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Context-Free Grammars (CFGs) and Parsing Expression Grammars (PEGs) have several
similarities and a few differences in both their syntax and semantics, but they are usually
presented through formalisms that hinder a proper comparison. In this paper we present a
new formalism for CFGs that highlights the similarities and differences between them. The
new formalism borrows from PEGs the use of parsing expressions and the recognition-based
semantics. We show how one way of removing non-determinism from this formalism
yields a formalism with the semantics of PEGs. We also prove, based on these new
formalisms, how LL(1) grammars define the same language whether interpreted as CFGs
or as PEGs, and also show how strong-LL(k), right-linear, and LL-regular grammars have
simple language-preserving translations from CFGs to PEGs. Once these classes of CFGs can
be automatically translated to equivalent PEGs, we can reuse classic top-down grammars
in PEG-based tools.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Context-Free Grammars (CFGs) are the formalism of choice for describing the syntax of programming languages. A CFG
describes a language as the set of strings generated from the grammar’s initial symbol by a sequence of rewriting steps.
CFGs do not, however, specify a method for efficiently recognizing whether an arbitrary string belongs to its language. In
other words, a CFG does not specify how to parse the language, an essential operation for working with the language (in a
compiler, for example). Another problem with CFGs is ambiguity, where a string can have more than one parse tree.

Parsing Expression Grammars (PEGs) [1] are an alternative formalism for describing a language’s syntax. Unlike CFGs,
PEGs are unambiguous by construction, and their standard semantics is based on recognizing strings instead of generating
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them. A PEG can be considered both the specification of a language and the specification of a top-down parser for that
language.

The idea of using a formalism for specifying parsers is not new; PEGs are based on two formalisms first proposed in
the early seventies, Top-Down Parsing Language (TDPL) [2] and Generalized TDPL (GTDPL) [3]. PEGs have in common with
TDPL and GTDPL the notion of limited backtracking top-down parsing: the parser, when faced with several alternatives, will
try them in a deterministic order (left to right), discarding remaining alternatives after one of them succeeds. Compared
with the older formalisms, PEGs introduce a more expressive syntax, based on the syntax of regexes, and add syntactic
predicates [4], a form of unrestricted lookahead where the parser checks whether the rest of the input matches a parsing
expression without consuming the input.

Ford [1] has already proven that PEGs can recognize any deterministic context-free language, but leaves open the ques-
tion of the relation between context-free grammars and PEGs. In this paper, we argue that the similarities between CFGs and
PEGs are deeper than usually thought, and how these similarities have been obscured by the way the two formalisms have
been presented. PEGs, instead of a formalism completely unrelated to CFGs, can be seen as a natural outcome of removing
the ambiguity of CFGs.

We start with a new semantics for CFGs, using the framework of natural semantics [5,6]. The new semantics borrows
the syntax of PEGs and is also based on recognizing strings. We make the source of the ambiguity of CFGs, their non-
deterministic alternatives for each non-terminal, explicit in the semantics of our new non-deterministic choice operator. We
then remove the non-determinism, and consequently the ambiguity, by adding explicit failure and ordered choice to the
semantics, so now we can only use the second alternative in a choice if the first one fails. By that point, we only need to
add the not syntactic predicate to arrive at an alternative semantics for PEGs (modulo syntactic sugar such as the repetition
operator and the and syntactic predicate). We prove that our new semantics for both CFGs and PEGs are equivalent to the
usual ones.

Our semantics for CFGs and PEGs make it clear that the defining characteristic that sets PEGs apart from CFGs is the
ordered choice. For example, the grammar S → (aba | a)b is both a CFG and a PEG in our notation, but consumes the prefix
ab out of the subject abac when interpreted as a CFG, and fails as a PEG.

We also show in this paper how our new semantics for CFGs gives us a way to translate some subsets of CFGs to PEGs
that parse the same language. The idea is that, as the sole distinction between CFG and PEG semantics is in the choice
operator, we will have a PEG that is equivalent to the CFG whenever we can make the PEG choose the correct alternative
at each choice, either through reordering or with the help of syntactic predicates. We show transformations from CFGs to
PEGs for three unambiguous subsets of CFGs: LL(1), strong-LL(k), and LL-regular.

A straightforward correspondence between LL(1) grammars and PEGs was already noted [7], but never formally proven.
The correspondence is that an LL(1) grammar describes the same language whether interpreted as a CFG or as a PEG. The
intuition is that, if an LL(1) parser is able to choose an alternative with a single symbol of lookahead, then a PEG parser
will fail for every alternative that is not the correct one. We prove that this intuition is correct if none of the alternatives
in the CFG can generate the empty string, and also prove that a simple ordering of the alternatives suffices to hold the
correspondence even if there are alternatives that can generate the empty string. In other words, any LL(1) grammar is
already a PEG that parses the same language, modulo a reordering of the alternatives.

There is no such correspondence between strong-LL(k) grammars and PEGs, not even by imposing a specific order among
the alternatives for each non-terminal. Nevertheless, we also prove that we can transform a strong-LL(k) grammar to a PEG,
just by adding a predicate to each alternative of a non-terminal. We can either add a predicate to the beginning of each
alternative, thus encoding the choice made by a strong-LL(k) parser in the grammar, or, more interestingly, add a predicate
to the end of each alternative.

Our transformations lead to efficient parsers for LL(1) and strong-LL(k) grammars, even in PEG implementations that do
not use memoization to guarantee O(n) performance, because the resulting PEGs only use backtracking to test the lookahead
of each alternative, so their use of backtracking is equivalent to a top-down parser checking the next k symbols of lookahead
against the lookahead values of each production.

There is no direct correspondence between LL-regular grammars and PEGs, either, given that strong-LL(k) grammars are
a proper subset of LL-regular grammars. But we also show that we can transform any LL-regular grammar into a PEG that
recognizes the same language: we first prove that right-linear grammars for languages with the prefix property, a property
that is easy to achieve, have the same language whether interpreted as CFGs or as PEGs, then use this result to build
lookahead expressions for the alternatives of each non-terminal based on which regular partition this alternative falls.

While LL(1) grammars are a proper subset of strong-LL(k) grammars, which are a proper subset of LL-regular grammars,
thus making the LL-regular transformation work on grammars belonging to these simpler classes, the simpler classes have
more straightforward transformations which merit a separate treatment.

Given that these classes of top-down CFGs can be automatically translated into equivalent PEGs, we can reuse classic
top-down grammars in PEG-based tools. So grammars written for tools such as ANTLR [4] could be reused in a parser tool
that has PEGs as its backend language. As PEGs are composable, these grammars can then be used as components in larger
grammars. The language designer can then start with a simple, LL(1) or strong-LL(k) subset of the language, and then grow
it into the full language.

The rest of this paper is organized as follows: Section 2 presents our new semantics for CFGs and PEGs, showing how
to arrive at the latter from the former, and proves their correctness. Section 3 shows how an LL(1) grammar describes the
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Empty
G[ε] x

CFG� x
(empty.1) Terminal

G[a] ax
CFG� x

(char.1)

Non-terminal
G[P (A)] xy

CFG� y

G[A] xy
CFG� y

(var.1)

Concatenation
G[p1] xyz

CFG� yz G[p2] yz
CFG� z

G[p1 p2] xyz
CFG� z

(con.1)

Choice
G[p1] xy

CFG� y

G[p1 | p2] xy
CFG� y

(choice.1)
G[p2] xy

CFG� y

G[p1 | p2] xy
CFG� y

(choice.2)

Fig. 1. Natural semantics of
CFG� .

same language when interpreted as a PEG, and proves this correspondence. Section 4 shows how a simple transformation
generates a PEG from any strong-LL(k) grammar, keeping the same general structure and describing the same language as
the original grammar, and proves the latter assertion. Section 5 shows the equivalence between some right-linear CFGs and
PEGs, and how this can be used to build a simple transformation that generates a PEG from an LL-regular grammar. Finally,
Section 6 reviews related work, and Section 7 summarizes the paper’s contributions and gives our final remarks.

2. From CFGs to PEGs

This section presents a new definition of CFGs, based on natural semantics, and shows how from it we can establish a
correspondence between CFGs and PEGs, which formalization is also given through natural semantics.

