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We consider a model with two real scalar fields which admits phantom domain wall solutions.
We investigate the structure and evolution of these phantom domain walls in an expanding homogeneous
and isotropic universe. In particular, we show that the increase of the tension of the domain walls with
cosmic time, associated to the evolution of the phantom scalar field, is responsible for an additional
damping term in their equations of motion. We describe the macroscopic dynamics of phantom domain
walls, showing that extended phantom defects whose tension varies on a cosmological time scale cannot be
the dark energy.
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I. INTRODUCTION

Over the past years, high precision cosmological obser-
vations have been providing overwhelming evidence that
the expansion of the Universe is currently accelerating (see,
e.g., [1–3]). In the standard cosmological model, this
acceleration is attributed to a tiny cosmological constant
which became the dominant energy component of the
Universe in recent times. Despite its simplicity, a satisfac-
tory explanation for the extremely small energy density
associated to the cosmological constant is still missing.
Thus, dynamical dark energy (DE) and modified gravity
models may play a fundamental role in sourcing the
acceleration of the Universe, not only at early but also at
late cosmological times [4–8]. Current observational data is
perfectly consistent with dynamical DE and does not
exclude the possibility that most of the energy content
of our Universe might be phantom energy, as long as the
value of its equation-of-state parameter is smaller than but
sufficiently close to −1 [3]. Recently, in [9], compact and
extended nonstandard gravitating defect static solutions

supported by phantom fields have been investigated,
including phantom balls, strings and walls. Except for
domain walls, all these solutions were shown to exhibit
phantom behavior.
Topological defects, such as cosmic strings and domain

walls, may leave behind a large number of interesting
astrophysical and cosmological signatures. In [10] it was
first suggested that a domain wall network, if frozen in
comoving coordinates, could be responsible for the recent
acceleration of the Universe (see also [11–14]). However,
the possibility of a significant contribution of featureless
domain walls—defined as domain walls whose physical
velocity is always perpendicular to the wall—to the dark
energy budget has since been ruled out both dynamically
[15] and observationally (the same also applies, even more
strongly, in the case of linelike defects such as cosmic
strings or pointlike defects such as monopoles).
Domain walls may be formed due to the breaking of a

discrete symmetry, whenever the vacuum manifold is
disconnected (see, for example, [16], and references
therein). Standard domain walls have a very small thickness
and are essentially 2þ 1-dimensional objects. They may be
described locally as planar distributions of energy, with an
energy-momentum tensor whose components are invariant
with respect to any Lorentz boost along the directions
parallel to the walls. They then act as a cosmological
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constant in two spatial dimensions. As a result, the physical
velocity of these walls must be perpendicular to them, and
their mass per unit area and tension must be equal in the
proper frame. The equation of state of a frozen domain wall
network, when averaged on scales much larger than its
characteristic length, is therefore given by w ¼ p=ρ ¼
−2=3 (for moving walls this may be generalized to
w ¼ −2=3þ v̄2, where v̄ is the root mean squared velocity
of the domain walls). Note, however, that the average
domain wall density grows more rapidly than the back-
ground density in the radiation and matter eras, and so
domain walls must necessarily be very light in order not to
completely dominate the energy density of the Universe at
late times.
Standard domain walls cannot explain the dark energy

since the observed value of the equation-of-state parameter
of dark energy is significantly smaller than −2=3 [3] (the
minimum allowed value for standard domain walls). On
the other hand, it has been shown in [15,17] that both the
simplest domain wall models and more complex models
with junctions naturally approach a scaling regime in the
matter and radiation eras and do not frustrate. In the
standard case, in order to obtain a frustrated domain wall
network one must either assume an unrealistic initial
configuration [17] or invoke additional damping mecha-
nisms which could only be effective if the domain walls
were subdominant [18].
The simplest generalization of standard domain walls

can be realized by considering a time-dependent cosmo-
logical scalar field ψ confined to two spatial dimensions. In
this case, the wall mass per unit area and tension are not
necessarily equal, and some of the above results may not
apply. In fact, in this paper we shall demonstrate that, if ψ is
a phantom field, the averaged equation-of-state parameter
of the domain walls is no longer constrained to be larger
than or equal to −2=3. On the other hand, the time
evolution of the phantom field has an impact on the
dynamics of the domain walls which may provide an
additional source of damping of the domain wall motion.
In this paper we shall investigate the structure and

