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Resumo

A popularidade da plataforma Android pode ser atribuída à capacidade de executar aplica-

tivos que potencializam os diversos recursos dos dispositivos móveis. Os aplicativos An-

droid são em sua maioria escritos em Java, no entanto, eles são muito diferentes dos

aplicativos Java padrão, com diferentes abstrações, vários pontos de entrada e também

têm uma forma diferente de comunicação entre os componentes. Estas diferenças na estru-

tura de aplicações Android têm produzido efeitos negativos na experiência do usuário em

termos de baixa robustez. Em termos de robustez, o mecanismo de tratamento de exceções

para a plataforma Android tem dois problemas principais: (1) a abordagem “Terminate

ALL" e (2) a falta de uma visão holística do comportamento excepcional. O tratamento

de exceções está fortemente relacionado à robustez do programa. Além da robustez, o

consumo de energia e o desempenho são outros requisitos não funcionais que precisam

ser levados em consideração durante o desenvolvimento. Esses três requisitos podem afe-

tar diretamente a qualidade da experiência do usuário e a qualidade do funcionamento

dos aplicativos. Neste contexto este trabalho propõe uma metodologia geral para engen-

haria eficiente de aplicativos Android e um EHM denominado DroidEH para suportar a

metodologia e melhorar a robustez de aplicativos Android. Estudos foram realizados para

entender o impacto do tratamento de exceções na robustez e no consumo de energia dos

aplicativos Android. A avaliação da metodologia mostrou que ela é satisfatória para atin-

gir o objetivo de permitir ao desenvolvedor tomar decisões levando em consideração esses

requisitos não funcionais e determinar através do trade-off entre esses requisitos, diferentes

modos de operação que podem ser implementados no aplicativo usando o DroidEH. Além

disso, foi observado que uso do DroidEH em aplicativos pode aumentar sua robustez.

Palavras-chave: Tratamento de Exceção, Android, Robustez, Visão Holística, Consumo

de Energia.
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Abstract

The popularity of the Android platform can be attributed to their ability to run apps that

leverage the many capabilities of mobile devices. Android applications are mostly written

in Java, however they are very different from standard Java applications, with different

abstractions, multiple entry points, and also have a different form of communication be-

tween components. These differences in the structure of Android applications have had

negative effects on the user experience in terms of low robustness. In terms of robustness,

the exception handling mechanism for the Android platform has two main problems: (1)

the “Terminate ALL" approach and (2) a lack of a holistic view on exceptional behavior.

Exception handling is strongly related to program robustness. In addition to robust-

ness, energy consumption and performance are other non-functional requirements that

need to be taken into account during development. These three requirements can directly

affect the quality of the user experience and the quality of the functioning of the appli-

cations. In this context this work proposes a general methodology to efficient engineering

of Android applications and an EHM called DroidEH to support the methodology and

to improve the robustness of Android applications. Studies have been carried out to un-

derstand the impact of exception handling on the robustness and energy consumption of

Android applications. The evaluation of the methodology showed that it is satisfactory in

achieving the objective of allowing the developer to make decisions taking into account

these non-functional requirements and to determine through the trade-off between these

requirements, different operation modes that can be implemented in the application using

the DroidEH. Furthermore, it was observed that the use of DroidEH in applications can

enhance their robustness.

Keywords : Exception Handling, Android, Robustness, Holistic View, Energy Consump-

tion.
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18

1 Introduction

According to a recent report by Global Stats (StatCounter Global Stats, 2017), the An-

droid platform has overtaken Microsoft Windows for the first time as the world’s most

popular operating system in terms of total internet usage across desktop, laptop, tablet

and mobile combined. The popularity of the Android platform can be attributed to their

ability to run apps, end-user programs that leverage the many capabilities of these de-

vices, potentially in unforeseen ways. Apps are in widespread use. According to (STATISTA,

2021), the Google Play store reached 3.04 million available apps until last year and 80.6

billion app downloads since its creation.

Robustness, the ability of a program to properly cope with errors during its ex-

ecution (LEE; ANDERSON, 1990), is an important attribute to users of mobile apps.

Apps that frequently exhibit functional errors or crash tend to have bad ratings in app

stores (KHALID et al., 2015). In most of the languages employed in app development, ex-

ception handling is the primary approach to signal and handle the occurrence of errors

at runtime (ALBAHARI, 2012; CABRAL; MARQUES, 2007; PHILLIPS; HARDY, 2013). Thus,

exception handling is strongly related to program robustness, and the way developers use

exception handling has a potentially strong impact on the robustness of any application.

In Java, the language in which most Android applications are written, a program can

indicate that an error occurred by throwing an exception and attempt to recover by han-

dling (“catching”) that exception and implementing the code with the proper approach to

handle the exception. If an unchecked exception is thrown but not handled, the program

may crash. Android applications use this same mechanism to report and handle errors.

In addition to robustness, energy consumption and performance are other non-functional

requirements that need to be taken into account. These two requirements may directly

affect the quality of the user experience and the quality of the functioning of the appli-

cations. Studies have shown that battery consumption is among the main complaints of

users (KHALID et al., 2015; MAN et al., 2016), related to applications draining battery. Re-

garding performance, many studies try to point out better ways for developers to improve
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the performance of their applications (LINARES-VASQUEZ et al., 2015; LEE; LEE, 2011;

HECHT; MOHA; ROUVOY, 2016; LIU; XU; CHEUNG, 2014). Like exception handling issues,

problems related to energy consumption and performance can lead to the malfunction of

applications and generate disinterest on the part of users.

Although Android apps are written in Java, they present differences from standard

Java applications (or simply “Java applications”, i.e., those not targeting Android). An-

droid apps are organized in terms of abstractions that are not available for Java applica-

tions, also Android applications have multiple entry points related to lifecycle methods

and event-handlers methods. Moreover, they typically make use of constructs for asyn-

chronous programming (INC., 2015; CHIN et al., 2011). These constructs aim to improve

app responsiveness and are distinct from Java’s constructs for concurrent programming.

All the Android-specific abstractions can throw exceptions, with different effects. For

example, an ActivityNotFoundException thrown in a call to the startActivity

method can be caught similarly to any Java exception. However, if an exception is thrown

during the execution of a started activity, the only way of handling it is by creating

an instance of UncaughtExceptionHandler and associating it with the GUI thread.

Otherwise, these exceptions will always cause the application to crash (“Force Close” in

Android terminology). Both asynctasks and intent-related calls can end their execution

raising an exception.

Previous studies (COELHO et al., 2015, 2017; WU et al., 2017; OLIVEIRA et al., 2018) have

pointed out problems related to the robustness of Android apps and lack of robustness

from users’ perspective (KHALID et al., 2015; MAN et al., 2016; LIM et al., 2015). These

studies serve as a motivation for this work since their results show that even using the

Java exception handling mechanism, Android apps have robustness problems related to

the platform or the misuse of the mechanism by developers. In this sense, we argue that

the exception handling mechanism provide by the Android platform has introduced two

main problems for application developers: (1) the “Terminate ALL" approach and (2) the

lack of a holistic view on exceptional behavior.

