two

micro screws were inserted in the skull and fixed with den-

tal acrylic. Behavioral experiments started three days

after surgery.
Drugs

CBD (THC-Pharm, Frankfurt, Germany) was dissolved in

grape seed oil for intra-PFC microinjections. For

microinjections, we used a 33-G needle 1 mm longer

than the guide cannula, aiming at the �3.3 mm DV

coordinate of the prelimbic region. The solutions were

prepared immediately before the tests and were

protected from the light during the experimental session.

The dose of CBD was chosen based on previous

reports and on pilot studies in our laboratory showing its

effect on fear memory (Bitencourt et al., 2008; Campos

and Guimarães, 2008; Lemos et al., 2010; Do Monte

et al., 2013).
Behavioral procedures

All behavioral procedures were performed in a

conditioning chamber made of a metal floor with 18 bars

(2 mm diameter; spaced 1 cm) and acrylic walls

(23 � 23 � 24 cm). The floor was connected to a

software-controlled scrambler shock generator (Insight,

Brazil). The apparatus was cleaned with 30% ethanol

and water between each trial. For contextual fear

conditioning, rats were placed in the conditioning

chamber for habituation followed by the conditioning

session. Habituation consisted of a 4 min pre-exposure

to the conditioning chamber. During conditioning,

animals were exposed to five electrical footshocks

(1.0 mA/2 s), 75 s apart. Immediately (0 h) or 5 h after

training, animals received bilateral intra-PFC

microinjections of CBD (0.2 ml/hemisphere; [CBD]

= 2 mg/ml; flow = 0.1 ml//min) or VEH (0.2 ml/
hemisphere; grape seed oil). Two retrieval sessions

were performed: one at 24 h and another 5 days after

conditioning. They consisted of re-exposing the animals

to the same context where they were shocked for 8 min,

but with no acoustic stimulus or footshock. Freezing
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behavior was used as an index of fear memory during

subsequent non-reinforced re-exposure to the context. It

was defined as a behavioral arrest with immobility of the

animal in a stereotyped position, except for movements

necessary for breathing (Fanselow, 1976). Freezing

behavior was recorded with a video camera and further

quantified in blocks of 15 s by an experimenter blinded

to the experimental condition.
High-performance liquid chromatography with
electrochemical detection (HPLC-ED)

Dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC),

serotonin (5-HT), and 5-hydroxyindole-3-acetic acid (5-

HIAA) concentrations were measured in tissue samples

of PFC by HPLC-ED as previously described (Lopes

Aguiar et al., 2008). After all behavioral procedures, two

groups of animals (VEH and CBD group) were prepared

for monoamine quantification. Briefly, rats were killed by

decapitation under CO2 anesthesia and the brains were

removed, immediately frozen on dry ice and stored at

�70 �C. Using a cryostat at �10 �C, microdissections of

the mPFC were performed bilaterally by the punch

method accordingly to the rat brain atlas (Palkovits,

1973; Paxinos and Watson, 2007). The microdissections

were homogenized in a solution of 0.2 M perchloric acid

containing 8 ng/mL of 3,4-dihydroxybenzylamine, as

internal standard. The homogenates were centrifuged

for 20 min at 12,000 g. The supernatant was taken for

monoamine analysis and the pellets were used for deter-

mination of protein content (Bradford, 1976). Separation

was performed on a 250 � 4 mm C18 column (Purospher

Star, 5 mm, Merck), preceded by a 4 � 4 mm C18 guard

column. The mobile phase consisted of 100 mM sodium

dihydrogen phosphate (pH 3.5), 10 mM sodium chloride,

0.1 mM EDTA, 0.20 mM sodium 1-octanesulfonic acid,

and 15% methanol. The pump flow rate was 0.6 mL/min

and the electrochemical potential was set to 600 mV ver-

sus in situ Ag/AgCl reference electrode. Chromatography

data were plotted with Class-VP software (Shimadzu,

Kyoto, Japan). Quantification was performed using the

internal standard method based on the area under the

peak. All samples from the experiment were measured

in the same assay. The intra-assay coefficient of variation

was less than 5% for all measured compounds. The neu-

rotransmitter levels (DA and 5-HT) were considered to

reflect neurotransmitter stocks in synaptic vesicles.

