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ABSTRACT

Aims. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show
that the time–frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic
activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four
classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars.
Methods. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet
transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the
signal in time–frequency space, and the second is obtained by time integration of the local map.
Results. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and
CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified
for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a
beat-pattern signature in the local wavelet map of pulsating stars over the entire time span was also detected.
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1. Introduction

The CoRoT (Baglin et al. 2009) and Kepler (Borucki et al.
2010) space missions produced unique sets of light curves for
about 300 000 stars, with excellent time sampling and unprece-
dented photometric precision. These data, in addition to the ma-
jor scientific goals of the missions (asteroseismology and the
search for exoplanets) open new perspectives for studying differ-
ent stellar properties, including rotation, magnetic activity, and
binarity. For extracting information from raw signals, several
mathematical transformations can be applied, such as Laplace
transform (Widder 1945), Z-transform (Jury 1964), Wigner dis-
tributions (Boashash 1988), and Fourier transform (Bochner &
Chandrasekharan 1949), the last being the most widely used.
The wavelet transform (Torrence & Compo 1998) is a more re-
cent tool applied for treating a large number of phenomena in
different areas, including geophysics, atmospheric turbulence,
health (cardiology), and astrophysics. This transformation has
a major advantage, since it allows analysis of frequency varia-
tions in time of a given signal. Analogous to sunspots and solar
photospheric faculae, whose visibility is modulated by stellar ro-
tation, stellar active regions consist of cool spots and bright fac-
ulae caused by the magnetic field of the star. Such starspots are
well established as tracers of rotation, but their dynamic behav-
ior may also be used to analyze other relevant phenomena, such
as magnetic activity and cycles (e.g., Mathur et al. 2014; García
et al. 2009; Willson & Mordvinov 1999).

The present work provides a time–frequency analysis using
the wavelet transform of different sort of stellar light curves from
CoRoT and Kepler space missions in order to identify particular

features associated to rotation, magnetic activity, and pulsation1.
This procedure allows us to obtain a distribution of the signal’s
energy, in time-scale space, from which we can identify the tem-
poral evolution of different phenomena affecting the light curves
(such as active regions and possible beats related to pulsations or
surface differential rotation). This paper is organized as follows.
Section 2 discusses procedures and methods, with an analysis
of artificial stationary/nonstationary signals and a description of
the wavelet transform. Section 3 presents the primary results, in-
cluding the main characteristics of the stars studied here, with
conclusions in Sect. 4.

2. Procedures and methods

The light curve obtained from a star can be decomposed into a
number of frequencies represented in the power spectrum, which
allows us to determine the periodic components of data that may
be related to the physical properties of the system. These prop-
erties may be, for instance, rotational modulation and several
related dynamic phenomena on the stellar surface, pulsation, as
well as planetary transits. From the application of Fourier trans-
form to the signal, we can obtain its frequency–amplitude rep-
resentation. Nevertheless, since the stellar light curves present
events not occurring periodically, such as growth and decay of
an active region, our interest, in addition to obtaining the spectral

1 The processing of CoRoT and Kepler light curves is carried out by an
I.C.L. routine called Coroect, with methods described in De Medeiros
et al. (2013), and wavelet analysis by a J.P.B. routine, with methods
described in this paper, both using the Interactive Data Language (IDL).

Article published by EDP Sciences A34, page 1 of 10

http://dx.doi.org/10.1051/0004-6361/201323032
http://www.aanda.org
http://www.edpsciences.org


A&A 568, A34 (2014)

2 4 6 8 10 12 14
Time (s)

-3
-2

-1

0

1

2
3

A
m

pl
itu

de

Fig. 1. Artificial stationary signal composed of sines with different am-
plitudes and frequencies (1, 10, 5, and 2 Hz) (top panel) and its power
spectrum (bottom panel).

composition, which offers an idea of rotation behavior and pul-
sation modes, is to follow the time–frequency behavior of those
events and identify any specific signature to a particular stellar
variability even if the light curve presents some kind of noise or
singularities. For this, the time localization of the spectral com-
ponents is necessary and the application of the wavelet trans-
form to the signal will produce its time–frequency representation
(hereafter TFR).

2.1. Fourier transform

The Fourier transform, named in honor of Joseph Fourier, is the
extension of the Fourier series for nonperiodic functions; it de-
composes any function into a sum of sinusoidal basis functions.
Each of these functions is a complex exponential of a different
frequency ν. The Fourier transform is defined as

F(ν) =
∫ ∞

−∞
f (t) e −2πiνtdt. (1)

The function F(ν) represents the amount of power inherent in
f (t) at frequency ν, providing a frequency-based decomposition
of the signal; that is, F(ν) tells us how much of each frequency
exists in the signal, but offers no information on the existence
of these frequencies over time. This information is not required
when the signal is stationary. As an illustration, we simulated a
stationary signal composed of 15-s sines (Fig. 1, top). This signal
has different amplitudes and frequencies (1, 10, 5, and 2 Hz)
at any given time instant. The power spectrum is obtained by
applying the Fourier transform to this signal, as shown in Fig. 1
(bottom), where the four spectral components corresponding to
frequencies 1, 10, 5, and 2 Hz are identified.