The section is structured as follows: Section 2.1 briefly reviews the traditional definition of CFGs and presents our new
definition of CFGs, that is called PE-CFGs and uses parsing expressions, borrowed from PEGs, and natural semantics. Sec-
tion 2.2 shows how we can obtain a PE-CFG from a CFG and proves that both definitions are equivalent. Next, Section 2.3
discusses the relationship between PE-CFGs and PEGs, and defines PEGs by adapting the formalization of PE-CFGs. Finally,
Section 2.4 proves that our definition of PEGs is equivalent to Ford’s definition.

2.1. From CFGs to PE-CFGs

The traditional definition of a CFG is as a tuple (V , T , P , S) of a finite set V of non-terminals symbols, a finite set T
of terminal symbols, a finite relation P between non-terminals and strings of terminals and non-terminals, and an initial
non-terminal S . We say that A → β is a production of G if and only if (A, β) ∈ P .

A grammar G defines a relation ⇒G where αAγ ⇒G αβγ if and only if A → β is a production of G . The language of G
is the set of all strings of terminal symbols that relate to S by the reflexive–transitive closure of ⇒G . We can interpret the
relation ⇒G as a rewriting step, and then the language of G is the set of all strings of terminals that can be generated from
S by a finite number of rewriting steps.

We want to give a new definition for CFGs that is closer to PEGs, so the similarities between the two formalisms will be
more visible. Our new definition begins by borrowing the concept of a parsing expression from PEGs. The abstract syntax of
parsing expressions is given below:

p = ε | a | A | p1 p2 | p1 | p2

Parsing expressions are defined inductively as the empty expression ε, a terminal symbol a, a non-terminal symbol A,
a concatenation p1 p2 of two parsing expressions p1 and p2, or a choice p1 | p2 between two parsing expressions p1 and
p2.

We now define a PE-CFG (short for CFG using parsing expressions) G as a tuple (V , T , P , pS), where V and T are still
the sets of non-terminals and terminals, but P is now a function from non-terminals to parsing expressions, and pS is the
initial parsing expression of the grammar. As P is a function, we will use the standard notation for function application,
P (A), to refer to the parsing expression associated with a non-terminal A in G .

Instead of the relation ⇒G , we define a new relation,
CFG� , among a grammar G , a string of terminal symbols v , and

another string of terminal symbols w . We will use the notation G v
CFG� w to say that (G, v, w) ∈ CFG� . The intuition for the

CFG� relation is that the first string is the input, and the second string is a suffix of the input that is left after G matches a

prefix of this input. We will usually say G xy
CFG� y to mean that G matches a prefix x of input string xy.

Fig. 1 shows our semantics for
CFG� using natural semantics, as a set of inference rules. G xy

CFG� y if and only if there is a
finite proof tree for it, built using these rules. The notation G[p′

S ] denotes a new grammar (V , T , P , p′
S ) that is equal to G

except for the initial parsing expression pS , which is replaced by p′
S . Each rule follows naturally from the intuition of

CFG� :
an empty parsing expression does not consume any input (empty.1); a terminal consumes itself if it is the first symbol of
the input (char.1); a non-terminal matches its corresponding production in P (var.1); a concatenation first matches p1 and
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then matches p2 with what is left of the input (con.1); and a choice can match either p1 or p2 (choice.1 and choice.2,

respectively). The rules guarantee that if G v
CFG� w then w is a suffix of v .

The language of G , L(G), is now the set of prefixes that G matches, that is, all strings x where G xy
CFG� y for some

string y. In the traditional definition of CFGs, the language of a grammar is the set of strings the grammar generates; in our
new definition, the language is the set of strings the grammar matches. We could have defined the language of G as the

set of strings x where G x
CFG� ε, that is, the set of strings that G matches completely, but it is a corollary of the following

lemma that the two definitions are equivalent:

Lemma 2.1. Given a PE-CFG G, if G[p] xy
CFG� y then we have ∀y′.G[p] xy′ CFG� y′ .

Proof. By induction on the height of the proof tree for G[p] xy
CFG� y. �

The previous lemma shows that the suffix in the relation
CFG� is superfluous; we could have defined relation

CFG� as
a binary relation between a grammar G and an input w , meaning just G recognizes w . We chose to keep the suffix to
emphasize the similarities between this semantics and our semantics for PEGs, where the suffix matters.

2.2. Correspondence between CFGs and PE-CFGs

We need a way to systematically transform a traditional CFG G to a corresponding PE-CFG G ′ , and vice-versa. To simplify
our proofs, we will assume that grammars do not have useless symbols. The main obstacle for these transformations is
the type of P . P is a relation for CFGs, with different productions for the same non-terminal being different entries in
this relation. In PE-CFGs, however, P is a function, with all the different productions encoded as choices in the parsing
expression for the non-terminal.

The choice operator is commutative, associative, and idempotent; both left and right concatenations distribute over
choice, that is, p1(p2 | p3) = p1 p2 | p1 p3 and (p1 | p2)p3 = p1 p3 | p2 p3.1 So any parsing expression may be rewritten as a
choice p1 | · · · | pn , where the subexpressions p1, . . . , pn are distinct and do not have choice operators. We can then go from
a PE-CFG G ′ to a CFG G using A → p1, . . . , A → pn as the productions of each non-terminal A, where p1, . . . , pn are the
subexpressions obtained by rewriting the expression P ′(A) in the way above.

Going from a CFG G to a PE-CFG G ′ is easier: the right side of each production of G is a concatenation of non-terminals
and terminals, which translates directly to a concatenation of parsing expressions (the concatenation of expressions is asso-
ciative); we assign an arbitrary order to the productions of each non-terminal A of G , and then combine these productions
right-associatively into a choice expression, and this is P ′(A). We will call the transformation of CFGs to PE-CFGs T , so
T (G) = G ′ .

As an example, take the CFG G with the following set of productions:

P = {A → BC, B → a, B → b, C → c, C → d, C → e}
Its corresponding PE-CFG T (G) = G ′ has the following definition for the function P ′:

P ′(A) = BC P ′(B) = a | b P ′(C) = c | d | e

We used the order that we listed the productions of G to order the choices, but commutativity and associativity of the
choice operator guarantees that any other order would yield a grammar with the same language as G ′ , so we could have
used the following definition for P ′ instead:

P ′(A) = BC P ′(B) = a | b P ′(C) = e | c | d

The proof that G and T (G) define the same language for any CFG G is a direct corollary of the following lemma:

Lemma 2.2. Given a CFG G and its corresponding PE-CFG T (G) = G ′ , we have α
∗⇒G x if and only if G ′[α] xy

CFG� y, where x is a string
of terminals and α is a string of terminals and non-terminals.

Proof. (⇒) By induction on the number of steps in the derivation of x. The base case, where α = x, is trivial, with an
application of the empty.1 rule or repeated applications of the con.1 and char.1 rules.

The induction step has α composed of three parts: a prefix α′ , a non-terminal A, and a suffix γ , with α′ Aγ ⇒G

α′βγ
∗⇒G x. By the properties of

∗⇒G , x can be decomposed into x1, x2 and x3 with α′ ∗⇒G x1, β
∗⇒G x2, and γ

∗⇒G x3.

By the induction hypothesis we have G ′[α′] x1x2x3 y
CFG� x2x3 y, G ′[β] x2x3 y

CFG� x3 y, and G ′[γ ] x3 y
CFG� y. We combine these

1 The proof of these properties is straightforward from the semantics of both operators.
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Empty
G[ε] x

PEG� x
(empty.1) Non-terminal

G[P (A)] x
PEG� X

G[A] x
PEG� X

(var.1)

Terminal
G[a] ax

PEG� x
(char.1)

G[b] ax
PEG� fail

, b �= a (char.2)

G[a] ε
PEG� fail

(char.3)

Concatenation
G[p1] xy

PEG� y G[p2] y
PEG� X

G[p1 p2] xy
PEG� X

(con.1)

G[p1] x
PEG� fail

G[p1 p2] x
PEG� fail

(con.2)

Ordered Choice
G[p1] xy

PEG� y

G[p1 | p2] xy
PEG� y

(ord.1)

G[p1] xy
PEG� fail G[p2] xy

PEG� y

G[p1 | p2] xy
PEG� y

(ord.2)

G[p1] x
PEG� fail G[p2] x

PEG� fail

G[p1 | p2] x
PEG� fail

(ord.3)

Fig. 2. Natural semantics of
PEG� .

proof trees in a proof tree for G ′[α′ Aγ ] xy
CFG� y with rules con.1, var.1, and applications of the choice rules to select the

alternative corresponding to production A → β .