DOPAC and 5-HIAA levels reflected the release of dopa-

mine and 5-HT, respectively DOPAC/dopamine and 5-

HIAA/5-HT ratios were taken as an index of neurotrans-

mitter turnover.
Immunohistochemistry

To investigate the effects of CBD on neuronal activity in

limbic–cortical sites, we evaluated the expression of the

immediate-early genes c-fos and zif-268. A separate

group of animals subjected to the same behavioral

procedures as described were anesthetized with

urethane (1.5 g/kg ip 0.15 M NaCl) two hours after

microinjection intra-PFC to perfusion. Transcardial

perfusion was carried out with 200 mL phosphate-
buffered saline (PBS) at 25 �C, followed by 400 mL of

the fixative solution consisting in paraformaldehyde

(PFA) 4% in phosphate buffer (PB) with pH 7.4 at 4 �C.
Brains were removed from the skull, post-fixed in PFA

for 4 h/4 �C and immersed in 70% ethanol for one day,

followed by paraffin embedding.

Immunohistochemistry was performed in 8-mm-thick

coronal brain sections, following published protocol

(Peixoto-Santos et al., 2012). In order to avoid cannula

lesion and secondary tissue damage, we only used sec-

tions collected posterior to the cannula track with no signs

of scars and gliosis. The sections were submitted to

endogenous peroxidase block, antigenic microwave

retrieval with citrate buffer (10 mM, pH 6.0), and overnight

incubation with the primary polyclonal rabbit anti-c-fos

(dilution 1:50 in skim milk blocking buffer, cod. sc-52,

Santa Cruz Biotechnology), and anti-zif-268 (dilution

1:100, cod sc-189, Santa Cruz Biotechnology). Primary

antibody visualization was performed using avidin–

biotin-peroxidase complex (Vectastain Elite ABC kit, cod

PK6100, Vector) and 3,30-diaminobenzidine tetrahy-

drochloride as cromogen (DAB, cod 34001, Pierce

Biotechnology, Waltham, Massachusetts, USA).

Micrographs from the regions of interest, delineated

according to the Paxinos Atlas (Paxinos and Watson,

2007), were collected with an AxioCamMR5 attached to

AxioImager M1 microscope. All images were obtained

with 200� magnification under constant illumination

(3 V, 60 ms exposure). The semi-quantitative analysis

was performed by threshold tool with ImageJ 1.48 soft-

ware (National Institutes of Health, USA), following pub-

lished protocols (Kandratavicius et al., 2013; Wolf et al.,

2016). Regions of interest comprised the prelimbic cortex

(PL), basolateral nucleus of the amygdala (BLA),

mediodorsal thalamic nucleus (MD), paraventricular tha-

lamic nucleus (PVN), reuniens thalamic nucleus (Re),

perirhinal cortex (PRh), entorhinal cortex (Ent), ectorhinal

cortex (Ect), granular cell layer of hippocampus (DG), and

pyramidal layer of hippocampus subfields (CA4, CA3,

CA2, and CA1). Results are shown as a percentage of

immunopositive area in total area evaluated.
Cannulae placement histology

All animals, except those subjected to the brain micro-

dissection protocol, were subjected to histological

examination. After the behavioral tests, all animals were

decapitated under CO2 anesthesia and were

transcardiacally perfused with 100 mL of NaCl 0.15 M

followed by 250 mL of 4% formaldehyde in 0.1 M PBS,

pH 7.4. Brains were removed, post-fixed in the

formaldehyde solution for 14 h at 4 �C and

cryoprotected for 48 h in 20% sucrose solution. After

freezing in dry ice-chilled isopentane, brains were cut

along the coronal plane in 30 mm slices, mounted on

gelatinized slides and processed for cresyl violet

staining. Injection sites were determined after analysis

of the slides with a bright field microscope (BX-60

Olympus, Center Vally, PA, USA). Only animals

showing accurate cannula placement were included in

the statistical analysis.
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Statistical analysis

Behavioral data were analyzed by a two-way analysis of

variance (ANOVA) for repeated measures (Two-way

ANOVA RM). Post-hoc comparisons were performed

using the Bonferroni test. Neurotransmitter and

metabolite levels were evaluated by Student’s t-test.
Non-Gaussian distribution variables were tested using

Wilcoxon Rank-Sum Test (Rank-Sum Test). All results

are expressed as mean ± SEM (standard error of

mean) and statistical significance defined as p< 0.05.