In the context of energy consumption, some studies have investigated the energy con-

sumption of specific device components like Screen, GPS, Network, and others investigated

that at the code level. To the best of our knowledge, no study has set out to investigate

whether the use of exception handling strategies has an impact on energy consumption of

Android applications. To better understand this, a study was carried out by performing

experiments using ten Android applications. The results showed that it is important to
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evaluate the impact on energy consumption at the exception handling level during the

development of Android applications.

Hence, the main objective of this research is to provide an engineering efficient ex-

ception handling methodology and tools for Android applications through an interactive

process. Those proposed solutions aim to help developers in making informed decisions

about when and how exception handling code should be used. This decision should take

into account non-functional requirements, such as robustness, energy efficiency and per-

formance which are relevant concerns for both users (KHALID et al., 2015; MAN et al.,

2016; LIM et al., 2015; Wilke et al., 2013) and developers(MANOTAS et al., 2016) of mobile

applications.

To support the proposed methodology, a new exception handling mechanism, DroidEH,

has been proposed to improve the exception handling and robustness of Android applica-

tions. DroidEH mechanism is grounded on two main approaches: the EFlow model (CA-

CHO et al., 2008; CACHO; COTTENIER; GARCIA, 2008) and the concept of Holistic Fault

Tolerance(GENSH et al., 2017a). The proposed methodology and DroidEH mechanism were

evaluated to assess its feasibility to improve robustness of Android applications.

1.1 Problem Statement

Most of the Android apps are written in Java. Each app runs within a separate process

in the Android Runtime (ART)1, which means that memory spaces are not shared between

apps. Since it is common for apps to require services provided by other apps, for example,

to share a photo taken by the Camera app using Whatsapp, Android provides standard

facilities for apps to communicate without having to share memory.

The Android application framework defines a number of basic components that are

not available in the general Java development (INC., 2015; CHIN et al., 2011). Activities

interact with users by means of a GUI. Services execute long-running operations in the

background and without user interaction. Broadcast receivers, on the other hand, work

as listeners, registering their interest in events that will be sent by the platform or other

components as background broadcast messages. One important concept of the platform

is the Intent object. It represents a message to be sent to the platform in order to

request the execution of other components. It is used for communication between com-
1ART was introduced in Android 4.4, released in Sept 2013, and completely replaced the Dalvik

runtime in Android 5.0, released in Jun 2014.
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ponents, to start an activity or service asynchronously, or to deliver broadcast messages.

Finally, AsyncTasks are used to execute short background operations asynchronously, in

order to avoid blocking the application UI thread. Method calls to Android abstractions

may throw exceptions. Exception handling mechanisms (AL., 2001; GOODENOUGH, 1975;

PARNAS; WURGES, 1976) (EHM) are the most common approach to coping with errors

in the development of software systems. Android applications written in Java inherit the

EHM of Java and this mechanism has introduced two main problems for the developers.

This section presents these two problems that are related to the robustness of Android

applications and problems related to other non-functional requirements.

Terminate ALL approach: According to Cui and colleagues (CUI et al., 2015), one

of the main differences between traditional Java programs and Android applications is

that traditional Java programs use a single method (i.e, the main method) as the en-

try point whereas Android components can have many entry points. These entry points

include Android lifecycle methods (onCreate, onStart, onReceive etc.) and user-defined

event handlers. According to the Android platform documentation2, there are 18 entry

point methods in Activity, 6 in Service, 5 in AsyncTask and 1 in BroadCast. All

those methods are invoked by the Android framework at runtime and their order of execu-

tion cannot be determined in advance (CUI et al., 2015). As a consequence, when a thrown

exception reaches one of those methods and cannot be caught by any prepared catcher,

it would finally trap into the uncaughtException function of the Android exception han-

dling mechanism (WU et al., 2017). Wu and colleagues(WU et al., 2017) perceived that the

uncaughtException function kills the exceptional process straightforwardly regardless of

the process attribute (WU et al., 2017). This “Terminate ALL" approach kills even critical

system services. When that happens, the Android system is crashed and rebooted (WU et

al., 2017).

To illustrate this problem, Figure 1 depicts a hypothetical Android application that

downloads free music from free download sites. This application comprises five classes: two

activities MainActivity and ProgressActivity extending android.app.Activi-

ty, one asynctask DownloadFile extending android.os.AsyncTask, and two classes

implementing the business rules. Initially, the Android platform creates an instance of

MainActivity, invokes the onCreate method to show the available mp3 songs, and

register a button on the main application screen. When the user clicks the button, the

onClick method downloads the selected song by making two asynchronous calls to: cre-

ate the DownloadFileAsyncTask to download a file and to start the ProgressActivi-
2https://developer.android.com/guide/topics/ui/ui-events.html
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Figure 1: Example of Android application and exception propagation. (OLIVEIRA et al.,
2018a)

ty to show a progress bar whilst the song is downloaded.

Android accepts all these requests and changes the current UI screen by stacking

Progress-

Activity on MainActivity, calling ProgressActivity’s onCreate method.

In another thread, the doInBackground method invokes the downloadfile method.

This method invokes getFileFromUrl that throws an exception. The EHM performs

at runtime the search for a proper handler. However, this search is limited to the memory

space of the current AsyncTask. For instance, in the hypothetical scenario, the unchecked

exception IndexOutOfBoundsException propagates up the call stack(to method

downloadfile) until a matching handler is found. If no handler is found in the doInBack-

groud method, exception IndexOutOfBoundsException is propagated to the An-

droid platform. In this scenario, the whole application will be terminated.

To complicate the situation, the Android platform intensively employs unchecked

exceptions (COELHO et al., 2015; OLIVEIRA et al., 2016). For instance, Coelho and col-

leagues (COELHO et al., 2015) analyzed 6.005 exception stack traces reported on 482 An-

droid projects hosted in Github and 157 projects hosted in Google Code. They observed

that 64.85% of the reported exceptions are unchecked and 50% of the catch blocks that

convert any checked exception into an instance of RuntimeException are performed

by methods defined on the Android platform. For example, according to the documen-

tation of class Activity3, 12 public methods may throw SecurityException, 10 may

throw ActivityNotFoundException, and 6 may throw SendIntentException.
3http://developer.android.com/reference/android/app/Activity.html.
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Among these exceptions, only the latter is checked. Any other exception thrown by these

methods is necessarily also unchecked.

In languages such as C#, where the compiler does not perform checks related to ex-

ceptions, developers are used to being extra careful in order to avoid uncaught exceptions.

However, in Java, developers rely on the compiler pointing out when they forget to catch

an exception or explicitly include it in the signature of a method. The problem is that,

in Android app development, since the Android platform throws unchecked exceptions

most of the time, the compiler does not perform these checks, which leads to uncaught

exceptions becoming a common cause of bugs in Android applications (COELHO et al.,

2015; OLIVEIRA et al., 2016, 2018).