We also simulated a nonstationary signal with four differ-
ent frequencies at three different time intervals, shown in Fig. 2
(top). In the first interval (up to 5.5 s), the signal is composed of
the four frequencies; in the second (from 5.5 s to 11 s), only two
of the four frequencies are added (1 and 10 Hz); and in the last,
the other two frequencies (2 and 5 Hz) make up the final part of
the nonstationary signal. The corresponding power spectrum is
shown in Fig. 2 (bottom).

The two spectra in Figs. 1 and 2 are similar, in the sense
that both show four spectral components at exactly the same fre-
quencies (1, 10, 5, and 2 Hz). Nevertheless, although the first
simulated signal contains these frequencies at all times, they are
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Fig. 2. Artificial nonstationary signal with four frequencies in three dif-
ferent time intervals (top panel) and its power spectrum (bottom panel).

present in the second at different time intervals. This is one dis-
advantage of the Fourier transform, because it provides no infor-
mation regarding the variation in these frequency components
over time. However, globally it provides a more resolved power
spectrum than the wavelet transform (Sect. 2.2), because it is
useful for refining the period determination. On the other hand,
the wavelet method allows a better interpretation of physical fea-
tures (as shown below) prior to considering them for a period
refinement.

Gabor (1946) modified the Fourier transform, creating the
so-called short-term Fourier transform (STFT) or Gabor trans-
form. The mechanism consists of dividing the signal into small
enough fixed-length segments, which can be assumed to be sta-
tionary. The function to be transformed (signal) is multiplied by
a window function w, commonly a Gaussian function, and the
resulting function is then processed with a Fourier transform to
derive the TFR. Although the STFT has contributed significantly
to the study of nonstationary signals, there was still a resolu-
tion problem to solve because the STFT does not show what
frequency components exist at any given time. Indeed, we only
know which frequency band exists at any given time interval
(Hubbard 1996), which is a problem related to the width of the
window function used. A wide window gives better frequency
resolution but poor time resolution, while a narrow window has
the opposite trade-off. This is interpreted as a limit on the simul-
taneous time–frequency resolution one may achieve (Heisenberg
uncertainty principle applied to time–frequency information).

2.2. The wavelet transform

To overcome the resolution problem, the wavelet technique is
a useful tool for analyzing nonstationary and nonperiodic sig-
nals, displaying characteristics that can vary in both time and
frequency (or scale) (Burrus, Gopinath, & Guo 1998). The cen-
tral idea of the wavelet is based on multiresolution analysis, from
which the signal is analyzed at different frequencies with differ-
ent resolutions showing details of the signal that characterize its
different contributions. At low resolution, the details generally
characterize large structures and, by increasing the resolution,
we obtain more detailed information on the signal.

In the 1980s, Jean Morlet and Alex Grossman worked to-
gether on a mathematical function with two major characteris-
tics: having finite energy and subjected to dilation or compres-
sion (Grossmann & Morlet 1984). From a convolution between
the wavelet and the signal, we can determine how much a section
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of the signal looks like the wavelet providing the TFR, also
called wavelet local power spectrum or wavelet map (hereafter
WVM). The analysis uses a function prototype, called mother
wavelet ψ(t) that generates the other window functions. These
functions are called daughter wavelets ψa,b and are defined by
translation and dilation (scale) of the mother wavelet ψ(t) as:

ψa,b(t) =
1√
a

ψ

(
t − b

a

)
, a, b ∈ �, a � 0, (2)

where a and b are the scale and translation parameters, respec-
tively. Scaling either dilates (large scales) or compresses (small
scales) the signal. The constant number 1√

a
is an energy normal-

ization factor so that the transformed signal will have the same
energy at every scale (Esignal =

∫ +∞
−∞ | f (t) |2 dt where f (t) is a

continuous-time signal).
There are two types of wavelet transform: the continuous

wavelet transform (CWT) and the discrete wavelet transform
(DWT) defined by

CWT f (a, b) =
∫

f (t)ψa,b dt =
1√
a

∫
f (t)ψ

(
t − b

a

)
dt (3)

and

DWT f ( j, k) = a0
− j
2

∫
f (t)ψ

(
a− j

0 t − k b0

)
dt, (4)

respectively, where j, k ∈ Z, a = a0
j, b = k b0 a0

j, and a0 > 1
and b0 > 1 are fixed (Foster 1996). The difference between
Eqs. (3) and (4) is that the CWT operates on all possible scales
and displacements, whereas the DWT uses a specific set of scales
(or frequencies) and displacements (fixed values) (Daubechies
1992). In the present work, the CWT is used to achieve periods
due to different phenomena, e.g., stellar rotation in some Kepler
and CoRoT stellar light curves.

The choice of the mother wavelet is imposed by the infor-
mation that we want to emphasize in the signal. The most com-
mon continuous wavelets are the Morlet and the Mexican hat
(Morettin 1999). The Morlet wavelet is a complex harmonic
function contained within a Gaussian envelope as defined by

Ψ(t) = e−a[ν(t−b)]2
e−i2πν(t−b) (5)

where a and b are the scale and translation parameters, respec-
tively, and ν is related to the order of the wavelet. The second-
degree exponential decay of the Gaussian function provides ex-
cellent spatial resolution, and its Fourier transform is a Gaussian
distribution with very good frequency resolution. In this work,
we use the sixth-order Morlet wavelet as the mother wavelet
because of its good time localization and frequency resolution.