dynamics of phantom domainwalls, assessing their possible
role as dark energy candidates. In Sec. II, we start by
presenting a simple model with two real scalar fields which
admits phantom domain wall solutions. In Sec. III, we
investigate the properties of static planar phantom domain
wall solutions inMinkowski space. In Sec. IV, we extend the
results of Sec. III to homogeneous and isotropic Friedmann-
Lemaître-Robertson-Walker (FLRW) universes, consider-
ing specific parametrizations, for definiteness. In Sec. V, we
compute the effect of the dynamics of the phantom fieldψ on
the evolution of phantomdomainwalls. The potential role of
extended phantom defects as dark energy candidates is then
discussed in Sec. VI. We conclude in Sec. VII.
Throughout this paper we use units such that c ¼ 1,

where c is the value of the speed of light in vacuum.

II. THE MODEL

Consider the Lagrangian

L ¼ λðψ ; YÞVðϕÞ þ fðXÞ; ð1Þ

where ϕ and ψ are real scalar fields,

X ¼ 1

2
∇μϕ∇μϕ; ð2Þ

Y ¼ 1

2
∇μψ∇μψ ; ð3Þ

are their kinetic terms, ∇μ represents a covariant derivative
with respect to the coordinate xμ, ∇μ ¼ gμν∇ν, and gμν are
the components of the inverse metric tensor. Here,
λðψ ; YÞ < 0 is a real function of ψ and Y that represents
the proper pressure associated to the phantom field ψ , and
VðϕÞ ≥ 0 is a Z2 symmetric potential, with two degenerate
minima, that admits domain wall solutions (this extension
of the simplest Goldstone model has been previously
studied in [19,20] considering a constant λ).
The equations of motion of the scalar fields ϕ and ψ are

given, respectively, by the Euler-Lagrange equations

0 ¼ −
∂L
∂ψ þ∇μ

� ∂L
∂ð∇μψÞ

�
; ð4Þ

0 ¼ −
∂L
∂ϕ þ∇μ

� ∂L
∂ð∇μϕÞ

�
; ð5Þ

or, equivalently, by

Gμν∇μ∇νψ ¼ λ;ψ − 2Yλ;Yψ −∇γψ∇γϕðlnVÞ;ϕλ;Y ; ð6Þ

Gμν∇μ∇νϕ ¼ λV ;ϕ; ð7Þ

where a comma represents a partial derivative, and

Gμν ¼ λ;Ygμν þ λ;YY∇μψ∇νψ ; ð8Þ

Gμν ¼ f;Xgμν þ f;XX∇μϕ∇νϕ: ð9Þ

The components of the energy-momentum tensor are

Tμν ¼ f;X∇μϕ∇νϕþ Vλ;Y∇μψ∇νψ − gμνL: ð10Þ

III. PHANTOM DOMAIN WALLS:
MINKOWSKI SPACE

In this section we shall study static planar phantom
domain wall solutions in Minkowski space. In this case, the
line element may be written as

ds2 ¼ dt2 − dr · dr; ð11Þ
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where t is the physical time and r ¼ ðx; y; zÞ are (spatial)
Cartesian coordinates. Consider the ansatz

ϕ ¼ ϕðzÞ; ð12Þ

ψ ¼ ψðtÞ; ð13Þ

so that X ¼ −ϕ02=2, Y ¼ _ψ2=2 (a dot and a prime represent
a derivative with respect to t and z, respectively). Let us
also define the equation-of-state parameter of the phantom
field ψ as

wψ ¼ pψ

ρψ
¼ λ

λ;Y _ψ
2 − λ

¼ λ

2λ;YY − λ
; ð14Þ

where ρψ ¼ 2λ;YY − λ and pψ ¼ λ are the proper density
and pressure associated with the phantom field ψ .
The components of the energy-momentum tensor are

given by

ρ ¼ T0
0 ¼ −Lþ 2VYλ;Y ¼ ð2Yλ;Y − λÞV − f; ð15Þ

p∥ ¼ −Tx
x ¼ −Ty

y ¼ L ¼ λV þ f

¼ −ρþ 2Vλ;YY; ð16Þ

p⊥ ¼ −Tz
z ¼ L − 2Xf;X ¼ λV þ f − 2Xf;X ¼ 0; ð17Þ

where the last equality in Eq. (17) is a consequence of
energy-momentum conservation (Tzz