To alleviate these problems, the Android runtime attaches a process global Uncaught-

ExceptionHandler when an application is started (GÖRANSSON, 2014). The Uncaught-

ExceptionHandler interface is used by implementing method uncaughtException

and attaching it to an Activity or the whole application. If the activity/application is ter-

minated due to an exception, the handler is invoked on the terminating activity before

it terminates. The main problem with this approach is that it is not possible to avoid

terminating the application abnormally 4. Hence, this handler offers a chance for the

application to complete its execution gracefully, or at least to make a note of the er-

ror to a network or file resource. After analyzing 112 versions of 16 Android projects,

Oliveira and colleagues (OLIVEIRA et al., 2018) could not find any class implementing the

UncaughtExceptionHandler interface. This result may indicate that this interface

is not really helping with handling exceptions properly.

Lack of Holistic View of Exceptional Behavior: Holistic fault tolerance (GENSH

et al., 2017a) is a general approach to architecting system fault tolerance in a way that

is more suitable to the efficient and effective implementation of fault tolerance than the

traditional approach when fault tolerance is associated with system structuring (e.g. out

of layers, classes, components, etc.). It simplifies and modularises a cross-cutting develop-

ment of fault tolerance in a resource efficient way. The idea is to support a flexible choice

of which part of the system and how to involve in recovery after an error is detected, and

to directly connect the source of an error with the corresponding recovery measures.

As shown in Figure 1, the Android platform provides an exception handling approach

that is inherently local to a problem that is intrinsically global. It means that there is

no holistic view on the exceptional behaviour and the design and implementation of ex-
4http://bit.ly/1iR1tU3



24

ception handling code focus on the method level, rather than being application-wide. It

is not possible in Android applications to monitor all started activities, services, broad-

cast receivers and asynctasks to handle exception occurrences and orchestrate the excep-

tion handling actions. For instance, it would be useful to detect the occurrence of ex-

ceptions IndexOutOfBoundsException and ArrayStoreException in the afore-

mentioned example (see Figure 1) and retry only the execution of DownloadFile and

ProgressActivity, rather than crashing the whole application. In another scenario

where the DownloadFile asynctask is running normally and it is not possible to retry

the execution of ProgressActivity), the application should be able to run normally

since its main purpose is to download songs.

In order to implement an application with that, exception handling constructs (try-

catch blocks) should be used to handle exception occurrences at all entry points, event

listeners, and event handler methods. In addition, the error handling code has to be defined

by means of a separate component that the exception handlers invoke. This solution is

not ideal, as it imposes an implementation overhead (due to the implementation of try-

catch blocks) and requires the actual error handling code to be implemented outside

of the exception handlers. Moreover, scattering and tangling the exceptional code cause

well-known maintainability side effects (ROBILLARD; MURPHY, 2007; CACHO et al., 2014,

2014) since they makes it difficult to achieve explicit separation of exceptional behaviour

(LIPPERT; LOPES, 2000).

This lack of holistic view of the exceptional behaviour provided by the Android plat-

form stems from the fact that traditional exception handling mechanisms only provide

constructs for (re-)raising and handling exceptions (ROBILLARD; MURPHY, 2000, 2003;

??). However, not much support is provided to the task of understanding and maintain-

ing the exception paths. To understand the possible paths of each single exception, a

programmer usually needs to both: (i) memorise all its exception supertypes, and (ii)

exhaustively examine all the interfaces of modules traversed by that exception - from

components which raised it to all the potential points where they are handled. Analyz-

ing such exception paths becomes even more time-consuming in the Android platform

where components are loosely coupled, and exceptions not handled locally can crash the

whole application. This is why programmers usually introduce faults in the implemen-

tation and evolution of exceptional behaviour even in the presence of Java’s reliability

checks (COELHO et al., 2017; OLIVEIRA et al., 2016, 2018). A classical example occurs when

a component may be changed to raise additional exceptions whereas other unchanged

modules have to handle them by using existing handlers (OLIVEIRA et al., 2016).
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Other Non-functional Requirements: In addition to robustness, energy consump-

tion and performance are other non-functional requirements that need to be taken into

account during development and that directly affect the quality of the user experience and

the quality of the functioning of the applications. Some studies show battery consumption

is among the main complaints of users (KHALID et al., 2015; MAN et al., 2016) related to ap-

plications draining battery. Many studies are dedicated to investigating energy consump-

tion in mobile applications for specific device components like GPS, Network, and at the

code level (LI et al., 2014, 2013; OLIVEIRA; OLIVEIRA; CASTOR, 2017; LINARES-VÁSQUEZ

et al., 2014; CHOWDHURY et al., 2018; ZHANG; MUSA; LE, 2013). Regarding performance,

many studies try to point out better ways for developers to improve the performance

of their applications. The study by Linares-Vasquez, Mario, et al.(LINARES-VASQUEZ et

al., 2015) investigates how developers detect and solve performance problems. The study

of Lee, Jae Kyu, and Jong Yeol Lee (LEE; LEE, 2011) presents techniques that can help

improve performance. Other studies try to investigate problems related to performance,

like the study by Hecht, Geoffrey, Naouel Moha, and Romain Rouvoy (HECHT; MOHA;

ROUVOY, 2016) that analyzes the impact of Android code smells on performance and the

study by Liu, Yepang, Chang Xu, and Shing-Chi Cheung (LIU; XU; CHEUNG, 2014) that

presents a tool that detects and characterizes performance bugs, this study considers UI

lagging, high energy consumption and Memory bloat as bugs related to performance.

Problems related to energy consumption and performance can lead to the malfunction

of applications and generate disinterest on part of users. The work of (LIM et al., 2015)

points out that users from Brazil and Spain are two times more likely than other countries

to stop using an app because it crashes and users from Brazil are also two times more

likely than other countries to stop using an app because it is slow, for example. The focus

of this work is to present a methodology that allows the developer to carry out a trade-off

between these requirements during the design of their application, in order to build a

more efficient and reliable application. Studies and evaluations presented in the scope of

this work emphasize the impact of the exception handling on the robustness and energy

consumption of Android applications, which are the most common problems pointed out

by users.

1.2 Goals

This thesis aims to provide a methodology and tools to engineering efficient exception

handling for Android applications. To achieve this main objective it is necessary to reach
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the following secondary objectives:

1. Perform studies to better understand the impact of exception handling on the ro-

bustness in Android applications and the impact of exception handling on energy

consumption of Android applications;

2. Propose a methodology to engineering efficient exception handling for Android ap-

plications;

3. Propose an exception handling mechanism for Android applications to improve the

exception handling and robustness of the applications that afford the methodology

proposed;

4. Evaluate the proposed methodology and exception handling mechanism;

1.3 Research Questions

The goals presented in the previous section aim to answer some research questions of

this work. The main research question that guides this work is presented below:

Research Question: How to efficiently implement exception handling code for An-

droid applications taking into account the trade-off between robustness and other non-

functional requirements?

This question can be splitted into three specific questions:

• Question 1 (RQ1) What is the impact of using Android exception handling on

application robustness during evolution?

The purpose of this question is to evaluate the exception handling during the evo-

lution of Android applications, analysing changes of normal and exception handling

code and executing exception flow analysis, to assess whether there is an impact

of exception handling, in relation to Android abstractions, on the robustness of

applications.