RESULTS

mPFC CBD injection 5 h after conditioning affects
emotional memory formation

To evaluate whether CBD interferes with PFC-dependent

processes important for emotional memory formation in a

time-dependent manner, we bilaterally infused CBD intra-

PFC immediately (0 h) and 5 h after training (Fig. 1A, B).

As shown in Fig. 1C, the freezing rate decreased over

time independently of the group [�30.4% in 24 h test,

�40.6% in 5 d test; F(2,36) = 25.024; p< 0.001; Two-

way ANOVA-RM]. Besides, CBD injection immediately

(0 h) after conditioning did not influence consolidation of

contextual fear memory measured by freezing rates at

24 h and 5 d tests [F(1,36) = 0.278; p> 0.05; Two-way

ANOVA-RM). As mentioned in the Introduction section,
Fig. 1. Intra-PFC CBD infusion 5 h after training impairs consolidation o

aversive memory. (A) Diagrams illustrating representative injection sites. Anim

the analyses contingent upon correct cannula placement above the PL. (B

bilateral cannula implantation, as shown by a representative cresyl-stained

CBD infusion 0 h after conditioning does not change freezing on 24 h an

(p> 0.05; VEH n= 10, CBD n= 10). (D) CBD infusion 5 h after conditioning

5 d retrieval test (�12%, p< 0.01; VEC n= 16, CBD n= 19). All data are

± SEM. *p< 0.01 Two-way ANOVA RM, post hoc Bonferroni. Tr, condition
the PFC seems to be more engaged in contextual fear

memory consolidation during a window of opportunity

from 3 to 6 h after conditioning (Izquierdo et al., 2007).

We observed that animals submitted to CBD infusion into

the PFC 5 h after training displayed lower rates of freezing

behavior in the 5-d test when compared to the control

group (�12%; F(2,66) = 3.328; p< 0.05; treatment-

time interaction; p< 0.001; Bonferroni test; Fig. 1D).
mPFC CBD injection 5 h after conditioning decreases
cortical dopamine release

Here, we measured DA and serotonin release following

memory retrieval 5 days after training. We analyzed the

monoamines and their metabolites in PFC samples

using HPLC-ED fractionation (Fig. 2A). We observed

that CBD significantly decreased the DOPAC/DA ratio

when compared to the control group (�38%; p< 0.05; t

test; Fig. 2B). 5-HT and 5-HIAA levels were not affected

by CBD treatment (p > 0.05; Student’s t-test; Fig. 2C).
mPFC CBD 5 h after conditioning reduces genes
expression in cortico-limbic circuits

To test whether bilateral CBD injection into the PFC was

able to disrupt activity-related gene expression in extra-

cortical regions, we examined c-fos and zif-268 in areas

relevant for memory consolidation. Perfusion and brain
f remote contextual

als were included in

) Typical tracts from

coronal section. (C)

d 5-d retrieval tests

reduces freezing on

presented as mean

ing.
processing were performed two

hours after intra-PFC drug

administration (Fig. 3A).

Immunohistochemistry analyses

showed that CBD decreased c-fos-

immunoreactivity in the PL of the

mPFC, midline thalamic structures

and hippocampal regions (p< 0.05;

t test; Fig. 3B). Consistently, CBD

also decreased zif-268-

immunoreactivity in the midline

thalamus and hippocampal

structures (p< 0.05; Student’s t-
test; Fig. 3C).
DISCUSSION

Our findings indicate that intra-PFC

CBD administration disrupts

contextual fear memory

consolidation when infused 5 h after

training. This effect is associated

with (1) decreased dopaminergic

release in the PFC at retrieval

5 days after training and (2)

decreased c-fos and zif-268 protein

expression in the prelimbic cortex,

and a subset of PFC projection

targets, such as the midline

thalamus and hippocampus.

Besides its role in working

memory, the PFC is important for

aversive learning and emotional

memory expression (Rozeske et al.,



Fig. 2. Intra-PFC CBD infusion 5 h after training reduces dopamine release in mPFC. (A)

Experimental paradigm for quantification of monoamines. (B) Schematic representation of the

mPFC sites from which the samples were collected through micro-dissection. (C) CBD infusion 5 h

after conditioning decreases DOPAC/DA ratio in the mPFC (�42%; p< 0.05; VEH n= 5, CBD

n= 6). (D) CBD infusion 5 h after training does not change the level of 5-HT and 5-HIAA, or the

5-HIAA/5-HT ratio (p> 0.05; VEH n= 5, CBD n= 5). Data are shown as mean ± SEM.
*p< 0.05 compared with control, t-test. Tr, conditioning.