;z ¼ 0 in Minkowski
space) and of the assumption that Tzzðz ¼ �∞Þ ¼ 0.
It follows from Eq. (17) that 2Xf;X − f ¼ λV. For

definiteness, let us consider that fðXÞ can be effectively
described by fðXÞ ¼ XjXjα−1, with α ≥ 1. In this case, f ¼
λV=ð2α − 1Þ and Eqs. (15) and (16) imply that

ρ ¼ V
�
ρψ −

pψ

2α − 1

�
; ð18Þ

p∥ ¼ Vpψ
2α

2α − 1
; ð19Þ

which yields

w∥ ¼
p∥

ρ
¼ 2αwψ

2α − 1 − wψ
: ð20Þ

Equation (20) implies that w∥ is always greater than or
equal to wψ (w∥ ≥ wψ ). If wψ ¼ −1 then w∥ ¼ wψ ¼ −1,
but, unlike in the case of the domain walls studied in [9], w∥
may be smaller than −1 if ψ is a phantom field with
wψ < −1. In particular, if wψ ≪ −ð2α − 1Þ then w∥ ∼ −2α
(w∥ → −2α for wψ → −∞).
The relation between the domain wall energy per unit

area and tension, defined respectively by

σ ≡
Z

ρdz; ð21Þ

T ≡
Z

p∥dz; ð22Þ

is

T
σ
¼ w∥: ð23Þ

Note that, for w∥ ≠ −1, the components of the energy-
momentum tensor are not invariant with respect to a
Lorentz boost along any direction parallel to the domain
wall. Hence, the physical velocity is not necessarily
perpendicular to the wall and, consequently, phantom
domain walls cannot be considered to be featureless.

IV. PHANTOM DOMAIN WALLS:
FLRW BACKGROUND

Let us now consider a FLRW universe whose line
element is given by

ds2 ¼ dt2 − aðtÞ2dq · dq; ð24Þ

where t is the physical time, aðtÞ is the cosmological scale
factor, and q ¼ ðqx; qy; qzÞ are comoving Cartesian coor-
dinates. For definiteness, let us assume that

fðXÞ ¼ X; ð25Þ

λðψ ; YÞ ¼ −Y −UðψÞ; ð26Þ

with U > 0, and

VðϕÞ ¼ VðϕÞ þ V�; ð27Þ

VðϕÞ ¼ V0

�
ϕ2

ϕ2
0

− 1

�
2

; ð28Þ

V� ¼ const ≥ 0: ð29Þ

In this case, the equations of motion for the scalar fields ψ
and ϕ [Eqs. (4) and (5)] yield

ψ̈ þ 3H _ψ −∇2ψ ¼ dU
dψ

−
d lnV
dϕ

ð _ϕ _ψ −∇ϕ ·∇ψÞ

¼ dU
dψ

−
1

V þ V�

dV
dϕ

ð _ϕ _ψ −∇ϕ · ∇ψÞ
ð30Þ

ϕ̈þ 3H _ϕ −∇2ϕ ¼ −jλj dV
dϕ

; ð31Þ
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where dots represent derivatives with respect to the
physical time t, ∇≡∇q=a, and ∇2 ≡∇2

q=a2.
In the V� → þ∞ limit, the last term of Eq. (30) is very

small and can be neglected. Hence, in this case, Eq. (30)
becomes

ψ̈ þ 3H _ψ ¼ dU
dψ

: ð32Þ

In this limit, the evolution of ψ is only coupled to the
evolution of ϕ through the source term on the right-hand
side of Eq. (31). Throughout this paper we shall assume
that V� is sufficiently large for it to be a good approxi-
mation to consider the equations of motion for the scalar
fields ϕ and ψ in the V� → þ∞ limit. In this case, ψ and λ
may be assumed to be homogeneous in the comoving frame
and the topological stability of the domain walls is
guaranteed (assuming that the evolution of λ is sufficiently
slow). The study of the dynamical relevance of the last term
in Eq. (30) shall be left for future work.
Let us start by considering the case in which H ¼ 0 and

λ ¼ const. In this case, Eq. (31) admits planar static domain
wall solutions of the form