• Question 2 (RQ2) The use of exception handling strategies in Android applications

can impact on their energy consumption?

This question investigate the impact of using some exception handling strategies

in Android applications on the energy consumption. The strategies were inserted
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on lifecycle methods and event-handlers methods of the study applications and

experiments were performed using the Monkey tool, that generates random events

in the user interface. The energy data were collected using batterystats tool

from Android and visualized Battery Historian tool to further analysis.

• Question 3 (RQ3) Is it possible to implement exception handling code and make

decisions that take into account non-functional requirements in order to obtain a

more robust and energy-efficient Android Application?

The purpose of this question is to evaluate if the proposed methodology can be

applied in the development of Android applications, using the tools that support it.

Using the methodology, the developer must be able to implement exception handling

in the application to make it more robust while also taking into account its energy

consumption. Based on the methodology, the developer can make decisions that

will be reflected in the implementation, generating different modes of operation

for the application, which seek to achieve a balance between these non-functional

requirements.

1.4 Thesis Contributions

After reaching the objectives specified in this research, answering the research ques-

tions described in the previous section, this work presents five main contributions:

1. An empirical study to analyze the relationship between the usage of

Android abstractions and uncaught exceptions (OLIVEIRA et al., 2018),

involving:

• Analysis of changes to both normal and exception handling code (or “excep-

tional code”, the catch blocks) in 112 versions extracted from 16 software

projects covering a number of domains, amounting to more than 3 million

LOC;

• Change impact analysis and exception flow analysis of the projects during

evolution.

2. An empirical study to investigate whether the use of exception handling

strategies impact on the energy consumption of Android applications,

involving:
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• Selection of ten Android application projects;

• Definition of three exception handling strategies to be used in applications;

• Insertion of the strategies in the code of the applications for lifecycle methods

like onCreate and event-handlers methods like onClick;

• Definition of experiments execution using Monkey tool;

• Execution of 10 experiments without exception handling strategies and 30 ex-

periments with the exception handling strategies.

3. A comprehensive methodology that supports trading off power consump-

tion, reliability and resource usage during exception handling design, in-

volving:

• Definition of the proposed workflow in terms of: manual activities and auto-

matic activities, the sequence of these activities and the tools to support the

methodology;

• Implementation of the automatic model generation from an Android applica-

tion in order to perform the simulations;

• Implementation of the static analysis to calculate exception probabilities at

three levels: application level, classes or components level, and method level.

4. A new exception handling mechanism for Android applications (OLIVEIRA

et al., 2018a; OLIVEIRA, 2018), involving:

• Defining the conceptual model;

• Defining the mechanism abstractions;

• Implementation of the new mechanism;

5. Evaluation of the proposed methodology and exception handling mecha-

nism, DroidEH, involving:

• Definition of the target applications;

• Analysis of the applications to identify the main functionalities, components,

and interactions;

• Preparation of the applications for the experiments, adding code to allow the

continuous execution of the components;

• Execution of the characterization experiments. A total of 36 experiments were

carried out;
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• Applying the characterization experiments results on the simulation files;

• Application of the methodology on the target applications;

• Definition of study hypothesis for assessment of DroidEH;

• Selection of the subjects and target applications;

• Definition and execution of study phases;

• Analysis of the study results and questionnaire Data.

1.5 Thesis Structure

The remainder of this text is organized as follows. Chapter 2 presents the basic ter-

minology related to exception handling mechanisms, a overview about Android platform,

static analysis, EFlow model and Holistic Fault Tolerance concept. Chapter 3 presents

two studies carried out to understand the impact of exception handling on the robust-

ness and energy consumption in Android applications. The first is a maintenance study

performed in order to identify problems related to exception handling in Android applica-

tions throughout evolution of applications, the chapter shows de experimental procedures,

results and analysis of study. The second study was performed to evaluate the impact of

exception handling strategies on energy consumption of Android applications, the chapter

shows the study setting, details about the experiment execution and the results. Chapter

4 shows in detail the proposed methodology to engineering efficient exception handling

for Android applications, showing the modelling and characterization experiments and a

novel exception handling mechanism for Android applications, detailing the conceptual

model, proposed abstractions and implementation. Chapter 5 presents the evaluation of

the methodology proposed and of the exception handling mechanism. Finally, chapter 6

presents the related works and Chapter 7 shows the final remarks of the thesis.
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2 Background

This chapter presents the concepts and definitions discussed in this dissertation. Sec-

tion 2.1 deals with the concepts of fault, error and failures. Section 2.2 shows the concepts

of exception and exception handling models. Next, an overview of exception handling

mechanisms is presented in section 2.3. In section 2.4 the platform Android is presented,

detailing its architecture and components and in section 2.5 static analysis concepts are

presented. Section 2.6 presents the Eflow model and its implementations. Finally, section

2.7 shows the concept of Holistic Fault Tolerance.

2.1 Faults, Errors and Failures

A software system can be seen as a set of components that cooperate to meet the

demands of the system environment. These components are under the control of a design,

that can be considered as a special component, which is responsible for defining the

interactions between the components and establishing the connections between them and

the environment (LEE; ANDERSON, 1990).

In the work of Avizienis, Algirdas, et al. (AVIZIENIS et al., 2004), an environment is

defined as other systems, which include, hardware, software, humans, and the physical

world with its natural phenomena. A system provides a service to the environment, this

service is the behavior of the system in the view of its users, i.e., what the system does

to implement its function and is described by a sequence of states. When the system

performs its function correctly, it performs valid transitions between states, going from

one valid internal state to another. However, erroneous situations may occur during the

execution of a system. They may be caused by one or more components or by the system

design itself.

In this way, the following concepts can be defined: A failure occurs when the service

offered by the system does not correspond to a correct service. It can be seen as an event
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that occurs when the service does not match what is defined in the system specification.

Failure is perceived externally by system users; As a service is a sequence of states, in

erroneous situations an error can be defined as a part of the internal state of the system

that is susceptible to lead to a defect.

And in turn, fault is the hypothetical cause of an error. A fault may originate internally

by the system or some of its components, or externally to the system, through interactions

that lead to error. For example, the user provides an invalid entry for the system. Figure

2 shows the sequence of occurrence of a fault until the manifestation of failure in the

system.

Figure 2: Sequence for fault, error and failure.

2.2 Exceptions and Exception Handling Models

As was explained in section 2.1, a defect can lead to an error, which in turn can lead

to a failure. These concepts can be exemplified in the context of Android applications

as follows: a user accesses an application that functions as a calculator and provides an

invalid entry, which is not handled internally. One of the internal components of the

application detects the problem and immediately the application ends the execution with

a force close screen, visually informing the user that a problem has occurred.

In any computer system, erroneous situations can occur, exception handling (GOOD-

ENOUGH, 1975) is a technique commonly used by leading programming languages, which

provides means of detection, signaling and error handling. The purpose of using this tech-

nique is that applications can be more robust and reliable. Exception handling should

allow a system to be able to react appropriately to exceptional conditions, ensuring the
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integrity of the current state of the system. In this way, it can either terminate execution

or allow it to continue from a valid state after handling the error (LEE; ANDERSON, 1990).