M. T. Rossignoli et al. / Neuroscience 350 (2017) 85–93 89
2015; Giustino and Maren, 2015). Inactivation of the pre-

limbic and infralimbic subfields reduces fear expression to

context and memory extinction, respectively (Corcoran

and Quirk, 2007; Sierra-Mercado et al., 2011). In fact, it

has been postulated that memory consolidation involves

a time-dependent reorganization of activity in the PFC

and associated limbic structures (hippocampus, amyg-

dala and entorhinal cortex) (Preston and Eichenbaum,

2013; Izquierdo et al., 2016). In support to this, intra-

PFC infusion of dopamine D1, amino–hydroxymethyl-iso

xazole propionate (AMPA) and glutamate N-methyl-D-

aspartate (NMDA) receptor antagonists or infusion of c-
amino-butyrate type A (GABAA) agonist were shown to

interfere with aversive memory consolidation at distinct

time windows. This effect was significant when applied

at different time-points between 1.5 and 12 h after fear

conditioning (Souza et al., 2000; Izquierdo et al., 2007;

Gonzalez et al., 2014). In particular, blockade of D1

receptors in the medial PFC 6 h after training disrupts

the long-term retrieval of a step-down inhibitory avoidance

memory (Gonzalez et al., 2014).

Moreover, contextual fear memory consolidation can

elicit early transcriptional, structural, and functional

remodeling of PFC cells few hours after conditioning

(Vetere et al., 2011; Bero et al., 2014). These observa-

tions are consistent with the demonstration that PFC neu-

rons are reactivated during encoding of associative

memories (Lesburguères et al., 2011). This process is

thought to be driven by the hippocampus, leading to a

gradual consolidation of contextual fear memories

(Laroche and Davis, 2000; Restivo et al., 2009). Our find-

ings show that intra-PFC CBD infusion at a particular time

window after training (5 h) disrupts the formation of long-

term emotional memory 5 days later. In accordance with

its amnesic effects, it has been demonstrated that CBD
infusions before training impairs

long-term aversive memory acquisi-

tion (Resstel et al., 2006; Lemos

et al., 2010); facilitation of aversive

memory extinction before retrieval

test (Bitencourt et al., 2008); and dis-

ruption of aversive memory reconsoli-

dation immediately after retrieval test

(Stern et al., 2012). Recently, it has

been reported that CBD can modulate

DA release and decrease the popula-

tion activity of mesolimbic neurons

(Ren et al., 2009; Murillo-Rodrı́guez

et al., 2011, 2014). PFC dopaminergic

neurotransmission is also essential

for long-term storage of contextual

fear memories (Espejo, 2003), which

is supported by studies showing that

reduced levels of DA release during

contextual fear memory acquisition

are associated with reduced freezing

behavior (Pezze and Feldon, 2004;

Ikegami et al., 2014). In response to

fear expression, PFC neurons display

periods of burst firing (Burgos-robles

et al., 2007) that are associated with

increased dopaminergic neuronal

activity (Lodge, 2011). In addition,
dopamine receptor activation in the hippocampus and

PFC plays an important role in the long-term consolidation

of fear memories (Izquierdo et al., 2006, 2007; Rossato

et al., 2009). In fact, intra-CA1 infusion of D1 receptor

antagonists 3 h or 6 h post-training has been shown to

decrease step-down inhibitory avoidance latency (i.e.

aversive memory expression) during memory retrieval

(Bevilaqua et al., 1997). Similarly, intra-PFC infusions of

D1 receptor antagonists 3 h after conditioning disrupt

the consolidation of fear memory in the same task

(Izquierdo et al., 2007). Consistent with these studies,

our results indicate that intra-PFC infusions of CBD

impaired memory consolidation and the expression of

aversive memory at a retrieval session 5 days after train-

ing. Interestingly, such poor performance correlated with

a decrease in dopamine release in the PFC. Although

we did not measure dopamine levels following CBD

administration, we hypothesize that the acute inhibitory

action of CBD following training may have produced

long-lasting effects on the PFC local circuitry with implica-

tions to memory performance and dopamine release,

through its projections to the ventral tegmental area. In

fact, the reduced neuronal activation of the prelimbic

region during retrieval could be the result of a diminished

feedback from brainstem dopaminergic neurons due to

PFC inhibition (Karreman and Moghaddam, 1996).