ϕ ¼ �ϕ0 tanh
�
z
δ

�
; ð33Þ

where

δ ∼ ϕ0ðjλjV0Þ−1=2 ð34Þ

is the thickness of the domain wall and z ¼ aqz.
The inhomogeneous components of the energy-momen-

tum tensor associated to the planar wall are given approx-
imately by

ρ ¼ T0
0 ¼ −V _ψ2 þ V

�
_ψ2

2
þ U

�
þ ϕ02

2
; ð35Þ

p∥ ¼ −Tx
x ¼ −Ty

y ¼ −V
�
_ψ2

2
þ U

�
−
ϕ02

2

¼ −ρ − V _ψ2; ð36Þ

p⊥ ¼ −Tz
z ¼ −V

�
_ψ2

2
þ U

�
þ ϕ02

2
¼ 0; ð37Þ

where p⊥ vanishes as a result of energy-momentum
conservation as discussed in the previous section.
By using Eq. (37), one finds that

ρ ¼ 2UV > 0; ð38Þ

p∥ ¼ −Vð2U þ _ψ2Þ; ð39Þ

so that w⊥ ¼ p⊥=ρ ¼ 0, and

w∥ ¼
p∥

ρ
¼ −1 −

_ψ2

2U
¼ 2wψ

1 − wψ
; ð40Þ

where ρψ ¼ − _ψ2=2þ U and pψ ¼ λ ¼ − _ψ2=2 − U.
Equation (40) is equivalent to Eq. (20) for α ¼ 1.
Let us now consider the case of a frozen phantom

domain wall—so that the region with ϕ ¼ 0 [or, equiv-
alently, maximum VðtÞ] does not move—with λ ¼ λðtÞ in a
FLRW universe with H ≠ 0, and introduce three character-
istic time scales defined by

Δtδ ¼ δ ∼ ϕ0ðjλjV0Þ−1=2; ð41Þ

Δtλ ¼
����
_λ

λ

����
−1

∼
����
_δ

δ

����
−1
; ð42Þ

ΔtH ¼ H−1; ð43Þ

which represent, respectively, the time necessary for light to
travel across a domain wall of thickness δ, the characteristic
time associated to variations of δ and λ, and the Hubble
time. In the most interesting situation, in which Δtδ ≪ Δtλ
and Δtδ ≪ ΔtH, the results obtained previously for H ¼ 0
and λ ¼ const are still approximately valid, except that now
both ψ and λ are assumed to be generic functions of the
physical time alone.
Although the condition djλj=dt > 0 would be automati-

cally satisfied if wψ ¼ const < −1, it might not be true in
general. Nevertheless, throughout this paper we shall
assume that the time dependence of wψ is such that
djλj=dt > 0 is always verified. In this case, the thickness
of domain walls is thus affected by the evolution of the
phantom field and decreases, proportionally to jλj−1=2, as
the expansion of the background causes jλj to increase. The
opposite happens to the domain wall tension which
increases proportionally to V0δ ∝ jλj1=2. The constraint
on the energy scale of the domain wall-forming phase
transition, η ¼ ϕ0 < 1 MeV, computed in [21], assuming
λ ¼ −1 and V0 ¼ ϕ4

0, should also apply to phantom domain
walls, but may be relaxed if jλjV0 ≪ ϕ4

0 at the present time.

V. PHANTOM DOMAIN WALL DYNAMICS

In this section, we shall use the method devised in [22] to
extract the dynamics of phantom domain walls from
Eq. (31). Let us start by performing a change of variables
in Eq. (31) from ðt;qÞ into a new coordinate set ðτ;uÞ
defined by

∂
∂τ ¼

1

jλj1=2
∂
∂t ; and u ¼ ajλj1=2q: ð44Þ
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In this case, Eq. (31) yields

∂2ϕ

∂τ2 þ
�
3Hτ þ

1

2

d ln jλj
dτ

� ∂ϕ
∂τ −∇2

uϕ ¼ −
dV
dϕ

; ð45Þ

where ∇2
u ¼ jλj−1∇2 and Hτ ¼ jλj−1=2H.