Situations such as the example cited in this section are defined in Goodenough, John

B. (GOODENOUGH, 1975) as exceptional conditions that must be communicated to an

invoker. That is, in the presence of exceptional conditions, an exception must be thrown

to the invoker and it must respond to that event by handling the exception. According to

Miller and Tripathi (MILLER; TRIPATHI, 1997), an exception is an abnormal computation

state, and an exception instance is an instance of an exception. In general, an exception

is seen by developers as an error.

As previously mentioned, a system can be viewed as a set of components, each com-

ponent can receive service requests and must return responses. In some situations a com-

ponent may not be able to perform a service correctly, in which case it should return an

exception. In this way, a component can have two types of response: normal and excep-

tional.

Regarding the exceptional response of a component, exceptions can be classified into

three categories: (i) interface exceptions, are flagged in response to a request that does not

conform to the component interface; (ii) failure exceptions, which are flagged when, for

some reason, the component can not provide the requested service; (iii) internal exceptions,

which are exceptions thrown by a component that wants to invoke its own internal fault

tolerance mechanism (LEE; ANDERSON, 1990).

In this context, an ideal fault-tolerant component, Figure 3, is a component that

implements internal mechanisms for handling exceptions. The activity of this component

can be divided into two: normal and abnormal (or exceptional). Normal activity is the part

of the component responsible for implementing your normal services, all part of business

logic. The exceptional part implements the necessary measures to handle exceptions. At

each system level, the components treat the exceptions that were thrown during normal

activity or exceptions that were thrown by lower-level components of the system. If an

exception can not be handled in the component that launched it, it is flagged for the

component of an upper layer.

Exceptions may occur during the execution of a system, and each component of that

system must function as an ideal fault-tolerant component capable of correctly handling

erroneous situations. This ensures that the system always returns to a valid state.

In the scenario of an exception occurring, the component should generally be aware
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Figure 3: Ideal Fault Tolerant Component. (LEE; ANDERSON, 1990)

of where this exception originated, who will be the recipient of the exception, and how

the treatment will be done. At Miller, Robert, and Anand Tripathi (MILLER; TRIPATHI,

1997), the exception target is defined as the receiver of the notification and responsible

for setting the handling, the signaler is the location in the source code or the component

that generated the exception.

Once the target is notified of an exception occurring, it must search for appropriate

handlers to handle it. An exception handler is the code invoked in response to an excep-

tion occurrence. The search starts with the handlers associated with the target and an

exception is considered handled when the execution of the handler is completed and the

system control flow returns to the normal state. An exception context is the available

information that the handler knows about the occurrence of the exception.

In many cases, an exception thrown by the signaler is not handled at its exception

target, in this case, the exception must be flagged for the target invoker, we call this

exception propagation. There are two ways to do this: implicit, the exception is automat-

ically flagged and is of the same type as the original exception; explicit, in this case the

exception must be explicitly thrown by the target handler and may be of a different type

than the original.
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An exception handling model defines the interactions between the signaler, exception

target, and the handler. Some types of models known (MILLER; TRIPATHI, 1997) in the

literature are: termination model, this model automatically finalizes the execution of the

signaler, destroying any object in its scope and considers the target as a new signaler of

the invoker of the operation; resumption model, computation continues from the point

where the exception was originally thrown; retry model, in this model, when the exception

is handled, the code block of the signaler is finalized and invoked; replacement model, is

a variant of the termination model, the block of code that originated the exception is

terminated and the result of the handler is returned to the caller’s signaler.

2.3 Overview of Exception Handling Mechanisms

Many programming languages support exception handling mechanisms (C++, Java,

C#, F#, VB.NET). These mechanisms allow developers to define exceptions, explicitly

throw exceptions, and structure exceptional component activity through the use of han-

dlers. Each language defines a specific set of abstractions to represent exceptions and

handlers.

The exception handling mechanism is responsible for changing the normal control flow

of a program to the exceptional flow of control when an exception throw occurs (GARCIA

et al., 2001). It must conform to the characteristics of the language, have a simplified

design, provide means that abstract the complexity of handling exceptions, and provide

security (ROMANOVSKY; SANDÉN, 2001).

The Java programming language supports exception handling, for example, by pro-

viding abstractions try-catch-finally. With these abstractions the developer can

delimit the region of the code being protected by a handler within a try block, identify

the exception type of the handler, and execute the code responsible for handling the ex-

ception. If the exception is caught, this part is defined within the catch block. The code

inside the finally block always runs. The language also provides a means for the de-

veloper to explicitly throw an exception by using throw and means so that it can define

exceptional interfaces.

The following will describe some concepts that are tied to the concept of exception

handling mechanism in the context of the Java programming language and therefore in

the context of Android application development.
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2.3.1 Class Hierarchy

In object-oriented programming languages, exceptions are represented as classes. They

provide a means for the developer to identify the type of problem that occurred during

execution. Figure 4 shows the Java language exception hierarchy, where all exception

classes inherit from class java.lang.Throwable.

Exceptions in Java can be classified as checked or unchecked. Checked exceptions in-

herit from class java.lang.Exception. These exceptions must always be declared in

the exception interface of the method, using throws, or they must be handled by the tar-

get method. Unchecked exceptions inherit from class java.lang.RuntimeException.

The existence of this type of exception occurs because of exceptional conditions that oc-

cur as a result of running an application in Virtual Machine. The Error class represents

exceptions that occur due to internal errors in Java’s runtime. Developers can create their

own exception classes that inherit from any of these supertypes.

Figure 4: Class Hierarchy in Java. (GARCIA et al., 2001)

The type subsumption occurs when a value of a type A can be seen as a value of a

supertype B (ROBILLARD; MURPHY, 2003). In the context of exceptions and their represen-

tation through classes, we can say that a handler can handle an exception by subsumption.

For example, looking at Figure 4, if a method throws the IllegalArgumentException

exception and the handler is of type RuntimeException, that handler can handle this

exception, since the first exception inherits from the more generic exception .
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2.3.2 Exception Interface

The caller of a method needs to know which exceptions may cross the boundary of

the called one. In this way, the caller will be able to prepare the code beforehand for the

exceptional conditions that may happen during system execution. For this reason, some

languages provide constructs to associate to a method’s signature a list of exceptions that

this method may throw. Besides providing information for the callers of such method, this

information can be checked at compile time to verify whether handlers were defined for

each specified exception. This list of exceptions is defined by Miller and Tripathi (MILLER;

TRIPATHI, 1997) as a method’s exception interface. Ideally, the exception interface should

provide complete and precise information for the method user.

However, they are most often neither complete nor precise (CABRAL; MARQUES, 2007),

because languages such as Java provide means to bypass this mechanism. This is achieved

by throwing a specific kind of exception, called unchecked exception, which does not require

any declaration on the method signature. In fact, Java supports two type of exception:

checked or unchecked. The compiler forces checked exceptions thrown within a method to

be either associated with a handler or explicitly defined in the exception interface of that

method. If a consumer method does not handle the exceptions specified in the exception

interface of a provider method, nor specifies them in its own exceptional interface, com-

pilation errors occur. On the other hand, the Java compiler does not require unchecked

exceptions to be handled or to appear in exception interfaces.