(⇐) By induction on the height of the proof tree for G ′[α] xy
CFG� y. The interesting case is var.1; we need to use the

fact that the use of choice operators in G ′ follows a known structure, where each production is a right-associative choice
of parsing expressions that do not have choice operators and correspond to the right side of productions in G . So the proof

tree for G ′[P ′(A)] xy
CFG� y ends with a succession of choice rules that select which of the alternatives is taken for that

non-terminal. We apply the induction hypothesis to the subtree above the last choice rule used, from the consequent to the
antecedents. �

A corollary of Lemma 2.2 is that S
∗⇒G x if and only if T (G) xy

CFG� y, so the language of G and the language of T (G) are
the same.

A traditional CFG is ambiguous if and only if there is some string with more than one leftmost (or rightmost) derivation.
We can define ambiguity for PE-CFGs via proof trees: a PE-CFG G is ambiguous if and only if there is more than one proof

tree for G xy
CFG� y for some x and y.

We can show that a CFG G is ambiguous if and only if its corresponding PE-CFG T (G) is ambiguous. The proof is a
corollary of the proposition that there is only one leftmost derivation for α

∗⇒G x if and only if there is only one proof tree

for G ′[α] xy
CFG� y, where x is a string of terminals and α is a string of non-terminals and terminals. This proposition has a

straightforward proof by induction (on the number of steps in the derivation and on the height of the proof tree), and the
corollary follows by denial of the consequent.

Ambiguity, in our semantics, is directly tied to the choice operator: if we try to prove that there cannot be more than

one proof tree for a G[p] xy
CFG� y, by induction on the height of the tree, our proof fails for case choice.1, because even

if there is only one proof tree for the G[p1] xy
CFG� y, we might have G[p2] xy

CFG� y, so we can get another proof tree for

G[p1 | p2] xy
CFG� y by using choice.2. The proof fails for case choice.2 in a similar way.

If we can change the semantics of choice so that a single proof tree for its antecedents guarantees a single proof tree for
the choice then we will guarantee that all grammars will be unambiguous. Obviously we will not have CFGs anymore; in
particular, we will invalidate Lemma 2.2. In fact, our changes will take us from CFGs to a restricted form of PEGs, and we
will prove that our changed semantics is equivalent to the semantics of PEGs as defined by Ford [1].

2.3. From PE-CFGs to PEGs

Now we will discuss in detail how we can obtain the semantics of PEGs by changing the semantics of
CFG� presented in

Fig. 1.
In order to define the semantics of PEGs, we will make the choice operator ordered: in a choice p1 | p2 we try p2 only if

p1 does not match. But we need a way to have a proof tree for “p1 does not match”, so we will also introduce an explicit
failure result, fail, to indicate the cases where a match is not possible. We will combine these changes in the semantics

of a new relation
PEG� . Fig. 2 lists its inference rules, where X means either fail or the remainder of the input string in a

successful match.
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Not Predicate
G[p] x

PEG� fail

G[!p] x
PEG� x

(not.1)
G[p] xy

PEG� y

G[!p] xy
PEG� fail

(not.2)

Fig. 3. Natural semantics of the not-predicate.

Just introducing fail does not change the semantics enough to be incompatible with regular CFGs; if we take the
semantics of Fig. 2 and replace rule ord.2 with choice.2 then we have a conservative extension of our PE-CFG semantics
that introduces fail, so all our previous proofs remain valid. Ordered choice, represented by rule ord.2, is what changes
the semantics so it is not representing CFGs anymore. A simple example that shows this change is the grammar G below:

S → AB A → aba | a B → b

We have G abac
CFG� ac, but G abac �PEG�ac, as the only proof tree under

PEG� for the input string abac is for G abac
PEG� fail.

We will use LPEG(G) for the language of a PE-CFG G interpreted with
PEG� ; as with

CFG� , this is the set of strings x for

which there is a string y with G xy
PEG� y. Informally, this set is still the set of all the prefixes that G matches, only using

PEG� instead of
CFG� . But there is no equivalent of Lemma 2.1 for the

PEG� relation; for example, the grammar above matches
ab but fails for abac.

Properties of the operators also change under
PEG� : the choice operator is not commutative, and concatenation does not

distribute over choice on the right anymore (although it still distributes on the left).
In Section 3, we will show a class of PE-CFGs where L(G) = LPEG(G). For now, an interesting result is the following

lemma, which proves that LPEG(G) is a subset of L(G) for any PE-CFG G:

Lemma 2.3. Given a PE-CFG G, if G[p] xy
PEG� y then we have G[p] xy

CFG� y.

Proof. By induction on the height of the proof tree for G[p] xy
PEG� y. The only rule that does not have an identical rule in

CFG� is ord.2, but it can trivially be replaced by choice.2. �
The intuition of G x

PEG� fail is that G does not match any prefix of x (including the empty string). This is a corollary of

the following lemma, which formally says that the result of G[p] x is unique under
PEG� , for any G , p and x:

Lemma 2.4. Given a PE-CFG G, if G[p] x
PEG� X and G[p] x

PEG� X ′ then we have X = X ′ , and there is only one proof tree for G[p] x
PEG� X.

Proof. By induction on the height of the proof tree for G[p] x
PEG� X . The interesting cases are ord.1 and ord.2; for ord.1, the

induction hypothesis rules out the possibility of G[p1] x
PEG� fail, so ord.2 cannot apply even if we have G[p2] x

PEG� X . For

ord.2, we must have G[p1] x
PEG� fail by the induction hypothesis; even if X is fail we cannot use rule ord.1. �

The PE-CFGs that we will be dealing with in the rest of the paper will have an important property that becomes possible
to express by introducing failure: they will be complete grammars [1]. A complete PE-CFG is one where for any expression

p and any input x either G[p] x
PEG� x′ or G[p] x

PEG� fail. Ford [1] proves that any grammar that does not have direct or
indirect left recursion (a property which can be structurally checked) is complete.

A PE-CFG G is left-recursive when there is a non-terminal A of G and an input x where trying to derive a proof tree for

G[A] x can make G[A] x appear again higher up in the tree. Because the semantics of
PEG� is deterministic this means that a

left-recursive PE-CFG may not have any proof tree for G[A] x under
PEG� ; in this case, an implementation of PEGs that tries

to match x with the expression G[A] will not terminate.
Once we have failure and unambiguity, it is natural to introduce a way to turn a failure into a success. This is the not

syntactic predicate (!p for any parsing expression p), which is a conservative extension of our semantics described in Fig. 3.

PE-CFGs extended with the not-predicate and interpreted using
PEG� are equivalent, syntactically as well as semantically,

to PEGs. Ford [1] also included the repetition operator in the abstract syntax of PEGs, but eliminating repetition is a simple
matter of replacing each repetition expression p∗ with a new non-terminal Ap with the production Ap → p Ap | ε, which is
just a step up from simple syntactic sugar.

2.4. Correspondence with Ford’s definition

Ford [1] defines the semantics of PEGs using a relation ⇒G that is similar to
PEG� . Unlike the relation ⇒G for traditional

CFGs, Ford’s ⇒G is not a single step in the match, but the whole match. The notation (p, x) ⇒G (n, X), for (p, x,n, X) ∈⇒G ,
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means that either the parsing expression p matches the prefix x′ of input x, if X is x′ , or the match fails, if X is fail. The
number n is a step counter, used in proofs by induction involving ⇒G .

Ford’s definition of relation ⇒G is similar to our definition of the
PEG� relation, using a similar set of cases. The following

lemma states that both definitions are equivalent:

Lemma 2.5. Given a PE-CFG G and a parsing expression p, (p, xy) ⇒G (n, x) if and only if G[p] xy
PEG� y and (p, xy) ⇒G (n,fail)

if and only if G[p] xy
PEG� fail.

Proof. The proof of the (⇒) direction is a straightforward induction on the step count n, while the proof (⇐) is a straight-

forward induction on the height of the proof tree for G[p] xy
PEG� X ′ . �

Our definition for the language of a PEG is different from Ford’s, though. Ford defines LPEG as the set of strings for
which a PEG recognizes some prefix of the string, while we use the set of strings that the PEG recognizes. In particular, the
language of ε is T ∗ by Ford’s definition and ε with ours.