To demonstrate the advantage of the wavelet technique, we
applied this method to the artificial stationary and nonstation-
ary signals of Figs. 1 and 2 respectively. Figure 3 shows the
resulting WVMs (left panels) and their global wavelet spectra
(GWS), which are obtained by time integration of the wavelet lo-
cal power spectra (right panels). The horizontal and vertical axes
correspond to the running time (in seconds) and logarithmic time
scale (or the period in seconds (1/ν) where ν is the frequency in
Hz), respectively. At the top, the WVM of the stationary sig-
nal shows the presence of four spectral components at all times,
which was expected. At the bottom, in the case of the nonsta-
tionary signal, we can identify at which time each frequency is
present or not. These spectral components are calculated via the
GWS and illustrated by an arrow in Fig. 3.
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Fig. 3. Top panel: wavelet map of the artificial stationary signal of
Fig. 1. Bottom panel: wavelet map of the artificial nonstationary sig-
nal of Fig. 2. The 6th-order Morlet wavelet was used. Global spectra
are illustrated to the right.

Therefore, from the WVM, we can identify which frequen-
cies are predominant in the signal and at which instant they
exist or not, resulting in improved accuracy on the timescale.
Accordingly, using these WVMs via wavelet transform, we can
identify several physical phenomena in stars from their light
curves. For example, the technique allows us to determine the
rotation period, to identify changes of active regions on the star
due to growth or decay of spots and/or to differential rotation, as
well as to analyze pulsation.

3. Results

In this study, the wavelet method is applied to different Kepler
and CoRoT public stellar light curves, including stars with plan-
etary transit, binary systems, a variable star dominated by mag-
netic activity, and pulsating stars. Indeed, we present here the
results of our analysis for a set of targets listed in different stud-
ies of variability reported in the literature, to compare our re-
sults with those produced by different procedures. First of all,
we analyzed the CoRoT-2, which is a widely studied star, in
order to better understand the surface phenomena behavior of
this young, spotted yellow dwarf, and also Kepler-4, a Sun-like
star presenting low changes in amplitude in its light curve al-
lowing us to consider it as a quiet star. A Kepler apparently
single star (KIC 1995351) dominated by magnetic activity was
also analyzed, in the interest of finding similar spot dynamics
behavior as in CoRoT-2 with the transit removed2. In addition,
we applied the wavelet procedure to a Kepler eclipsing binary

2 The planetary and binary transits are removed using the I.C.L.
routine based on Drake (2003) and Tenenbaum et al. (2010) methods.
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system, KIC 7021177, as well as to four pulsating variable
stars, two targets observed by CoRoT (CoRoT 105288363 and
CoRoT 102918586) and two by Kepler (KIC 9697825 and KIC
3744571). The light curves of the Kepler targets observed at a
cadence of ∼30 min (with a mean total time span of 1380 days)
were reduced with the Pre-Search Data Conditioning (PDC)
module of the Kepler data analysis pipeline, which tries to re-
move discontinuities, outliers, systematic trends, and other in-
strumental signatures (Twicken et al. 2010). Those of the CoRoT
stars are provided by the CoRoT public N2 data archive (Baudin
et al. 2006).

3.1. The Sun

Because of its proximity, the Sun has become a standard model
for studying stars. By analogy with the Sun and the solar mag-
netic cycles, active regions identified in other stars offer the pos-
sibility of studying stellar differential rotation, magnetic activity,
dynamic of spots, and cycle variability. In this context, before
dealing with our selected sample of stars, we briefly describe the
results from the wavelet procedure applied to the total solar irra-
diance (TSI) time series from 1976 until 2013, including cycles
21−23 and the beginning of cycle 24, obtained from radiome-
ters on different space platforms: HF on Nimbus7, ACRIM I on
SMM, ACRIM II on UARS, and VIRGO on SOHO. The com-
posite TSI time series, taken from the World Radiation Center,
was expanded back to the minimum in 1976 using a model
described in Fröhlich & Lean (2004).

Figure 4 shows the wavelet analysis for the Sun, where in
each panel we present the time series at the top, its local map
(modulus of the CWT and normalized to its maximum value) in
the center, whose amplitudes are shown in terms of a color con-
tour map, and the GWS (as the weighted average by time span)
to the right. The WVM of the top panel exposes the 11 year cycle
periodicity (or 3840 days using our method), which is the most
dominant feature of the spectrum even if in the GWS we see
other periodicities and some subharmonics with lower power.
Removing the long-term contributions, the intermediate- and
short-term solar periodicities, as well as their changes over the
entire time span, are clearly identified (bottom panel of Fig. 4).