2.3.3 Attachment of Handlers

A protected region is a domain that specifies the region of the computation where,

if an exception is detected, a bound handler in that region will be activated (GARCIA et

al., 2001). Regions can also be called Exception Handling Contexts (EHC). In a practical

context, for example, a region can be a code block of a method or a single declaration

within the method, where an exception can be thrown and protected by try ... catch

in Java.

Handlers can be linked to different types of regions, such as: a statement, a block

of code, a method, an object, a class, or an exception (GARCIA et al., 2001). Binding of

handlers to declarations occurs when the handler is bound to a particular statement in

the method body. Bindings to a block of code occur through language constructs that

delimit the set of statements that will be protected by the handler. Languages like Java,
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C++, and C# use construct try to delimit the region.

A handler may be bound to a method and when an exception is thrown in one of the

declarations of this method, the handler bound to it is activated. Binding a handler to

an object or a class can occur by binding the handler to all declarations of that object or

to all instances of a class. Handlers bound to an exception are bound by a method in the

exception class and are activated when no more specific handler is encountered.

2.3.4 Handler Binding

In many languages, the search for the handler to deal with a raised exception occurs

along the dynamic invocation chain. This is claimed to increase software reusability, since

the invoker of an operation can handle it in a wider context (MILLER; TRIPATHI, 1997).

The Android platform leverages Java’s EHM and uses the try-catch constructs to

handle and bind exceptions, as depicted by the following structure:

try S

catch (E1 x) H1

catch (E2 x) H2

The try block delimits a sequence S of statements that are protected from the occur-

rence of exceptions. The try block defines the normal code, and it is associated with a list

of catch blocks. A catch block defines a sequence Hn of statements that implement the

handling actions responsible for coping with an exception. Catch blocks are also called

exception handlers. Each catch block has an argument En, which is an exception type.

These arguments are filters that define what types of exceptions that catch block can

handle. When a catch block defines as argument an exception type E1, it can handle

exceptions of type E1 and exceptions that are subtypes of E1.

There are three different types of workarounds that can bind handlers to occurrences

of exceptions (GARCIA et al., 2001): (i) static approach, a handler is statically linked to

a protected zone and is used for all occurrences of the exception while executing that

region; (ii) dynamic approach, in this type of approach the connection will depend on the

control flow of the program, ie, the handler that must be used is determined at run time,

in the static approach, there is no such type of time search execution; (iii) semi-dynamic

approach, is a combination of the two previous, local handlers can be statically linked to
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the regions. If a handler is not bound for some exception thrown in that region, a dynamic

fetch is made to find an appropriate handler for the exception.

2.3.5 Propagation of Exceptions

Using exception handling mechanisms, a developer can define exceptions, throw ex-

ceptions and handle exceptions inside the application code. When an exception is not

handled inside a method, this exception needs to be propagated until find a proper han-

dling. According (AL., 2001) there two ways to do this propagation: explicit or automatic

propagation. In the explicit propagation the developer needs to catch the exception and

explicitly signal this exception along the call chain. The automatic propagation is usually

adopted as the default behaviour and the developer don’t need to signal explicit the ex-

ception to ensure that it will be propagated. Java language supports the two approaches.

The explicit propagation can be used through the throw statement and the automatic

propagation is supported by means of the use of exceptional interfaces in the methods

signature.

2.4 Android Platform

Android is an open source platform that includes: a Linux-based operating system, the

Hardware Abstraction Layer (HAL) that provides standard interfaces that expose device

hardware capabilities to the higher-level Java API framework, a set of C/C++ libraries

used by various components, a Java API framework with platform-specific components, a

runtime environment, and a set of key applications that can be used by developers. The

platform is developed and maintained by the Open Handset Alliance 1 under Google’s

direction. In July 2013, Google Play, the official Google app store, has reached 50 billion

downloads since its inception (INC, 2013).

The smartphone market is growing every year, according to (GARTNER, 2015) 1.2

billion smartphones were sold in 2014. Applications for these devices are extremely at-

tractive, for example, a user can easily add new features to their device by installing the

applications, which are largely free, directly from online stores. This study (IDC, 2015)

shows that Android is one of the most widely used operating systems in the mobile device

market.

Android applications are written in the Java language and run in their own process,
1http://www.openhandsetalliance.com/
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within Android Runtime (ART), so applications can not access data from other appli-

cations within the device. Unlike Java Desktop applications, which run inside the Java

Virtual Machine (JVM), in Android applications the connection between processes is done

more decoupled. They can call any other application on the device and are available so

that other applications can order them.

2.4.1 Android Abstractions

Android apps are written in the Java language. Each app runs within a separate

process within the Android Runtime (ART)2, which means that memory spaces are not

shared between apps. Since it is commonplace for apps to require services provided by

other apps, for example, to share a photo taken by the Camera app using Whatsapp,

Android provides facilities for apps to communicate without having to share memory.

The Android application framework defines a number of basic components that are

not available in general Java development (INC., 2015; CHIN et al., 2011). Activities in-

teract with users by means of a graphical user interface. Services execute long-running

operations in the background and without user interaction. Broadcast receivers, on the

other hand, work as listeners, registering their interest in events that will be sent by the

platform or other components as background broadcast messages. One important concept

of the platform is the Intent object. It represents a message to be sent to the plat-

form in order to request the execution of other components. It is used for communication

between components, to start an activity or service asynchronously, or to deliver broad-

cast messages. Finally, AsyncTasks are employed to execute short background operations

asynchronously, in order to avoid blocking the UI thread.

Intents. In Android, apps should be able to communicate while remaining isolated from a

memory access and security perspective. Intents promote decoupled communication both

within an app and between apps (PHILLIPS; HARDY, 2013). They can be used explicitly, in

which case the intent has a specific app component as its destination, or implicitly, where

the intent is sent without prior knowledge of the component that will receive it. Intents

represent operations that should be executed asynchronously. At runtime, an intent is an

object that is passed to a method that starts an activity or service, or sends a broadcast

message. For example, to start an activity, an intent object should be passed to methods

startActivity() or startActivityForResult(). The first one asynchronously
2ART was introduced in Android 4.4, released in September 2013, and completely replaced the Dalvik

runtime environment in Android 5.0, released in June 2014.
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executes some user-related functionality, such as opening a window, without producing a

result for the caller. The second one indicates that a result can be produced. In this case,

when the activity finishes, a call to method onActivityResult() occurs, delivering

another intent object corresponding to the result.

Asynctasks. In Android, short-lived (requiring a few seconds at most) blocking oper-

ations that could potentially cause the UI thread to hang should be executed within

asynctasks. Asynctasks are executed asynchronously and have the goal of guaranteeing

that the user interface remains responsive in spite of blocking operations such as net-

worked communication or access to the filesystem. Asynctasks are defined by subclass-

ing the AsyncTask class. Since the execution of an asynctask goes through 4 steps,

the AsyncTask class defines 4 methods corresponding to these steps. They are in-

voked at runtime and can be overridden in the definition of new asynctasks. Methods

onPreExecute(), onProgressUpdate(), and onPostExecute() are invoked by

the UI thread. They are responsible for setting up the asynctask, displaying progress

updates during asynctask execution, and presenting the result of the computation, re-

spectively. Method doInBackground() is invoked by the background thread, i.e., is

executed asynchronously, and performs the blocking operation.