Ordered choice is what makes PEGs essentially different from CFGs, though, so one way to go from a CFG that can be
parsed top-down to a PEG that parses the same language, without changing the structure of the grammar, is to make sure
that the PEG always chooses the correct alternative at each choice. In Sections 3, 4, and 5 we show how this intuition leads
to translations from three classes of CFGs for top-down parsing, LL(1), strong-LL(k), and LL-regular, to equivalent PEGs.

3. LL(1) grammars and PEGs

LL(1) grammars are the subset of CFGs where a top-down parser can decide which production to use for a non-terminal
by examining just the next symbol of the input. An LL(1) parser can then parse the whole input by starting with the initial
non-terminal of the grammar and then choosing which production to apply, making a choice again whenever it encounters
a non-terminal, without needing to backtrack on its choices. A correspondence between them and PEGs has already been
noted [7], but not formally proven, so they are a nice starting point for applying our new semantics of CFGs and PEGs to
the task of finding translations from subsets of CFGs to corresponding PEGs.

We will divide this task in two parts: first we will consider LL(1) grammars without ε expressions and show that there
is a correspondence between these grammars and PEGs. Then we will consider grammars with ε expressions and show that
there is a correspondence between these grammars and PEGs if the ordering of the choice expressions respects a simple
property.

In Section 2 we presented a method of translating a traditional CFG to a PE-CFG, a CFG using parsing expressions. That
method generates PE-CFGs with a property that will be useful in the proofs for this section; because we are going to use
this property in our proofs, we will formalize it with the following definition:

BNF structure A PE-CFG G = (V , T , P , ps) has BNF structure if it obeys the following properties:

1. No choice expression of G is part of a concatenation expression;
2. ps is a single non-terminal;
3. For every choice p1 | p2 of G , if p1 matches the empty string then p2 must also match the empty string.

Any traditional CFG G has a corresponding PE-CFG G ′ that has BNF structure; in particular, it is trivial to ensure that
T (G) always has BNF structure. Properties 1 and 2 of BNF structure are an obvious outcome of the transformation T :
the expression associated to each non-terminal is of the form p1 | · · · | pn , where the choices associate to the right and
p1, . . . , pn do not have choice expressions, so property 1 applies; the initial expression of G ′ is the initial non-terminal
of G , so property 2 also applies; finally, property 3 can be guaranted by choosing an order for the productions of each
non-terminal of G so the productions that can generate the empty string are last.

Any PE-CFG without BNF structure also can be rewritten to have it, by distributivity of concatenation over choice on the
left and on the right, associativity and commutativity of choice, and the addition of an extra non-terminal to be the start
expression. Throughout the rest of this section we will only consider PE-CFGs that have BNF structure in our definitions and
proofs.

A traditional CFG without ε productions is LL(1) if and only if, for each of its non-terminals Ai , the FIRST sets for the
right sides of the productions of Ai are disjoint. Before we can give a definition for LL(1) PE-CFGs, we need to define what
is the FIRST set of a parsing expression. We will use the following definition for the FIRST set of an expression p with a
PE-CFG G:

FIRSTG(p) = {
a ∈ T

∣∣ G[p]axy
CFG� y

}
This definition of FIRST is equivalent to the definition for traditional CFGs for any parsing expression that does not have

choice operators (that is, any parsing expression that has a corresponding string of terminals and non-terminals). We can
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use the PE-CFG to CFG equivalence lemma (Lemma 2.2) to conclude that p
∗⇒G ax from T (G)[p]axy

CFG� y, where G is a
traditional CFG. The FIRST set of p in the traditional definition is the set {a ∈ T | p

∗⇒G aβ}. As we assumed in Section 2
that G does not have useless symbols, this is the same as the set {a ∈ T | p

∗⇒G ax}, and the two definitions of FIRST are
equivalent.

We can now give a definition for LL(1) PE-CFGs without ε expressions: a PE-CFG G without ε expressions is LL(1) if and
only if, for every choice p1 | p2 in the grammar, the FIRST sets of p1 and p2 are disjoint.

It is straightforward to prove that a traditional CFG G without ε productions is LL(1) if and only if its correspond-
ing PE-CFG T (G) is also LL(1). The proof uses property 1 of BNF structure, associativity of choice, and the property that
FIRSTT (G)(p1 | p2) = FIRSTT (G)(p1) ∪ FIRSTT (G)(p2).

Now we have a definition for LL(1) PE-CFGs without ε expressions, we can show that these grammars can be interpreted

as PEGs (by the relation
PEG� ) without changing their language. The assertion that the language of an LL(1) grammar is the

same whether interpreted as a CFG or as a PEG is a corollary of the following lemma:

Lemma 3.1. Given an LL(1) PE-CFG G without ε expressions, G[p] xy
CFG� y if and only if G[p] xy

PEG� y.

Proof. (⇒) By induction on the height of the proof tree for G[p] xy
CFG� y. The interesting case is choice.2. For this case, we

have G[p2] xy
CFG� y. As G does not have ε expressions, x cannot be empty. Let a be the first symbol of x. It is obvious that

a ∈ FIRSTG(p2), so a /∈ FIRSTG(p1) by the LL(1) property. So G[p1] xy �CFG� w , and, by denial of the consequent of Lemma 2.3,

G[p1] xy �PEG� w . LL(1) grammars cannot have left recursion [8], so they are complete and G[p1] xy �PEG� w implies G[p1] xy
PEG�

fail. With the induction hypothesis and the application of ord.2 we have G[p1 | p2] xy
PEG� y.

(⇐) Just a special case of Lemma 2.3. �
We will now show that a correspondence between LL(1) grammars and their corresponding PEGs still exists when we

allow ε expressions, as long as the LL(1) grammars have BNF structure. Grammars with ε expressions can have ε in the
FIRST sets of their expressions, so we need a slightly different definition of FIRST:

FIRSTG(p) = {
a ∈ T

∣∣ G[p]axy
CFG� y

} ∪ nullable(p)

nullable(p) =
{

{ε} if G[p] x
CFG� x

∅ otherwise

The LL(1) property for grammars with ε expressions also uses a FOLLOW set, defined below:

FOLLOWG(A) = {
a ∈ T ∪ {$} ∣∣ G[A] yaz

CFG� az is in a proof tree for G w$
CFG� $

}
Like with the FIRST set, it is straightforward to prove that our definition of FOLLOW is equivalent to the definition for

traditional CFGs. The restriction involving the proof tree for G w$
CFG� $ of our definition proceeds directly from the fact

that the traditional definition only uses derivations starting from the initial symbol of the grammar, and CFG derivations
correspond to PE-CFGs proof trees.

The general statement G xy
CFG� y ⇒ G xy

PEG� y that we proved true for LL(1) PE-CFGs without ε expressions is false for
grammars with ε expressions, as the following simple grammar shows:

S → a | ε
This grammar is LL(1), and we have G a

CFG� a through rule choice.2, but G a �PEG�a, although simple inspection shows that
the language of G is {a, ε} whether interpreted as a CFG or as a PEG.

We solve the above problem by introducing an end-of-input marker $ ($ /∈ T ), and using this marker to constrain proof

trees so we only consider trees that consume the input and leave just the marker. Instead of trying to prove that G xy
CFG� y

⇒ G xy
PEG� y, we will prove that G x$

CFG� $ ⇒ G x$
PEG� $, which will still be enough to prove that G has the same language

either interpreted as a PE-CFG or as a PEG.
A PE-CFG G with ε expressions is LL(1) if and only if the following two restrictions hold for every production A → p of

G and every choice p1 | p2 of p:

1. FIRSTG(p1) ∩ FIRSTG(p2) = ∅;
2. FIRSTG(p1) ∩ FOLLOWG(A) = ∅ if ε ∈ FIRSTG(p2).

This is a direct restatement of the LL(1) restrictions for traditional CFGs [9,3], and it is straightforward to show that a
CFG G is LL(1) if and only if its corresponding PE-CFG G ′ is LL(1).
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We can now show that an LL(1) PE-CFG G has the same language whether interpreted as a CFG or as a PEG. The proof
is a corollary of the following lemma:

Lemma 3.2. Given an LL(1) PE-CFG G, if there is a proof tree for G x$
CFG� $ then, for every subtree G[p] x′$ CFG� x′′$, we have that

G[p] x′$ PEG� x′′$.