Although it is well documented that CBD facilitates

fear memory extinction (Bitencourt et al., 2008; Do

Monte et al., 2013), its effects on a network scale, mea-

sured by activity-dependent gene expression in multiple

limbic structures during aversive memory consolidation,

are still unknown (Izzo et al., 2009). Here, we observed

that intra-PFC CBD infusions produced similar patterns



Fig. 3. Intra-PFC CBD infusion 5 h after conditioning reduces c-fos and zif-268 expression in limbic structures. (A) Experimental paradigm for

immunohistochemical quantification of c-fos and zif-268. (B) CBD infusion 5 h after conditioning reduces the immunopositive area for c-fos on PL

(�50%), BLA (�78%); MD (�100%), PVN (�70%), Re (�83%), DG (�100%), CA4 (�93%), CA3 (�81%), CA2 (�90%) and CA1 (�83%) (VEH

n= 7–9, CBD n= 7–9). (C) CBD 5 h after conditioning reduces immunopositive area for zif-268 on MD (�100%), PVN (�100%), Re (�80%), DG

(�77%), CA4 (�81%), CA3 (�83%), CA2 (�67%) and CA1 (�66%) (VEH n= 4–7, CBD n= 4–8). Data are shown as mean ± SEM. *p< 0.05

compared to control, Student’s t-test. Tr, conditioning; PL, prelimbic cortex; MD, mediodorsal thalamic nucleus; PVN, paraventricular thalamic

nucleus; Re, reuniens thalamic nucleus; PRh, perirhinal cortex; Ent, entorhinal cortex; Ect, ectorhinal cortex and DG, granular cell layer of

hippocampus.
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of c-fos and zif-268 gene expression in mPFC targets

such as the hippocampus, midline thalamus, amygdala

and rhinal cortices. Although c-fos and zif-268 represent

activity-dependent immediately early genes with different

activation sensitivities, their expression levels were simi-

larly reduced in all limbic areas analyzed with the excep-

tion of rhinal (entorhinal, perirhinal and ectorhinal)
cortices. In the BLA and PL, however, zif-268 levels did

not change after CBD administration, possibly due to

the low signal-to-noise ratio for zif-268 as a result of its

high basal levels in the rodent brain. The fact that

activity-dependent gene expression in the rhinal cortices

was not altered after intra-PFC CBD infusion argues

against a generalized inhibitory effect of CBD on PFC
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targets. Selective decrease of neuronal activity induced

by CBD is supported by previous in vitro and in vivo stud-

ies. In vitro application of CBD differentially reduces burst

amplitude and frequency of local field potentials in slices

of epileptic hippocampus, subfields CA1, CA3 and DG

(Jones et al., 2010). Furthermore, systemic injection of

CBD in rodents promotes restricted patterns of brain acti-

vation. It increases c-fos expression in the nucleus

accumbens, but not in the striatum, as well as decreases

c-fos expression in the mPFC (Guimarães et al., 2004;

Lemos et al., 2010). An important experimental aspect

of our study is that we used bilateral CBD infusions into

the mPFC in a very small volume (0.2 lL/hemisphere;

2.0 lg/lL). So, we can confidently assert that its effects

were mediated by its direct action on the PFC activity

and not due to widespread brain diffusion of the drug.

Considering that the activity-dependent expression of

zif-268 is associated with the consolidation of long-lasting

memories (Frankland et al., 2004; Goshen et al., 2011), it

is interesting to notice that reduced c-fos and zif-268

expression in response to intra-PFC CBD injection were

not restricted to the PFC or generalized, but were found

in some of the PFC target regions. This implicates the

inhibition of neuronal activity in some cortical targets in

the impairment of long-term aversive memory. Neuronal

tracing studies have shown that the PFC reciprocally pro-

jects to the BLA (Hübner et al., 2014) and midline thala-

mus (Vertes and Hoover, 2008; Varela et al., 2014;

Rozeske et al., 2015). Besides, the PFC can indirectly

modulate hippocampus activity through its efferences to

the nucleus reuniens of the midline thalamus, which

directly projects to CA1 (Varela et al., 2014). CA1, in turn,

sends excitatory monosynaptic projections back to the

PFC (Jay and Witter, 1991; Laroche and Davis, 2000;

Gabbott et al., 2002), closing the thalamus–hippocampus–

prefrontal cortex loop (Cenquizca and Swanson, 2007).