2.4.2 Characterizing the Exception Handling Mechanism in An-
droid Applications

Method calls to Android abstractions may throw exceptions. Exception handling

mechanisms (AL., 2001; GOODENOUGH, 1975; PARNAS; WURGES, 1976) (EHM) are the

most common approach to cope with errors in the development of software systems. In

order to support the reasoning about exception flows in Android applications we present

(in Figure 5) the main concepts of an exception-handling mechanism and correlate each

element with the constructs available in standard Java and Android platform. An excep-

tion handling mechanism is comprised of four main concepts: the exception, the exception

signaler, the exception handler, and the exception model that defines how signalers and

handlers are bound (AL., 2001).

Exception Signaler. An exception is raised by an element - method, e.g., startActi-

vity() - when an abnormal state is detected. In most languages an exception is usually

assumed as an error, and represents an abnormal computation state (CRISTIAN, 1982;

GOODENOUGH, 1975; RANDELL, 1995). Whenever an exception is raised inside an ele-

ment that cannot handle it, it is signaled to the element’s caller. The exception signaler
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is the element that detects the abnormal state and raises the exception. Figure 5 shows

two hypothetical examples for Java and Android applications. In this Figure, methods

read() and validate() detect an abnormal condition and raises exception E1.

Exception Handling. The exception handler is the code invoked in response to a

raised exception. It can be attached to protected regions (e.g. methods, classes and blocks

of code). Handlers are responsible for performing the recovery actions necessary to bring

the system back to a normal state and, whenever this is not possible, to log the exception

and abort the system in an expectedly safe way.

Figure 5: Example of Exception Propagation in Java and Android applications. (OLIVEIRA
et al., 2018)

Uncaught Exception. An exception flow is a path in a program call graph that links

the signaler and the handler of an exception. For instance, in the left-hand side of Figure

5 there are two Java classes, Main and FileClass, extending java.lang.Object. In

this scenario, the main method calls the processFile method that calls method read

in the second step. Method read throws an unchecked exception E13. If an exception

is thrown in the context of the try block, the EHM performs at runtime the search

for a proper handler. The search takes into account the list of catch blocks statically

attached to the enclosed try block. The type of the exception thrown is compared with

the exception types declared as arguments in each catch block. For the first matching

pattern, the exception handler of that catch block is executed. Notice that in Figure 5

method processFile has a try-catch block with an exception type E2 that does not
3Throughout the paper, we use the term “exception” to refer to both the object that is thrown to

signal the occurrence of an error and the type defining it.
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match with E1. If no matching pattern is found, the exception propagates up the call stack

until a matching handler is found. In this scenario, the exception thrown by method read

is caught by the catch block of method main. The exception flow of E1 for this scenario

is read → processFile → main. Therefore, the exception flow comprises three main

moments: the exception signaling (method read), the exception flow through the elements

of a system (method processFile), and the moment in which the exception is handled

(method main). Notice that if there is no handler for a specific exception, the exception

flow starts from the signaler and finishes at the program entry point. In the rest of this

paper, unless it is explicitly mentioned, we use the expression "uncaught exception" to

refer to exception flows that leave the bounds of the system (entry points) without being

handled.

According to Cui and colleagues (CUI et al., 2015), one of the main differences between

traditional Java programs and Android applications is that traditional Java programs use

a single main method as the entry point whereas Android components can have many entry

points. These entry points include Android lifecycle methods (onCreate, onStart, etc) and

user-defined event handlers. These methods are invoked by the Android framework at

runtime and their order of execution cannot be determined in advance (CUI et al., 2015).

For instance, in the right-hand side of Figure 5, there is an Android application

with two classes MainScreen and FileScreen extending android.app.Activity.

Initially, the Android platform creates an instance of MainScreen and invokes the

onCreate method to create and register a button on the main application screen.

When the user clicks the button, the onClick method is invoked to create an Intent

call to start the FileScreen Activity. Android accepts the request and changes the

current UI screen by stacking FileScreen on MainScreen, calling FileScreen’s

onCreate method. The onCreate method invokes the validate method that throws

an unchecked exception E1. The EHM performs at runtime the search for a proper han-

dler. However, this search is limited to the memory space of the current Activity. For in-

stance, in the hypothetical scenario, exception E1 propagates up the call stack(to method

onCreate) until a matching handler is found. If no handler is found in the FileScreen

Activity, the exception E1 is propagated to the Android platform. In this scenario, the

whole application will be terminated.
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2.4.2.1 Use of Exception Handling in Android Applications

Java is the main language to develop Android applications. As consequence, Android

applications inherit the exception handling mechanism of Java to signal and handle ex-

ceptions and that brings some problems in the use of this mechanism that have been

studied in some research work recently. The study conducted by Coelho et al. (COELHO et

al., 2015) analyzed 6,005 stack traces extracted from issues reported for 639 Android open

source projects. They point some reasons to crashes in analysed applications: Cross-type

exception wrappings, such as an OutOfMemoryError wrapped in a checked excep-

tion, undocumented runtime exceptions raised by the Android platform and third-party

libraries, undocumented checked exceptions signaled by native C code.

The study by Kechagia, Maria, and Spinellis, Diomidis (KECHAGIA; SPINELLIS, 2014)

examined crash stack traces from 1.800 Android applications. They were interested in find-

ing Android API methods with undocumented exceptions that are part of application

crashes. Their main finding is that most crashes originated from unchecked exceptions.

Kechagia, Maria, and Spinellis, Diomidis (KECHAGIA et al., 2018) examine the use of the

Java exception types in the Android platform’s Application Programming Interface (API)

reference documentation and their impact on the stability of Android applications. They

discover that almost 10% of the undocumented exceptions that static analysis can find

in the Android platform’s API source code manifest themselves in crashes. Additionally,

they observe that 38% of the undocumented exceptions that developers use in their client

applications to handle API methods also manifest themselves in crashes.

The work by Oliveira, Juliana, et al. (OLIVEIRA et al., 2016) shows some limitations

that can affect negatively the robustness of Android applications. The findings shows that

there are an excessive use of unchecked exceptions by developers and Android plat-

form. These unchecked exceptions were signaled mainly by libraries reused by Android

and by methods defined in the Android platform. The study points there are an inef-

fective use of exception handlers by developers that can be related to the excessive

use of unchecked exceptions and outdated exception interfaces that affect program

comprehension, since it is not possible to know the exceptions that a method may throw

just by looking at its exception interface.
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2.5 Static Analysis

Static analysis examines the source code of a compile-time program in order to point

out reasons for the occurrence of all possible behaviors that may arise at runtime. Ac-

cording to Landi, William (LANDI, 1992) the static analysis extracts semantic information

about the program. It provides assurances that the results of the analysis will be an accu-

rate description of the program’s behavior, regardless of the type of input it will receive

or what environment it is running (ERNST, 2003).