Proof. By induction on the height of the proof tree for G[p] x′$ CFG� x′′$. The interesting case is choice.2. For this case,

we have G[p2] x′$ CFG� x′′$. Because of BNF structure, this is a subtree of G[A] x′$ CFG� x′′$ for some non-terminal A. By the
definition of FOLLOW, the first symbol a of x′′$ is in FOLLOWG(A). We now have two subcases, one where x′ = x′′ and
another where x′ = bwx′′ .

In the first subcase, we have a /∈ FIRSTG(p1) by the second LL(1) restriction. So G[p1] x′′$�CFG� y and, by denial of the

consequent of Lemma 2.3 and completeness of LL(1) grammars, G[p1] x′′$ PEG� fail. With the induction hypothesis and the

application of ord.2 we have G[p1 | p2] x′′$ PEG� x′′$.
In the second subcase, where x′ = bwx′′ , we have b ∈ FIRSTG(p2), so b /∈ FIRSTG(p1) by the first LL(1) restriction. The rest

of the proof is similar to the first subcase. �
The proof that G x$

CFG� $ if and only if G x$
PEG� $ for any LL(1) PE-CFG G is now trivial, from the above lemma and from

Lemma 2.3.
In the next section we will show how any strong-LL(k) grammar can be translated to a PEG that recognizes the same

language, while keeping the overall structure of the grammar.

4. Strong-LL(k) grammars and PEGs

Strong-LL(k) grammars are a subset of CFGs where a top-down parser can predict which production to use for a non-
terminal just by examining the next k symbols of the input, where k is arbitrary but fixed for each grammar. They are a
special case of LL(k) grammars, in which the parser can use both the next k symbols of the input and the history of which
productions it already picked during parsing.

Unlike LL(1) grammars, there are strong-LL(k) grammars that have different languages when interpreted as CFGs and as
PEGs, no matter how we order their choice expressions. For example, take the PE-CFG G with the following productions:

S → A | B A → ab | C B → a | Cd C → c

G is a strong-LL(2) grammar, and its language, when interpreted as a CFG, is {a,ab, c, cd}. But interpreting G as a PEG
yields the language {a,ab, c}; when matching cd, non-terminal A succeeds (through its second alternative, non-terminal C ),
and non-terminal B (the second alternative of S) is never tried. Changing S to S → B | A changes the PEG’s language to
{a, c, cd}, which is still different from the language of G as a CFG, because what happened to cd now happens to ab.

Nevertheless, any strong-LL(k) language can be parsed by a top-down parser without backtracking while using k symbols
of lookahead. So it seems intuitive that we can use syntactic predicates to direct a PEG parser to the right alternative. We
cannot interpret G as a PEG and recognize the same language, but we can add predicates to G , to emulate the predictions
that a strong-LL(k) parser makes.

An approach for translating a PE-CFG G to a PEG that recognizes the same language is to add an and-predicate (syntac-
tical sugar for a double application of the not-predicate) in front of every alternative of a non-terminal; this and-predicate
tests the next k symbols of the input against the possible lookahead values that a strong-LL(k) parser would use for that
alternative. For the strong-LL(2) grammar above, the translation results in the following PEG:

S → &(ab | c$)A | &(a$ | cd)B

A → &(ab)ab | &(c$)C

B → &(a$)a | &(cd)Cd

C → &(cd | c$)c

It is easy to check that this PEG recognizes the language {a,ab, c, cd}, the same as G , if we include the marker $ at
the end of the input strings for the PEG. The formal definition of the translation does not add the predicate to the last
alternative of a non-terminal (or to the sole alternative, in case of non-terminal C above).

Before formalizing our translation and proving its correctness, we will give definitions of strong-LL(k) properties using
our new CFG formalism. First we need an auxiliary function takek , with the definition below:

takek(ε) = ε

takek(a1 . . .an) =
{

a1 . . .ak if n > k
a1 . . .an otherwise
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We will say that takek(x) is the k-prefix of x. We also need to define •k , a language concatenation operation that results
in k-prefixes (i.e. concatenates each string of the first language with each string of the second language, taking the k-prefix
of each result):

X •k Y = {
takek(x)

∣∣ x ∈ X · Y
}

A property of k-prefixes is that the k-prefix of the concatenation of two strings is also the k-prefix of the concatenation
of their k-prefixes (proof by case analysis on the definition of takek):

takek(xy) = takek
(
takek(x)takek(y)

)
This leads directly to the following simple lemma, which we only include to reference in later proofs:

Lemma 4.1. If takek(x) ∈ X and takek(y) ∈ Y then we have takek(xy) ∈ X •k Y .

Proof. Trivial. �
We can now define the FIRSTk sets, the strong-LL(k) analog of the LL(1) FIRST sets. The FIRSTk set of an expression p is

the set of the k-prefixes of every string that p matches:

FIRSTG
k (p) = {

takek(x)
∣∣ G[p] xy

CFG� y
}

The definition of FOLLOWk sets is also a straightforward extension of the definition of FOLLOW sets for LL(1) grammars:

FOLLOWG
k (A) = {

takek(y)
∣∣ G[A] xy

CFG� y is in a proof tree for G w$k CFG� $k}
To ensure that all members of FOLLOWk have length k, we use k end-of-input markers $ /∈ T instead of the single marker

we used with LL(1) grammars. The semantics of
CFG� guarantee that $k is a suffix of y, so the length of y is at least k and

the length of takek(y) is always k.
We can now state the strong-LL(k) property: a PE-CFG G with BNF structure is strong-LL(k) if and only if every choice

expression p1 | p2 of every production A → p satisfies the following condition:

(
FIRSTG

k (p1) •k FOLLOWG
k (A)

) ∩ (
FIRSTG

k (p2) •k FOLLOWG
k (A)

) = ∅
The strong-LL(k) property is just a formal way of saying that the next k symbols of the input are enough to choose

among the choice expressions of a given non-terminal.
We also need an auxiliary function choice that takes a set of strings and makes a choice expression with each string as

an alternative of this choice:

choice(∅) = ε

choice
({p1, . . . , pn}

) = p1 | · · · | pn

We will use choice to transform a lookahead set into a lookahead expression. Our translation inserts lookahead expres-
sions to direct the PEG parser to the correct alternative in a choice, so we only need to changes choice operations. Because
we are assuming that our PE-CFGs have BNF structure, these choice operations are at the “top-level” of each production.
Intuitively, if p1 | p2 is a choice of non-terminal A, ϕG

k (p1 | p2, A) adds the lookahead expression LG(p1, A) to p1 and
recursively transforms p2; any expression that is not a choice is not transformed:

ϕG
k (p1 | p2, A) = LG(p1, A)p1

∣∣ ϕG
k (p2, A)

ϕG
k (ε, A) = ε

ϕG
k (a, A) = a

ϕG
k (p1 p2, A) = p1 p2

ϕG
k (B, A) = B

where LG(p, A) = choice
(
FIRSTG

k (p) •k FOLLOWG
k (A)

)
The definition of our translation now is straightforward. From a strong-LL(k) grammar G with BNF structure we can

generate a PEG Φb(G) (the before LL(k)-PEG of G) by replacing each production A → p with A → ϕG
k (p, A).

To prove the correctness of the translation, we will use the same approach that we took in the proof for LL(1) grammars

with ε expressions. We will prove that in any derivation of G x$k CFG� $k all of the subparts of the derivation have corre-
spondents in Φb(G) via function ϕG . One subtlety of the proof is the parameter A of ϕG ; our definition of Φb(G) makes it
k k
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clear that A in ϕG
k (p, A) is the non-terminal that “owns” the expression p. For an expression p that appears in a subpart

of the derivation of G x$k CFG� $k as G[p], A is the first non-terminal that appears as G[A] in a path from this subpart to the

conclusion G x$k CFG� $k . Formally, we can state the following lemma, a version of Lemma 3.2:

Lemma 4.2. Given a strong-LL(k) PE-CFG G, if there is a proof tree for G x$k CFG� $k then, for every subtree G[p] x′$k CFG� x′′$k of

this proof tree, we have Φb(G)[ϕG
k (p, A)] x′$k PEG� x′′$k, where A is the first non-terminal that appears as G[A] in a path from the

conclusion G[p] x′$k CFG� x′′$k of the subtree to the conclusion G x$k CFG� $k of the whole tree.