In Minkowski spacetime, a planar static domain wall
solution oriented perpendicularly to the z direction is given
by ϕ ¼ ϕsðlÞ and satisfying

d2ϕs

dl2
¼ dV

dϕ
; ð46Þ

where l ¼ uz [we took u ¼ ðux; uy; uzÞ]. If the domain wall
is boosted with a velocity v along the positive z direction,
the planar solution still satisfies Eq. (46), but now we
have l ¼ γðuz − vτÞ.
Let us now consider the more general case of a curved

domain wall section in a 3þ 1-dimensional FLRW uni-
verse and assume that it is locally flat (or equivalently that
its thickness is very small when compared to its curvature
radii). In this case, we may choose a new set of u
coordinates such that the domain wall is locally defined
by uz ¼ const and it moves along the positive uz direction.
Moreover, we shall use gauge freedom to choose a
coordinate uz which measures the arclength along the
direction perpendicular to the wall. Once again, the domain
wall solution will still be given by ϕ ¼ ϕsðlÞ [satisfying
Eq. (46), with l ¼ γðuz − vτÞ]. We then have that

∂ϕs

∂τ ¼ −γv
dϕs

dl
; ð47Þ

∂2ϕs

∂τ2 ¼ ðγvÞ2 d
2ϕs

dl2
−
dðγvÞ
dτ

dϕs

dl
; ð48Þ

∂ϕs

∂u ¼ γ
dϕs

dl
;

∂2ϕs

∂2u
¼ γ2

d2ϕs

dl2
: ð49Þ

Moreover, it was shown in [22] that

∇2
uϕs ¼ −γκu

dϕs

dl
þ γ2

d2ϕs

dl2
; ð50Þ

where κu ¼ jλj−1=2κ is the extrinsic curvature measured in
the nonphysical u coordinates, and κ is the physical
curvature.
We then have that

−
d2ϕs

dl2
þ F

dϕs

dl
¼ −

dV
dϕs

; ð51Þ

with

F ¼ −
d
dτ

ðγvÞ − γv

�
3Hτ þ

1

2

d ln jλj
dτ

�
þ γκu: ð52Þ

Since ϕsðlÞ must necessarily satisfy Eq. (46), we should
then have that F ¼ 0 or, equivalently, that

dv
dt

¼ ð1 − v2Þ
�
κ − v

�
3H þ 1

2

����
_λ

λ

����
��

: ð53Þ

Therefore, phantom domain walls feel an additional damp-
ing effect caused by the increase of their tension with time.
Also, since we are assuming that the scalar field ψ is
homogeneous in the comoving frame, the domain wall
velocity, in this reference frame, is determined by the
evolution of the scalar field ϕ and is, therefore,
perpendicular to the wall. Notice that Eq. (53) is equivalent
to the evolution equation for the velocity of a domain wall
with varying tension introduced in [23].

VI. PHANTOM DOMAIN WALLS
AND DARK ENERGY

The dynamics of networks of topological defects of
arbitrary dimensionality may be described statistically
on sufficiently large scales by resorting to a velocity-
dependent one-scale (VOS) model [24,25]. This model
describes the macroscopic evolution of topological defects
by following two variables: the characteristic length L—
defined, in the case of domain walls, as

ρ̄ ¼ σ

L
; ð54Þ

where σ is the surface energy density and ρ̄ is the average
domain wall energy density—and the root-mean-squared
(rms) velocity v̄.
For phantom domain walls, an evolution equation for the

rms velocity of the network may be obtained by averaging
Eq. (53) for the whole network. This yields

dv̄
dt

¼ ð1 − v̄2Þ
�
k
L
−

v̄
ld

�
; ð55Þ

where we have defined the damping length scale as

l−1
d ¼ 3H þ 1

2

����
_λ

λ

����: ð56Þ

Here, kðv̄Þ is the averaged momentum parameter—
rigorously defined in [24,26]—which describes the con-
version of rest mass energy into kinetic energy (and vice
versa) by the network, thus describing the acceleration
caused by domain wall curvature. Note that this equation
assumes the same form as the evolution equation for v̄ for
standard domain walls [24,26], but with a modified damp-
ing length scale. ld here includes the damping effect caused
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by the decrease of domain wall thickness associated to the
nonminimal coupling to the phantom field.
Since phantom domain walls are able to provide a

negative average pressure, the question of whether they
can contribute to the dark energy budget naturally emerges.
Current cosmic microwave background (CMB) constraints
restrain the fractional density of domain walls with a
characteristic length comparable to the cosmological hori-
zon to be

Ωσ ¼
ρ̄

ρc
< 10−5; ð57Þ

where ρc is the critical density of the universe (see Ref. [21]
for a detailed characterization of the CMB constraints on
standard domain wall networks). If phantom domain walls
are to contribute significantly to the dark energy budget,
one would need Ωσ ∼Oð1Þ and, thus, a characteristic
length significantly smaller than the cosmological horizon.
As discussed in Refs. [15,18], the amplitude of the CMB

temperature fluctuations generated by domain walls is
(conservatively) constrained around the present time to
be smaller than 10−5 down to scales of the order of LV ¼
H−1