The dominant feature in the global spectrum is the 364 day
periodicity, which is probably related to the 1.3 year periodicity
at the base of the solar convection zone, as reported by Howe
et al. (2000), and also detected in sunspots areas and sunspots
number time series studied using wavelet transforms by Krivova
& Solanki (2002), leading to an association of this period with
an annual solar feature caused by magnetic fluxes generated deep
inside the Sun. The other interesting features in the spectrum are
the 158 day, 30 day, and 14 day periodicities. The 158 day flare
occurrence period, called the Rieger-type period (Rieger et al.
1984), is stronger in cycle 21 but weaker for the subsequent
cycles, and almost absent in the cycle 24. Krivova & Solanki
(2002) propose that Rieger-period is the third harmonic of the
1.3 year period. We also obtained the solar rotation period of
30 days, which is more evident in cycle 21 because of maximum
activity but persists over the next three cycles. The identified
14 day periodicity seems to be a harmonic of the 30 day vari-
ation. Donnelly & Puga (1990) demonstrate that such a cycle is
also associated to the active regions located opposite each other
in solar longitude. The solar periodicities issued from the present
analysis are in close agreement with those obtained by differ-
ent authors, on the basis of different procedures for the treat-
ment of the total solar irradiance (e.g., Willson 1997; Willson &
Mordvinov 1999; Fröhlich & Lean 1998).
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Fig. 4. Top panel: composite TSI time series (at the top) and its wavelet
local/global power spectra (in the center/to the right) considering long-
term contributions. The most dominant feature of the spectrum is the
11 year cycle periodicity (P = 3840 days). Bottom panel: the long-
term contributions are removed. The intermediate- and short-term peri-
odicities are clearly identified: 364 days (annual solar feature related to
magnetic fluxes generated deep inside the Sun), 158 days (Rieger-type
period), 30 days (solar rotation period) and 14 days (harmonic of the ro-
tation period and associated to solar active regions). Contour levels are
90%, 80%, 70%,. . . , 20% and 10% of the map maximum. The contour
levels are not plotted in the bottom panel for better viewing of periods.
The 6th-order Morlet wavelet was used.

3.2. Stars with a transiting planet

One of the first planets detected with the CoRoT satellite, dur-
ing its first long run in the galactic center direction (LRc01,
time base 142 days), was CoRoT-Exo-2b, a hot Jupiter with a
1.743 day orbit around a main-sequence G7V star. Because its
stellar mass, radius, and effective temperature are comparable
to those of the Sun and because it is to the ZAMS (Bouchy
et al. 2008), which is possibly younger than 0.5 Gyr, CoRoT-2
(CoRoT 101206560, 2MASS 19270649+0123013) has become
a laboratory for our understanding of the magnetic activity be-
havior of the young Sun. The physical parameters of the star
and the planet’s characteristics were determined by Alonso et al.
(2008) and Bouchy et al. (2008). Photometric analysis shows
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Fig. 5. Top panel: light curve of CoRoT-2 with transiting planet (at
the top), its wavelet map (in the center) and global spectrum (to the
right). Bottom panel: light curve of CoRoT-2 with transits removed
(at the top), its wavelet map (in the center) and global spectrum (to
the right). Contour levels are 90%, 80%, 70%,. . . , 20% and 10% of the
map maximum. The 6th-order Morlet wavelet was used.

that modulation of the star was related to two active longi-
tudes initially on opposite hemispheres, i.e., separated by ∼180◦.
The first does not appreciably migrate, showing a rotation period
of 4.522±0.0024 days, and the other slowly migrates (retrograde
migration) with a rotation period of 4.554 d (Lanza et al. 2009).

Figure 5 shows the wavelet map with the associated global
spectrum for this star. In the WVM of the top panel, the tran-
sits have a fine and deep droplet form. The periods related to the
transit are indicated in the GWS by a dashed red line (0.85 d
and 0.56 d) in the top right panel of Fig. 5, which no longer
appear in the GWS once the transit is removed (bottom right
panel). Indeed, these are aliases of the planet orbital period.
Because the periodicity associated to the magnetic activity is
mixed with the energy contribution of the transits in the WVM,
this hides the real orbital period and outstrips their aliases. The
transits are removed because they can alter the periodogram
when the orbital and the rotational periods (or their aliases) are
synchronized or at least very close, preventing us from visualiz-
ing the persistence of the predominant periods. In this case we do

not see any significant differences between both WVMs, but in
some cases such as the binary system in Sect. 3.4 which presents
deeper transits, it is necessary to remove them.

As seen in the WVM of the CoRoT-2 light curve, after re-
moving the planet transit there is a clear signature showing the
persistence over time of two semi-regular “dune” ranges (assem-
blages of color levels) representing the two predominant peri-
ods, which are calculated by a time integration of the local map
and illustrated by a black dashed line in the GWS. Thus, we
have 4.53 d as the rotation period and 2.27 d (approximately
half of the main period) associated to spot emergence on oppo-
site hemispheres of the star, most likely caused by differential
rotation. This feature is therefore considered an indicator of ro-
tational modulation related to the starspots. These periods are in
accordance with the results obtained by Lanza’s method (Lanza
et al. 2009) and also compared using the Lomb-Scargle method,
which gives us a main period of 4.528 d and a second of 2.271 d,
allowing us to adopt this type of signature in the WVM as a mag-
netic activity signature. Also calculated via Lomb-Scargle, there
is another period of 29.45 d, which could represent the varia-
tion in intensity of the second spot area or to be related to cyclic
oscillation of the total spotted area, as reported by Lanza et al.
(2009).