Proof. By induction on the height of the proof tree for G[p] x′$k CFG� x′′$k . The interesting cases are choice.1 and choice.2.

For case choice.1, we have G[p1] x′$k CFG� x′′$k . Because of BNF structure, this is a subtree of G[A] x′$k CFG� x′′$k , and we
have takek(x′′$k) ∈ FOLLOWG

k (A) by the definition of FOLLOWk . If we combine this with Lemma 4.1 we have takek(x′$k) ∈
FIRSTG

k (p1) •k FOLLOWG
k (A), because the k-prefix of what p1 matches is in FIRSTG

k (p1). So Φb(G)[LG(p1, A)] x′$k PEG� x′$k by

the definition of LG . By the induction hypothesis, Φb(G)[p1] x′$k PEG� x′′$k , and with applications of rules con.1 and ord.1 we

have Φb(G)[ϕG
k (p1 | p2, A)] x′$k PEG� x′′$k .

For case choice.2, we can use the LL(k) property and an argument similar to the one used in choice.1 to conclude

that takek(x′$k) /∈ FIRSTG
k (p1) •k FOLLOWG

k (A). So, by the definition of LG , Φb(G)[LG(p1, A)] x′$k PEG� fail. By the induction

hypothesis, we have Φb(G)[ϕG
k (p2, A)] x′$k PEG� x′′$k , and by rules con.2 and ord.2 we have Φb(G)[ϕG

k (p1 | p2, A)] x′$k PEG�
x′′$k . �

We also need to prove that for any strong-LL(k) PE-CFG G we have G x$k CFG� $k if Φb(G) x$k PEG� $k . Intuitively, if (&p1)p2

matches a string x then p2 also matches x, so if we have a proof tree for Φb(G) x$k PEG� $k we will be able to erase all the

predicates introduced by Φb and build a proof tree for G x$k CFG� $k .
First, let us define predicate erasure as follows: the erasure of (!p1)p2 is the erasure of p2. Any predicate occurring alone

is replaced by ε. All other expressions just recursively erase predicates on their subparts. We get the erasure of a grammar
by erasing the predicates in the right sides of every production, plus the initial symbol. The purpose of having a special case
for the erasure of (!p1)p2 is to have the erasure of Φb(G) be G . Now we can prove the following lemma, which states that
removing the predicates of a PEG G gives us a PE-CFG with a language that is a superset of the language of G .

Lemma 4.3. Given a PEG G and an expression p, and the PE-CFG G ′ and expression p′ obtained by erasing all predicates of G and p, if

G[p] xy
PEG� y then G ′[p′] xy

CFG� y.

Proof. By induction on the height of the proof tree for G[p] xy
PEG� y. �

The proof that Φb(G) has the same language as G is now a corollary of Lemmas 4.2 and 4.3. This lemma will also be
useful in the rest of this section and in the following one, to prove the correctness of our other transformations.

There is another approach for translating a strong-LL(k) PE-CFG G to an equivalent PEG. This approach uses a subtle
consequence of the strong-LL(k) property: take the alternatives p1 to pn of a non-terminal A. Now let’s say that two

alternatives pi and p j both match prefixes of an input w , say xi and x j , with xi yi = x j y j = w; that is, G[pi] xi yi
CFG� yi

and G[p j] x j y j
CFG� y j . By the definition of FIRSTk , we have takek(xi) ∈ FIRSTG

k (pi) and takek(x j) ∈ FIRSTG
k (p j). Therefore we

cannot have both takek(yi) ∈ FOLLOWG
k (A) and takek(y j) ∈ FOLLOWG

k (A), or we would violate the strong-LL(k) property by
having takek(w) in both FIRSTG

k (pi) •k FOLLOWG
k (A) and FIRSTG

k (p j) •k FOLLOWG
k (A) (Lemma 4.1).

The fact that we cannot have the first k symbols of both yi and y j in FOLLOWG
k (A) is the core of this other approach,

which is to add a guard after each alternative of a non-terminal A to test if the next k symbols of the input are in
FOLLOWG

k (A). PEG’s local backtracking then guarantees that the wrong alternative will not be taken even if it matches a
prefix of the input.

For the strong-LL(2) grammar we used as an example in the beginning of this section, this approach yields the following
translated PEG:

S → A &($$) | B &($$)

A → ab &($$) | C &($$)

B → a &($$) | Cd &($$)

C → c &($$ | d$)
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It is easy to check that this PEG recognizes the correct language {a,ab, c, cd} if we include the marker $$ at the end of
the input string.

Like with our first translation, our second translation uses a function φG
k that translates the choice expressions in the

production of a non-terminal A, adding an and-predicate built from a choice of every string in FOLLOWG
k (A) to the first

half of the choice and recursively translating the second half. As with ϕG
k , φG

k is the identity function for other kinds of
expressions, as the translation only changes choice expressions and we assume BNF structure:

φG
k (p1 | p2, A) = p1 &choice

(
FOLLOWG

k (A)
) ∣∣ φG

k (p2, A)

φG
k (ε, A) = ε

φG
k (a, A) = a

φG
k (p1 p2, A) = p1 p2

φG
k (B, A) = B

The definition of the second translation is now straightforward. From a strong-LL(k) grammar G with BNF structure we
can generate a PEG Φa(G) (the after LL(k)-PEG of G) by replacing each production A → p with A → φG

k (p, A).

The following lemma is like Lemma 4.2 in that it proves that all subparts of a derivation for G x$k CFG� $k have correspon-
dents in Φa(G) via function φG

k . As with Lemmas 4.2 and 3.2, we need to restrict ourselves to matches that consume all
input but the end-of-input marker $k so we can use the FOLLOWk sets of the non-terminals in our proof, and by extension
the LL(k) properties of G .

Lemma 4.4. Given a strong-LL(k) PE-CFG G, if there is a proof tree for G x$k CFG� $k then, for every subtree G[p] x′$k CFG� x′′$k of this

proof tree, we have Φa(G)[φG
k (p, A)] x′$k PEG� x′′$k, where A is the first non-terminal that appears as G[A] in a path from the conclusion

G[p] x′$k CFG� x′′$k of the subtree to the conclusion G x$k CFG� $k of the whole tree.

Proof. By induction on the height of the proof tree for G[p] x′$k CFG� x′′$k . The interesting cases are choice.1 and choice.2.

For case choice.1, we have G[p1] x′$k CFG� x′′$k . Because of BNF structure, this is a subtree of G[A] x′$k CFG� x′′$k , and

takek(x′′$k) ∈ FOLLOWG
k by the definition of FOLLOWk . It is then easy to see that Φa(G)[&choice(FOLLOWG

k (A))] x′′$k PEG�
x′′$k . By the induction hypothesis, we have Φa(G)[p1] x′$k PEG� x′′$k , and with applications of con.1 and ord.1 we have

Φa(G)[φG
k (p1 | p2, A)] x′$k PEG� x′′$k .

For case choice.2, if there is no w so Φa(G)[p1] x′$k PEG� w then we can conclude Φa(G)[p1] x′$k PEG� fail by complete-
ness of LL(k) grammars, and we can apply the induction hypothesis on p2 and rules con.2 and ord.2 to get Φa(G)[φG

k (p1 |
p2, A)] x′$k PEG� x′′$k . Now suppose we have Φa(G)[p1] x′$k PEG� w . Expression p1 is predicate-free, so we have G[p1] x′$k CFG� w
by Lemma 4.3. We have takek(x′′$k) ∈ FOLLOWG

k (A) by the definition of FOLLOWk , and we have already seen that means

takek(w) /∈ FOLLOWG
k (A) or the LL(k) property is violated. So we have Φa(G)[&choice(FOLLOWG

k (A))] w
PEG� fail, and we

can apply the induction hypothesis on p2 and rules con.1 and ord.2 to conclude Φa(G)[φG
k (p1 | p2, A)] x′$k PEG� x′′$k . �

The proof that Φa(G) has the same language as G is a corollary of Lemmas 4.4 and 4.3.
LL(1) grammars are a special case of LL(k) grammars where k = 1, and every LL(1) grammar is also a strong-LL(1)

grammar (and vice-versa) [3,8], so the two transformations we presented can also be used for LL(1) grammars, although
the lookahead expressions become redundant.