Interestingly, direct inactivation of nucleus reuniens is

sufficient to disrupt the expression of contextual fear

memory (Xu and Südhof, 2013) and, lesions in this region

reduce dendritic branching in the PFC and hippocampus

(Torres-Garcia et al., 2012). Therefore, we postulate that

CBD modulation of PFC activity 5 h post-training

interferes with contextual fear memory formation by

reducing its influence on thalamo-limbic circuits.

CONCLUSIONS

In summary, the present study shows that CBD into the

PFC interferes on memory consolidation in a selective

post-training time window. This effect is associated with

reduced dopaminergic modulation in PFC and reduced

immediately-gene expression in thalamic-limbic circuits.
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S, Tejeda-Padrón A, Poot-Aké A, Guzmán K, Pacheco-Pantoja E,

Arias-Carrión O (2014) Potential effects of cannabidiol as a wake-

promoting agent. Curr Neuropharmacol 12:269–272.

Palkovits M (1973) Isolated removal of hypothalamic or other brain

nuclei of the rat. Brain Res 59:449–450.

Parsons RG, Ressler KJ (2013) Implications of memory modulation

for post-traumatic stress and fear disorders. Nat Neurosci 16

(2):146–153.

Paxinos G, Watson C (2007) The rat brain in stereotaxic

coordinates. Amsterdam: Academic Press/Elsevier.

Peixoto-Santos JE, Galvis-Alonso OY, Velasco TR, Kandratavicius L,

Assirati JA, Carlotti CG, Scandiuzzi RC, Serafini LN, Leite JP

(2012) Increased metallothionein I/II expression in patients with

temporal lobe epilepsy. PLoS One 7:1–11.

Pertwee RG (2008) The diverse CB 1 and CB 2 receptor

pharmacology of three plant cannabinoids: D9-

tetrahydrocannabinol, cannabidiol and D9-

tetrahydrocannabivarin. Br J Pharmacol 153(2):199–215.

http://refhub.elsevier.com/S0306-4522(17)30177-X/h0030
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0030
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0035
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0035
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0035
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0035
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0040
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0040
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0040
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0040
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0045
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0045
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0045
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0050
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0050
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0050
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0055
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0055
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0055
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0055
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0055
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0055
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0060
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0060
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0060
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0065
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0065
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0070
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0070
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0070
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0070
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0075
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0075
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0080
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0080
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0080
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0080
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0085
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0085
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0085
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0090
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0090
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0090
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0090
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0090
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0095
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0095
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0095
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0100
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0100
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0100
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0105
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0105
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0105
http://refhub.elsevier.com/S0306-4522(17)30177-X/h9000
http://refhub.elsevier.com/S0306-4522(17)30177-X/h9000
http://refhub.elsevier.com/S0306-4522(17)30177-X/h9000
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0110
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0110
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0110
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0110
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0115
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0115
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0115
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0120
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0120
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0120
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0120
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0125
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0125
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0125
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0125
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0130
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0130
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0135
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0135
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0135
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0135
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0140
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0140
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0140
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0140
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0145
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0145
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0145
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0145
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0150
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0150
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0150
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0150
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0150
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0155
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0155
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0155
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0155
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0160
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0160
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0160
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0165
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0165
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0165
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0165
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0170
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0170
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0170
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0170
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0175
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0175
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0175
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0180
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0180
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0180
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0180
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0180
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0180
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0185
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0185
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0185
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0190
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0190
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0190
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0190
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0195
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0195
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0195
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0195
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0200
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0200
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0205
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0205
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0205
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0210
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0210
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0215
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0215
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0215
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0215
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0220
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0220
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0220
http://refhub.elsevier.com/S0306-4522(17)30177-X/h0220


M. T. Rossignoli et al. / Neuroscience 350 (2017) 85–93 93
Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in

fear conditioning. Prog Neurobiol 74(5):301–320.

Preston AR, Eichenbaum H (2013) Interplay of hippocampus and

prefrontal cortex in memory. CURBIO 23:R764–R773.

Ren Y, Whittard J, Higuera-matas A, Morris CV, Hurd YL (2009)

Cannabidiol, a nonpsychotropic component of cannabis, inhibits

cue-induced heroin seeking and normalizes discrete mesolimbic

neuronal disturbances. J Neurosci 29:14764–14769.

Resstel LBM, Joca SRL, Moreira FA, Corrêa FMA, Guimarães FS
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