In contrast to the CoRoT-2 star, the second star with
planetary transit analyzed in the present study, Kepler-4
(KIC 11853905, 2MASS 19022767+5008087), a G0-type star,
is slightly brighter and is regarded in this work as a quiet star. Its
planet Kepler-4b discovered in 2010 has the size of Neptune and
orbits its host star in 3.21 days (Borucki et al. 2011). Figure 6
shows the wavelet map with the associated global spectrum for
Kepler-4. We used here the Kepler Quarters 5−7 and Quarters
9−10, which yield 468 day time series once added. After remov-
ing the planetary transit (bottom panel), resulting in a cleaner
wavelet map, we observe that the orbital period Porb = 3.01 d
(obtained with our method) and its alias (dashed red line in
the GWS of the top panel) no longer appear, thereby making
three periodicities evident. Because the amplitude variations are
very small, we can hardly be certain which periodicity is related
to rotation. A first guess is that rotation is associated with the
48.10 day periodicity, and the others with their harmonics. In this
case, no evident magnetic activity signature is identified, and the
two dune ranges do not appear in the wavelet map for this quiet
star.

3.3. Variable star dominated by magnetic activity

Here we present an example of an apparently single active
star, KIC 1995351 (RA = 19h04m23.2s, Dec = +37◦27′18.0′′,
J2000) in the search for a magnetic activity signature compara-
ble to that of CoRoT-2. In fact, the light curve of this star shows
significant variability features, which, in principle, could be as-
sociated to the pulsation or to rotational modulation caused by
active regions. Its wavelet map with the associated global spec-
trum is displayed in Fig. 7, confirming the hypothesis that it is
a fast rotator with many active regions, reflected by the semi-
regular pattern observed in the light curve. Two main periods
persist in the local map over the entire time span, both also evi-
dent in the GWS. The most significant, around 3.30 d, is related
to the rotation, and the second, almost equal to half of the pri-
mary period, that is, 1.54 d, is associated to active regions that
could be on opposite sides of the star, be growing and decaying,
or be migrating, forming a double dip in the light curve (easily
identified by visual inspection in some quarters as a local fea-
ture). One important aspect to underline here is that the period
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Fig. 6. Top panel: light curve of Kepler-4 with transiting planet (at
the top), its wavelet map (in the center) and global spectrum (to the
right). Bottom panel: light curve of Kepler-4 with transits removed
(at the top), its wavelet map (in the center) and global spectrum (to
the right). Contour levels are 90%, 80%, 70%,. . . , 20% and 10% of the
map maximum. The 6th-order Morlet wavelet was used.

1.54 d can be a potential indicator for two or more active regions
contributing to the signal, with a period close to the main value
of 3.30 d and suffering relative changes from one to another.
From Lomb-Scargle in a prewhitening approach, Reinhold et al.
(2013) found two main periodicities for this case: P1 = 3.24 d
and P2 = 3.57 d.

3.4. Binary system

In this section we present the wavelet analysis for the Kepler bi-
nary system KIC 7021177 (2MASS 19103289+4231509), clas-
sified as an eclipsing binary by Prša et al. (2011) and studied by
Dimitrov et al. (2012). Its wavelet map is displayed in Fig. 8 with
the associated global spectrum. The orbital period Porb = 18.54 d
calculated via wavelet procedure and illustrated in the GWS (top
panel) conforms with Porb = 18.6 d of Dimitrov et al. (2012).
Also, we observe some possible aliases (9.27 d and 4.63 d) of the
transit period in both the WVM and the GWS (dashed red line).
To search for stable periods, namely those that are persistent
along the entire light curve, we removed the eclipses (bottom
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Fig. 7. Light curve (at the top) of Kepler star KIC 1995351, its local map
(in the center), and its global wavelet spectrum (to the right). Contour
levels are 90%, 80%, 70%,. . . , 20% and 10% of the map maximum. The
6th-order Morlet wavelet was used.

panel), whose depths are greater than the amplitudes of the ro-
tational modulation contribution, distorting both the WVM and
the GWS. We observe that the aliases are no longer present af-
ter the eclipses are removed. The regular changes in the light
curve are represented by two semi-regular and continuous dune
ranges over the 1300 day window in the WVM, correspond-
ing to the remaining 6.40 day and 3.20 day periodicities. The
first is associated with rotational modulation caused by spots,
in agreement with the rotation period computed by Dimitrov
et al. (2012), whereas the second is the second harmonic that
may be caused by active regions located 180◦ apart on the stellar
surface. As we have seen previously, this feature was also ob-
served for the Sun and CoRoT-2 star. The light curve shows that
some active regions emerge and fade during the entire coverage
period with lower amplitude variation, which is characterized in
the WVM by the dune ranges and their power index variations.
Two other periodicities at 95.51 d and 51.18 d are also present
in the WVMs, but it seems that both are caused by the recurrent
gaps in the light curve.

3.5. Pulsating stars

Changes in the luminosity of stars are also caused by fluctua-
tions in stellar radius. This phenomenon is present in many in-
trinsic variable stars, such as RR Lyrae, Cepheids, and Delta
Scuti, producing large and rather regular variations in ampli-
tude in their light curves. Some variable stars, such as Gamma
Doradus stars (γ Dor), are nonradial pulsators and have smaller
pulsation amplitudes. Here we analyze two types of pulsating
stars, CoRoT 105288363 and KIC 9697825, which are typical
examples of RR Lyrae stars, and CoRoT 102918586 and KIC
3744571, presenting the typical behavior of γ Dor stars.