5. Right-linear and LL-regular grammars

A right-linear CFG is one where the right side of every production has at most one non-terminal, and this non-terminal
can only appear as the last symbol of the production. Right-linear CFGs can only define regular languages, and any regular
language R has a right-linear CFG G; it is straightforward to encode any NFA as a right-linear CFG, and vice-versa [10].

For PE-CFGs, we will define a right-linear PE-CFG as a CFG where the right side of every production is a right-linear
parsing expression. We define right-linear parsing expressions as the following predicate on parsing expressions: ε, a and
A are right-linear; p1 p2 is right-linear if and only if p1 is a terminal and p2 is right-linear; p1 | p2 is right-linear if and
only if p1 and p2 are right-linear. It is easy to see that any right-linear CFG has a corresponding right-linear PE-CFG, and
vice-versa, as the transformations between CFGs and PE-CFGs we have on Section 2 preserve right-linearity.

Right-linear PE-CFGs, in the general case, do not recognize the same language when interpreted by
CFG� and

PEG� . An

obvious example is the grammar S → a | aa, which is right-linear and has the language {a,aa} under
CFG� but {a} under

PEG� .
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But the simplicity of right-linear grammars lets us prove an equivalence between right-linear CFGs and PEGs by adding a
single restriction: the grammar’s language must have the prefix property, that is, there are no distinct strings x and y in the
language such that x is a prefix of y.

We could prove this equivalence directly, but it is more interesting to combine a few more general lemmas that individ-
ually deal with the relation of the prefix property and PEGs, and of right-linear grammars and the prefix property. The first
lemma gives an equivalence between a class of PE-CFGs that have a stronger form of the prefix property and PEGs.

Lemma 5.1. Given a PE-CFG G and a parsing expression p where, for any choice q | r in G[p], L(G[q | r]) has the prefix property, if

G[p] xy
CFG� y then G[p] xy

PEG� y.

Proof. By induction on the height of the proof tree for G[p] xy
CFG� y. The interesting case if choice.2. We have p = p1 | p2, so

L(G[p]) = L(G[p1])∪ L(G[p2]), and both L(G[p1]) and L(G[p2]) have the prefix property. This means that either G[p1] xy
CFG�

y, so we can use the induction hypothesis and rule ord.1 to get G[p] xy
PEG� y, or there is no suffix z of xy with G[p1] xy

CFG�
z, as that would violate the prefix property of L(G[p1]). In this case, we have G[p1] xy

PEG� fail by modus tollens of

Lemma 2.3, and we can now use the induction hypothesis with p2, and rule ord.2, to get G[p] xy
PEG� y. �

The second lemma distributes the prefix property to the components of a right-linear parsing expression, when the
language of the expression has the prefix property:

Lemma 5.2. Given a right-linear PE-CFG G and a right-linear parsing expression p, if L(G[p]) has the prefix property then, for any
parsing expression q in p, L(G[q]) has the prefix property.

Proof. By structural induction on p. The interesting case is p = p1 p2. As p is right-linear, p1 is a terminal and p2 is
right-linear, so L(G[p1]) trivially has the prefix property. As L(G[p]) = L(G[p1]) · L(G[p2]), L(G[p2]) must have the prefix
property, and we can use the induction hypothesis to conclude that any parsing expression L(G[q]) will also have the prefix
property for any parsing expression q in p2. �

The third lemma distributes the prefix property to all of the components of a right-linear grammar, when the language
of the starting expression has the prefix property:

Lemma 5.3. Given a right-linear PE-CFG G and a right-linear parsing expression p, if L(G[p]) has the prefix property then, for any
parsing expression q in G[p], L(G[q]) has the prefix property.

Proof. By induction on the number of steps necessary to reach q from p: zero steps if p = q, one step if q is a part of p,
k + 1 steps if q is a part of P (A) where A is reachable from p in k steps. �

The final lemma uses the first and the third lemma, plus Lemma 2.3, to prove the equivalence between right-linear CFGs
with the prefix property and PEGs:

Lemma 5.4. Given a right-linear PE-CFG G and a right-linear parsing expression p, if L(G[p]) has the prefix property then G[p] xy
CFG�

y if and only if G[p] xy
PEG� y.

Proof. By Lemma 5.3, the choice expression in G[p] also has the prefix property, so, by Lemma 5.1, G[p] xy
CFG� y implies

G[p] xy
PEG� y. By Lemma 2.3, G[p] xy

PEG� y implies G[p] xy
CFG� y. �

The prefix-property restriction may seem overly restrictive, but we can obtain a right-linear grammar with the prefix
property from any right-linear grammar G by applying the following transformation, where we use $ /∈ T as an end-of-input
marker, to the right side of G ’s productions and to its initial parsing expression:

Π(ε) = $

Π(a) = a$

Π(A) = A

Π(p1 p2) = p1Π(p2)

Π(p1 | p2) = Π(p1) | Π(p2)
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A (strong) LL-regular CFG [11,12] is a generalization of LL(k) CFGs where a predictive top-down parser may decide
which alternative to take based on where the rest of the input falls on a set of regular partitions of T ∗ . Formally, a CFG G
is LL-regular if there is a regular partition π of T ∗ such that for any two leftmost derivations of the following form, if x ≡ y
(modπ) then γ = δ:

S
∗⇒G w1 Aα1 ⇒G w1γ α1

∗⇒G w1x

S
∗⇒G w2 Aα2 ⇒G w1δα2

∗⇒G w2 y

Restating the definition for PE-CFGs is straightforward. First we introduce the BLOCKG
π set that tells in which blocks of

partition π the input for p falls:

BLOCKG
π (p, A) = {

Bk ∈ π
∣∣ G[p] xy

CFG� y and G[A] xy
CFG� y are in a proof tree for G w$

CFG� $ and xy ∈ Bk
}

A PE-CFG G with BNF structure is LL-regular if and only if there is a partition π of T ∗ · {$} such that every choice
expression p1 | p2 of every production A → p has BLOCKG

π (p1, A) ∩ BLOCKG
π (p2, A) = ∅.

The original definition of LL-regular grammars uses the partition where the rest of the input falls to predict alternatives,
so our addition of an end-of-input marker $ is not changing the class of grammars we are defining, while ensuring that the
blocks of the regular partition have the prefix property.

Any strong-LL(k) grammar is also LL-regular [13], so a simple reordering of alternatives is not sufficient for obtaining
a PEG that recognizes the same language as an LL-regular grammar G . But we can use the same approach we used in
the translation Φb to translate an LL-regular grammar G into a PEG R(G) that recognizes the same language, using an
and-predicate to add a lookahead expression to the front of the alternatives of each choice.

We assume that each block Bk of the regular partition π has a corresponding right-linear grammar G Bk , where the
intersection of the non-terminal sets of G and of all these grammars is empty; the non-terminal set of R(G) is the union
of these sets.

We form the regular lookahead of an alternative p, LG
r (p, A), by making a choice of the grammars for each block in

BLOCKG
π (p, A), and wrapping this choice in an and-predicate:

LG
r (p, A) = &choice

({
S Bk

∣∣ Bk ∈ BLOCKG
π (p, A)

})
where choice is the function we used to build the lookahead expressions for ϕb and φb .

Function ρG(p, A) adds lookahead expressions where necessary, assuming that the original grammar has BNF structure:

ρG(p1 | p2, A) = LG
r (p1, A)p1

∣∣ ρG(p2, A)

ρG(ε, A) = ε

ρG(a, A) = a

ρG(p1 p2, A) = p1 p2

ρG(B, A) = B

We obtain the productions of R(G) by applying ρG to the right-side of each production of G , and then adding the
productions for each G Bk . We can prove a lemma similar to Lemma 4.2:

Lemma 5.5. Given an LL-regular PE-CFG G, if there is a proof tree for G x$
CFG� $ then, for every subtree G[p] x′$ CFG� x′′$, we have

R(G)[ρG(p, A)] x′$ PEG� x′′$, where A is the first non-terminal that appears as G[A] in a path from the conclusion G[p] x′$ CFG� x′′$ of

the subtree to the conclusion G x$
CFG� $ of the whole tree.

Proof. By induction on the height of the proof tree for G[p] x′$ CFG� x′′$. The interesting cases are choice.1 and choice.2.