0 =100 (otherwise they would generate strong signatures
on the CMB). This means that the fractional density
fluctuations associated with domain walls on a physical
scale LV (much larger than L),

δ≡ δρ̄

ρc
∼

Ωσffiffiffiffi
N

p ; ð58Þ

where N ∼ ðLV=LÞ3 is the number of domain walls on a
volume V ¼ L3

V and δρ̄ are the rms fluctuations on the
domain wall energy density on the LV physical scale,
should be

δ ∼ 103Ωσ0ðH0L0Þ3=2 ≲ 10−5: ð59Þ

We should then have that

H0L0 ≲ 10−5Ω−2=3
σ0 ; ð60Þ

and consequently

v̄0 ≲ 10−5Ω−2=3
σ0 ; ð61Þ

where we have used the fact that one should expect
v̄0 ≲H0L0, unless there is an abrupt increase of the
velocity of domain walls near the present time.
Therefore, if phantom domain walls are to significantly
contribute to the dark energy budget, their rms velocity
should be extremely small and the network should therefore
be frustrated (or frozen in comoving coordinates). The
dynamics of frustrated domain wall networks have been
thoroughly studied in the literature [15,17,18,25] and all

studies indicate that such networks cannot realistically be
(or significantly contribute to) dark energy. The frustration
of domain wall networks can be achieved with additional
damping mechanisms, however the energy necessary to
decelerate the walls is so large that these mechanisms
would make a much larger contribution than the walls
themselves to the energy budget of the universe. As a
consequence, in order not to spoil current observational
data, domain walls would need to have an energy density
that is significantly smaller than the critical density, thus
contributing negligibly to dark energy. As we shall see
here, similar arguments apply in the case of phantom
domain walls.
The curvature term in Eq. (55) causes the domain walls

to accelerate and, hence, it has to be suppressed in order for
frustration to occur. It was shown that, for standard domain
wall networks, k ∼ 1 and that Hubble damping is insuffi-
cient to freeze domain walls in this case [17]. Although
more complex networks with junctions exhibit smaller
values of k, in this case k is still of order unity. As a matter
of fact, one would not expect k ≪ 1 in any realistic domain
wall network for causality reasons. Therefore, the only way
in which frustration can be achieved for phantom domain
walls is if the damping caused by the variations of domain
wall thickness is strong enough to counteract the effects of
curvature:

k
L0

≲
����
_λ

λ

����v̄0; ð62Þ

or equivalently if

1

H0

����
_λ

λ

����≳ 1

v̄0H0L0

; ð63Þ

where we have used the fact that k ∼ 1. We should then
have that

1

H0

����
_λ

λ

����≳ 1010Ω4=3
σ0 : ð64Þ

Hence, if phantom domain walls are to contribute signifi-
cantly to the dark energy budget, with Ωσ0 ∼ 1, the
characteristic time scale associated with the variation of
λ would have to be much smaller than one Hubble time
(that is, Δtλ ≪ ΔtH) at recent times. However, since the
expansion of the universe plays a crucial role in feeding
the time variation of λðtÞ, onewould not expect this to be the
case. Note that similar constraints apply to other extended
phantom defects, such as phantom cosmic strings, and
therefore—despite also being able to provide an average
negative pressure—these are also not expected to contribute
significantly to the dark energy budget.
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VII. CONCLUSIONS

In this paper we introduced a simple model with two real
scalar fields which admits phantom domain wall configu-
rations. This model, a generalization of the simplest
Goldstone model, has, as its main feature, a double-well
potential whose height is controlled by a phantom scalar
field. We computed the corresponding solutions in
Minkowski and FLRW spacetimes, determining the impact
of the equation of state of the phantom field and of the
specific form of the kinetic term of the Goldstone field on
the properties of the corresponding domain walls. We have
further shown that in an expanding FLRW universe an
increasing tension, associated to the evolution of a phantom
scalar field, gives rise to an additional damping term in their
equations of motion. Finally we assessed their possible role

as dark energy candidates, showing that extended phantom
defects, such as phantom domain walls whose tension
varies on a cosmological time scale, cannot be the dark
energy.
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