The CoRoT star 105288363 (RA = 18h39m30.8s, Dec =
+7◦26′55.3′′, J2000), observed during the second long run in
the galactic center direction (LRc02, time base 145 days), is a
new RRab-type Blazhko RR Lyrae star (pulsation in the radial
fundamental mode), analyzed by Guggenberger et al. (2011).
Their results are considered here as a comparison with our find-
ings obtained via the wavelet procedure. The light curve and
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Fig. 8. Top panel: light curve of KIC 7021177 with binary transits (at the
top) and its local/global wavelet map (in the center/to the right). Bottom
panel: light curve of KIC 7021177 with eclipses removed (at the top)
and its local/global wavelet map (in the center/to the right). Contour
levels are 90%, 80%, 70%,. . . , 20% and 10% of the map maximum.
The 6th-order Morlet wavelet was used.

wavelet map with the associated global spectrum for the re-
ferred star are shown in Fig. 9. Its local map shows the long-
term behavior of pulsation and its stability on low scales (high
frequencies) of less than one day, represented by a track as-
sociated to the stronger power index. Some harmonics are il-
lustrated by weaker power tracks. These periodicities are indi-
cated in the global spectrum. Period P0 = 0.56 d (or frequency
f0 = 1.785 d−1) corresponds to the radial fundamental pulsation
period, and the second and third harmonics are P0

2 = 0.28 d (or
2 f0 = 3.571 d−1) and P0

3 = 0.18 d (or 3 f0 = 5.556 d−1). Finally,
PB = 33.27 d (or fB = 0.03 d−1) is associated to the Blazhko
modulation. We underline that the Blazhko effect is a variation
in period and amplitude in RR Lyrae type variable stars (e.g.,
Szabó 2014). The CoRoT star 105288363 exhibits clearly strong
cycle-to-cycle changes in Blazhko modulation. In a continuous
time span, 255 pulsations and more than 4 full Blazhko cycles
were observed and investigated by Guggenberger et al. (2011).
These cycles are clearly observable in the local map displayed
in Fig. 9 in color intensity and shape, forming a beat pattern
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Fig. 9. Light curve (at the top) of CoRoT star 105288363, an RRab-
type Blazhko RR Lyrae, its local map (in the center) and global wavelet
spectrum (to the right). The main periodicities detected are P0 = 0.56 d,
associated to the radial fundamental pulsation period, P0

2 = 0.28 d and
P0
3 = 0.18 d, the second and third harmonics, and PB = 33.27 d, related

to the Blazhko period. Contour levels are 90%, 80%, 70%,. . . , 20% and
10% of the map maximum. The 6th-order Morlet wavelet was used.

with some circular and regular dune ranges. These periodicities
are in accordance with those calculated by Guggenberger et al.
(2011) using Fourier analysis ( f0 = 1.7623 d−1, f1 = 2.984 d−1,
fB = 0.028 d−1, with fB the Blazhko frequency). Nevertheless
when using our method, we do not find the additional period
f1, considered as an independent mode by Guggenberger et al.
(2011), possibly owing to its very low amplitude.

To assume this signature as typical of this type of pulsation,
we also applied the wavelet analysis to the long-term light curve
of the RR Lyrae KIC 9697825 (2MASS 19015863+4626457) or
V360 Lyr (variable star designation in the GCVS Catalog Samus
et al. 2009) with a total time span of 1426 days. Figure 10 shows
the corresponding WVM and GWS. The contour levels are not
plotted here to avoid hiding the pulsation signature in the local
map. The beat pattern of the previous RR Lyrae is still evident
here; i.e., the dune ranges are circular and regular, comprising
tracks associated to the primary period and the harmonics. This
beat pattern characterizes the Blazhko cycles (27 full cycles)
whose periodic variation could be associated to the 52.8 day pe-
riodicity (PB or fB = 0.019 d−1) in the GWS. The other peri-
odicities are P0 = 0.54 d (or f0 = 1.852 d−1) corresponding to
the radial fundamental pulsation period, and the second and third
harmonics P0

2 = 0.27 d (or 2 f0 = 3.704 d−1) and P0
3 = 0.18 d (or

3 f0 = 5.556 d−1), respectively. For comparison, we find similar
results to those obtained by Benkő et al. (2010) using Fourier
analysis ( f0 = 1.79344 d−1 or P0 = 0.55759 d and PB = 51.4 d).
The authors also find additional frequencies ( f1 = 2.4875 d−1

and f ′ = 2.6395 d−1) that we do not obtain using our method,
possibly due to their small amplitudes. Clearly the wavelet pat-
tern and signatures observed for CoRoT star 105288363, a well
defined RRab-type Blazhko RR Lyrae type, as discussed in the
previous paragraph, are also observed for KIC 9697825.