For choice.1, we have G[p1] x′$ CFG� x′′$. Because of the BNF structure, this is a subtree of G[A] x′$ CFG� x′′$, and we have x′$
in some block Bk ∈ BLOCKG

π (p1, A). So x′$ ∈ L(G Bk ). It is easy to see that x′$ ∈ L(choice({S Bk | Bk ∈ BLOCKG
π (p, A)})); this

grammar is right-linear, so by Lemma 5.4 and the semantics of the and-predicate we have R(G)[LG
r (p1, A)] x′$ PEG� x′$. We

have R(G)[p1] x′$ PEG� x′′$ by the induction hypothesis, and can use rules con.1 and ord.1 to get R(G)[ρG (p1 | p2, A)] x′$ PEG�
x′′$.

For case choice.2, we can use the LL-regular property to conclude that the block Bk with x′$ ∈ Bk is not in
BLOCKG

π (p1, A), and then use the definition of LG
r and an argument similar to the one used in choice.1 to get

R(G)[LG
r (p1, A)] x′$ PEG� fail. We can use the induction hypothesis to get R(G)[ρG(p2, A)] x′$ PEG� x′′$, and then use rules

con.2 and ord.2 to get R(G)[ρG(p1 | p2, A)] x′$ PEG� x′′$. �
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The proof that R(G) has the same language as G is a corollary of Lemmas 5.5 and 4.3. We can use Lemma 4.3 even
though R(G) has non-terminals that are not present in G; these extra non-terminals are only referenced inside predicates,
so they become useless when the predicates are removed, and can also be removed.

6. Related work

Parsing Expression Grammars have generated much academic interest since their introduction by Ford [1], with over
sixty citations of Ford’s paper in ACM’s Digital Library. But just a few of these works are concerned with the theory of PEGs
and their relation to other parsing tools; this section discusses these works and how they relate to our work.

Ford [1] leaves open the problem of how PEGs and CFGs relate, and does not outline a strategy to solve this problem.
The solution of this problem for the major classes of top-down CFGs is a contribution of our work, and our recasting of the
CFGs in a recognition-based formalism is another contribution that shows where CFGs and PEGs diverge.

This paper is an extension of previous, unpublished work done in [14]. This older work has the first version of the PE-CFG
semantics, as well a the transformations between strong-LL(k) grammars and PEGs, and the proof of the correspondence
between LL(1) grammars and PEGs. The proofs have been revised and improved.

Redziejowski [15] adapts the FIRST and FOLLOW relations of CFGs to the study of Parsing Expression Grammars, defining
PEG analogs of these two relations. Redziejowski then uses the analogs for a conservative approximation of when an ordered
choice is commutative or not, by defining a PEG analog of the LL(1) restriction. He admits that the approximation is too
conservative for practical use, specially because of its treatment of syntactic predicates. We do not attempt to give definitions
of FIRST and FOLLOW for PEGs, limiting our redefinitions of these relations just to our PE-CFG formalism, and using them
to prove correspondences between LL(1) and strong-LL(k) CFGs and structurally similar PEGs, something that Redziejowski
does not explore.

An earlier work by Redziejowski [16] presents several identities regarding the languages defined by PEGs, although the
author concludes that the identities are only useful for obtaining approximations of a PEGs language, and he also does not
try to relate the languages of PEGs and of CFGs.

In a more recent work [17], Redziejowski, based on our earlier, unpublished work [14], extends our correspondence
between LL(1) grammars and PEGs to a larger class of grammars, and calls these grammars LL(1p). He notes that checking
whether a grammar is LL(1p) is harder than checking if the grammar is LL(1). The paper also uses earlier versions of the
new semantics for CFGs and PEGs that we presented in Section 2.

Schmitz [18] presents both an ambiguity detection algorithm for CFGs in the context of the SDF2 formalism, an extension
of CFGs, and an algorithm for detecting whether an ordered choice in a PEG is commutative or not. Schmitz notes that an
overly strict ambiguity detector can be as restrictive as introducing ordering, but does not attempt to further study the
relation between CFGs and PEGs.

Parr and Quong [19] add semantic and syntactic predicates to LL(k) grammars to get the pred-LL(k) parsing strategy. The
syntactic predicates of pred-LL(k) are only used in productions that have LL(k) conflicts. In these productions, the parser
tries to match the predicates of each alternative in the order they are given in the grammar definition, choosing the first
alternative with a predicate that succeeds. Backtracking is strictly local, as with PEGs, so a subsequent failure does not make
the parser try other productions. The paper does not give a formal specification of pred-LL(k) grammars, nor how they
relate to the class of LL(k) grammars.

Parr and Fisher [20] introduce the LL(∗) parsing strategy, which uses the basic idea of LL-regular grammars, with a
predictive top-down parser for these grammars that uses a deterministic finite automata to select which alternative of a
non-terminal to take. If the grammar is not LL-regular, the LL(∗) parser can use semantic and syntactic predicates with local
backtracking, as in pred-LL(k), and also automatically introduce predicates, via a suitably named “PEG mode”.

Generalized LL parsing [21,22] extends the idea of LL(1) recursive descent parsing to the full class of context-free
grammars (including ambiguous grammars), by making the parser proceed among the different conflicting alternatives
“in parallel”. It replaces the call stack of a recursive descent parser with a graph structured stack (GSS), a data structure
adapted from Generalized LR parsers [23]. As the resulting parsers can parse ambiguous grammars, construction of the
parse tree is non-trivial to implement efficiently [24,21], using a shared packed parse forest data structure also adapted from
generalized bottom-up techniques [25].

Even if we restrict our domain to unambiguous grammars, we cannot use GLL parsing as a basis for a correspondence
between CFGs and PEGs; a GLL parser is not a predictive parser, so we cannot try to encode the predictive part of the parser
in a syntactic predicate, as we did for LL-regular grammars, nor we can exploit a property of the grammars, as we did for
LL(1) and strong-LL(k) grammars.

7. Conclusions

We presented a new formalism for context-free grammars that is based on recognizing (parts of) strings instead of
generating them. We adopted a subset of the syntax of parsing expression grammars, and the notion of letting a grammar
recognize just part of an input string, to purposefully get a definition for CFGs that is closer to PEGs, yet defines the same
class of languages as traditional CFGs. These PE-CFGs define the same class of language as traditional CFGs, and simple
transformations let us get a PE-CFG from a CFG and vice-versa.
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Our semantics for PE-CFGs has a non-deterministic choice operation. We showed how a deterministic choice operation
based on the notions of failure and ordering turns PE-CFGs into quasi-PEGs; the addition of a not syntactic predicate then
gave us a semantics that is equivalent to Ford’s original semantics for PEGs. We then used our new formulations of CFGs
and PEGs to study correspondences between four classes of CFGs and PEGs: LL(1), strong-LL(k), right-linear and LL-regular.
We proved that LL(1) grammars already define the same language either interpreted as CFGs or as PEGs, as was already
suspected, and gave transformations that yield equivalent PEGs for the grammars in the other three classes.

All our transformations preserve the structure of the original grammars; we do not change or remove non-terminals, nor
change the alternatives of a non-terminal, just add predicates to the beginning or the end of each alternative. This means
that our transformations have a practical application in reusing grammars made for one formalism with tools made for
the other, as conserving the structure of the grammar makes it easier to carry semantic actions from one tool to another
without modification.

Our transformations assume the presence of some kind of end-of-input marker, and incorporate this marker in the
resulting PEG. This does not affect our equivalence results, but it does have implications in composability of PEGs resulting
from our transformations. To use a PEG obtained from one of our transformations as part of a larger PEG (for embedding
one language in another, for example) requires a suitable “end-of-input marker” to be picked (the boundaries between
languages have to be explicit). We believe this problem should be easily solvable in practice.

A possible next step of this work would be the study of relationship between PEGs and classic bottom-up CFGs, such
as LR(k) [26] and Simple LR(k) [27]. A key issue regarding this study is the fact that bottom-up grammars can have left-
recursive rules, but a PEG with left-recursive rules is not complete [1].

Recently, it was suggested a conservative extension of PEGs’ semantics that gives meaning for left-recursive rules, so PEGs
with these rules would also be complete [28]. Based on this PEGs’ extension we could try to establish a correspondence
between bottom-up grammars and PEGs, and see if it is possible to achieve an equivalent PEG, with a similar structure,
from a bottom-up CFG.
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