The CoRoT star 102918586, observed during the first scien-
tific run anti-center pointing which lasted about 60 d (IRa01), is
a 12.4 magnitude eclipsing binary (RA = 6h48m54.3s, Dec =
−0◦52′22.8′′, J2000), which is considered to be a γ Dor pulsator

A34, page 7 of 10

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323032&pdf_id=8
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201323032&pdf_id=9


A&A 568, A34 (2014)

0.0 1.0

Power index

0 200 400 600 800 1000 1200 1400

0.1

1.0

10.0

100.0

0 200 400 600 800 1000 1200 1400
Time (days)

0.1

1.0

10.0

100.0

Pe
ri

od
 (

da
ys

)

0.2 0.4 0.6 0.8 1.0

 

 

 

 

 Global
 spectrum

P0

PB

P0/2

P0/3

        
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 f
lu

x

Fig. 10. Light curve (at the top) of Kepler RR Lyrae star KIC 9697825 or
V360 Lyr, its local map (in the center) and global wavelet spectrum (to
the right). The main periodicities detected are P0 = 0.54 d, associated
to the radial fundamental pulsation period, P0

2 = 0.27 d and P0
3 = 0.18 d,

the second and third harmonics, and PB = 52.8 d, related to the Blazhko
period. The 6th-order Morlet wavelet was used.

that shows modulated oscillations and narrow eclipses. For this
star, an orbital period of 8.78248 d (Forb = 0.1139 d−1) is
reported by Maceroni et al. (2010, 2013). These authors also
present the frequencies obtained from a Fourier analysis and de-
tected a nearly equidistant frequency spacing of about 0.05 d−1.
Figure 11 depicts the wavelet analysis of CoRoT 102918586,
considering the binary transits (top panel) and the one with the
eclipses removed (bottom panel). There are no significant differ-
ences between both maps, with only a few variations in scale in-
tensity caused by the eclipses. However, the pulsation frequency
f1 = 1.22 d−1 (P1 = 0.82 d) is still significant in both WVMs.
As shown by Maceroni et al. (2010, 2013), the primary star pul-
sates with typical γDor frequencies, a result compatible with our
wavelet analysis. The main periodicities illustrated in the GWS
of the bottom panel are P1 = 0.82 d (or f1 = 1.22 d−1), asso-
ciated to the pulsation period with the highest amplitude, and
P2 = 18.61 d ( f2 = 0.05 d−1, corresponding to ∼0.5Forb) re-
lated to the beat pattern. Also, P3 = 4.34 d ( f3 = 0.23 d−1) and
P4 = 2.17 d ( f4 = 0.46 d−1) remain after removing the eclipses,
leading to the conclusion that they must be related to the beat
pattern, although they are not exactly equal to the harmonics
of the P2. Finally P5 = 0.41 d ( f5 = 2.44 d−1) is one of the
harmonics of the pulsation period. All these periodicities are in
accordance with those obtained by Maceroni et al. (2010). The
1.38 day periodicity in the GWS of the top panel could be as-
sociated to the orbital period because it no longer appears once
eclipses are removed, whereas another period of 10.31 days with
low power appears in both local maps, assuming that it is also
related to the beat pattern of low amplitude. The pulsation sig-
nature that we observe here presents a semiregularity of dune
ranges in the WVM, putting in doubt that the modulation vari-
ations are caused by pulsation or by rotation accompanied by
the presence of spots. Indeed, the observed semiregularity could
be the result of the short-term light curve, with a coverage time
limited to 57 days, which seems to be very short for identifying
evident pulsation signatures by just looking at the local map.
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Fig. 11. Top panel: light curve of CoRoT 102918586 (a γ Doradus
pulsator) with binary transits (at the top) and its local/global wavelet
map (in the center/to the right). Bottom panel: light curve of CoRoT
102918586 with eclipses removed (at the top) and its local/global
wavelet map (in the center/to the right). The main periodicities detected
and illustrated in the GWS are P1 = 0.82 d, corresponding to the non-
radial fundamental pulsation period, P2 = 18.61 d, related to the beat
pattern, P3 = 4.34 d and P4 = 2.17 d, also related to the beat pattern
(although they are not exactly equal to the harmonics of the P2), and
P5 = 0.41 d, an overtone of P1. Contour levels are 90%, 80%, 70%, . . . ,
20% and 10% of the map maximum. The 6th-order Morlet wavelet was
used.

Finally, we applied the wavelet procedure to the long-
term light curve of the Kepler star KIC 3744571 (2MASS
19230559+3848519), classified as a γ Dor star by Tkachenko
et al. (2013). From the wavelet analysis, illustrated by the cor-
responding WVM and GWS given in Fig. 12, we observe one
evident track showing a regular continuity of dune ranges as-
sociated to pulsation modes. We do not find the same dunes
as the previous analyzed RR Lyrae cases because of the dif-
ference in the type of pulsations, but the observed regularity
points to a clear pulsation pattern. The predominant periods are
P0 = 0.95 d, the fundamental pulsation period and 56.61 d, pos-
sibly associated to beat pattern, as shown in the GWS. The con-
tour levels are not plotted here to avoid hiding the evidence of γ
Dor pulsation signature.
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Fig. 12. Light curve (at the top) of Kepler γ Dor KIC 3744571, its local
map (in the center), and global wavelet spectrum (to the right). The
main periodicities detected are P0 = 0.95 d, associated to the nonradial
fundamental pulsation period and 56.61 d, related to the beat pattern.
The 6th-order Morlet wavelet was used.

4. Conclusions

In the present work we have carried out a time–frequency anal-
ysis using the wavelet transform of different sorts of stellar light
curves obtained in the scope of the CoRoT and Kepler space
missions. The procedure was applied to CoRoT-2 and Kepler-4,
two well known main-sequence stars with planetary transits, to
a Kepler apparently single main-sequence star, KIC 1995351,
which is dominated by magnetic activity, to a Kepler eclipsing
binary system KIC 7021177, as well as to four pulsating variable
stars, two RR Lyrae, CoRoT 105288363 and KIC 9697825, and
two γ Dor, CoRoT 102918586 and KIC 3744571. The proce-
dure allowed us to obtain the distribution of the signals energy, in
time-scale space, from which it was possible to identify the tem-
poral evolution of different phenomena affecting the light curves
(such as active regions and possible beats related to pulsations
or surface differential rotation).

Wavelet analysis in the solar case gives us a first idea about
what to expect if we apply this method to other active stars.
As dominant features, reported well by different studies (Howe
et al. 2000; Krivova & Solanki 2002; Donnelly & Puga 1990;
Willson & Mordvinov 1999), we identified the 364 day peri-
odicity probably related to an annual solar feature caused by
magnetic fluxes generated deep inside the Sun, the solar rota-
tion period, the Rieger-type period, and the 14 day periodicity
associated to active regions located opposite each other in solar
longitude. The 11 year cycle is also detected when considering
the long-term contributions in the local map.

From the wavelet analysis of the CoRoT-2 light curve, in ad-
dition to the orbital period, we identified in particular a main
period corresponding to the rotation period and another that is
nearly half of the primary period, which is associated to active
regions at different longitudes evolving over time. In fact, in-
stead of being considered as an harmonic of the rotation period,
this second periodicity could be a presumed effect of active re-
gions moving to the opposite side of the star, most probably due
to differential rotation as in solar case (Donnelly & Puga 1990).
In the wavelet maps, we also distinguish two semi-regular and
continuous dune ranges over the entire time span, which is a

strong indicator of the dynamic of starspots yielding to assume
these features as the more typical rotation and magnetic activ-
ity signature. In addition to these periodicities, a third period is
sometimes evident (for example in the case of CoRoT-2) and
related to long-term cycles of the stellar activity. However, we
can notice that in some cases such a period can be hidden by
other contributions in the local map owing to gaps in the light
curve (as seen in Fig. 8). In contrast to CoRoT-2, with clear
signatures of an active star, the wavelet analysis for Kepler-4
shows no evident signatures of rotation and magnetic activity,
reflecting its quiet magnetic activity behavior, responsible for
the observed light curve low amplitude variation. Then, we ana-
lyzed KIC 1995351 to compare the identified wavelet signatures
with those for CoRoT-2 without transits. In addition to the rota-
tion periodicity, our analysis reveals also the presence of two or
more active regions, pointing to a clear dynamic of starspots as
in CoRoT-2.

In addition to the confirmation of the orbital period already
report in the literature, the wavelet analysis for the Kepler eclips-
ing binary KIC 7021177 has also revealed that different periodic-
ity signatures, including rotation, are better defined after remov-
ing the transits or eclipses. By comparing the wavelet analysis of
the light curves with transits and with removed transits, for stars
with planetary and binary transits, it is clear that the presence of
periodicity signatures in the light curves are featured more after
the transit has been removed, especially when their depths are
greater than the amplitude of the rotational modulation.

In the case of the pulsating stars CoRoT 105288363, V360
Lyr, CoRoT 102918586, and KIC 3744571, there are solid sim-
ilarities between their wavelet maps, both RR Lyrae and γ Dor
stars clearly showing the pulsation period with its harmonics and
a beat pattern illustrated by continuous and regular dune ranges.
The pulsation pattern is different between the two types of pul-
sating stars. The beat pattern for the RR Lyrae stars is repre-
sented by more circular and regular dune ranges, whereas the
γ Dor stars are characterized by more compact but very regular
dune ranges (or tracks). We also note that for a short total time
span, the γ Dor pulsation signature could be confused by rota-
tional modulation. Finally, to establish the observed regularity
of dunes as a pulsation pattern in the referred pulsating stars, we
extend our wavelet analysis to the following additional pulsating
stars: KIC 7257008 RR Lyrae star, KIC 2710594, KIC 3448365,
KIC 4547348, KIC 4749989, KIC 10080943, KIC 6462033 γ
Doradus stars, KIC 9700322 RR-δ Scuti star, and KIC 3324644
Cepheid star. All these are studies of their pulsating nature re-
ported in the literature by other authors. The resulting wavelet
maps confirm that the regularity of dunes in the maps is a major
trace of a pulsation pattern.

In summary, this study has shown that the wavelet technique
offers a detailed interpretation of stellar light curves, giving ad-
ditional information on different physical phenomena present
in the signal. Semi-regular patterns represent changes of active
regions due to growth or decay of spots and/or to differential
rotation, whereas regular patterns indicate events that are more
stable in time, like pulsations. This method has an advantage in
relation to the Fourier technique (Lomb-Scargle used), because
in addition to identifying transits or eclipses, it is possible to
identify the signature of the dynamic of different star character-
istics associated to the observed light curves.
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