To perform an analysis of a particular program the static analysis engine constructs

a model of the program state and then determines how it will react to that state. The

analysis should maintain and control the different types of states that may occur at each

program execution. In practice, it is cumbersome to consider all possible program states

at runtime, one program can receive many inputs from different users. Therefore, static

analyzes define an abstract model of the program state. With this strategy there is a lot

of information loss, however, this model is easier to manipulate than a model with more

fidelity about the execution states of the program.

One of the major drawbacks of using static analysis is that for large programs, exe-

cutions tend to have a long waiting time due to the amount of computation performed.

Article by Johnson, Brittany, et al. (JOHNSON et al., 2013) carried out a study with soft-

ware developers in order to evaluate the use of static analysis tools. This study points to

some reasons why these developers do not use these tools to find bugs.

Among these reasons is the fact that the tools do not present the results of the analysis

in an intuitive way so that the developer can understand what the result means and what

measure he must take in front of it. This is related to the production of many false positive

and the large number of warnings generated by such tools, problems already known in

the use of static analysis (SHEN; FANG; ZHAO, 2011) (AYEWAH et al., 2008). Despite these

drawbacks, the use of static analysis, especially in the context of exception handling,

yields useful results that can contribute significantly to improving system robustness and

quality. With the use of static analysis it is possible to capture relevant information about

the exceptional flow of an application.

Since most modern programming languages provide exception handling mechanisms

with constructs that allow the throwing of exceptions and delimiting a block of code to

handle such exceptions. Obtaining this information can be done by analyzing the source

code of the applications without the need to execute them, which is very advantageous
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in the context of mobile applications. Because the analysis can be done without the need

to configure and deploy the application on the mobile device.

2.6 EFlow Model

EFlow model (CACHO et al., 2008; CACHO; COTTENIER; GARCIA, 2008) is grounded on

mechanisms to explicitly represent global exceptional behavior. This specification enables

software developers to establish constraints governing the implementation of non-local

exceptions flows. An exception handling specification is composed of two abstractions:

explicit exception channel and pluggable handlers.

An explicit exception channel is an abstract duct through which exceptions flow from

a raising site to a handling site. More precisely, an explicit exception channel (EEC) is a

5-tuple consisting of: (1) a set of exception types E, (2) a set of raising sites RS; (3) a set

of handling sites HS; (4) a set of intermediate sites IS; and (5) a function EI that specifies

the channel’s exception interface.

Exception types, as the name indicates, are types that, at runtime, are instantiated to

exceptions that flow through the channel. The raising sites are loci of computation where

exceptions from E can be raised. The actual erroneous condition that must be detected to

raise an exception depends on the semantics of the application and on the assumed failure

model. For reasoning about exception flow, the fault that caused an exception to be raised

is not important, just the fact that the exception was raised. The handling sites of an

explicit exception channel are loci of computation where exceptions from E are handled,

potentially being re-raised or resulting in the raising of new exceptions. In languages such

as Java, both raising and handling sites are methods, the program elements that throw

and handle exceptions.

If an explicit exception channel has no associated handlers for one or more of the

exceptions that flow through it, it is necessary to define its exception interface. The

latter is a statically verifiable list of exceptions that a channel signals to its enclosing

context, similarly to Java’s throws clause. In the model, the exception interface is defined

as a function (Ex1αEx2) that translates exceptions flowing (Ex1) through the channel to

exceptions signaled (Ex2) to the enclosing EHC.

Raising and handling sites are the two ends of an explicit exception channel. Handling

sites can be potentially any node in the method call graph that results from concatenating

all maximal chains of method invocations starting in elements from HS and ending in
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elements from RS. All the nodes in such graph that are neither handling nor raising sites

are considered intermediate sites. Intermediate sites comprise the loci of computation

through which an exception passes from the raising site on its way to the handling site.

Intermediate sites in Java are methods that indicate in their interfaces the exceptions

that they throw, i.e. exceptions are just propagated through them, without side effects to

program behavior. Note that the notions of handling, raising, and intermediate site are

purely conceptual and depend on the specification of the explicit exception channel. They

are also inherently recursive. For example, an intermediate site of an explicit exception

channel can be considered the raising site of another channel.

A pluggable handler is an exception handler that can be associated to arbitrary EHCs,

thus separating error handling code from normal code. A single pluggable handler can be

associated, for example, to a method call in a class C1, two different method declarations

in another class, C2, and all methods in a third class C3. In this sense, they are an

improvement over traditional notions of exception handler. Another difference is that a

pluggable handler exists independently of the EHCs to which it is associated. Therefore,

these handlers can be reused both within an application and across different applications.

2.6.1 EFlow Implementations

The first two implementations of the Eflow model were: EJFlow (CACHO et al., 2008)

and ESFlow (CACHO; COTTENIER; GARCIA, 2008). The EJFlow implementation extends

the AspectJ programming language with the aim of promoting enhanced modularity,

reliability, and maintainability of exception handling. The goal of the second implementa-

tion, called ESFlow, is to demonstrate the wide applicability and generality of the EFlow

model. ESFlow extends the aspect-oriented language constructs and the control-flow anal-

ysis of the Motorola WEAVR (COTTENIER; BERG; ELRAD, 2007a, 2007b) with the aim of

promoting platform-independent representation of global exceptional behavior. ESFlow

allows a modular and maintainable design of exception handling based on executable

statecharts (HAREL, 1987). The other difference between EJFlow and ESFlow is that the

former relies on synchronous communication between modules, while the latter is based

on asynchronous communication.

EJCFlow (ARAÚJO et al., 2012), the third implementation of EFlow model, is a JCML

extension that implements the EFlow model to support Java Card applications. EJCFlow

provides means for developers to define explicit exception channels and pluggable handlers

in terms of the abstractions supported by JCML. This implementation is specific for Java
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Card applications to ensure that an exception raised inside the card will appear for the

developer of the application with a proper information of the error, without EJCFlow the

only information that the developer has is an error code.

Another implementation of the EFlow model is called ECSFlow (FILHO, 2016). This

implementation was developed for C# applications to provide an exception handling

mechanism that favors the reliability of systems, satisfying characteristics such as robust-

ness and maintainability. The implementation uses elements of the language to represent

the EFlow abstractions and is provided for the developer as an Add-in to facilitate the

integration with the Visual Studio tool.

In this work we propose DroidEH that implements the EFlow model as well. Unlike

previous implementations, DroidEH is focused on mobile Android applications that have a

different architecture and specific exception handling limitations. Also DroidEH inherents

the concepts of Holistic Fault Tolerance (GENSH et al., 2017a) to enhance the EFlow model.

2.7 Holistic Fault Tolerance

Holistic fault tolerance has been recently proposed (GENSH; ROMANOVSKY; YAKOVLEV,

2016; GENSH et al., 2017a) to support engineering of a cross-layer fault tolerance coordina-

tion to impose modularity to perform cross-cutting error detection and recovery for mobile

many-core applications and to ensure improved system performance and power consump-

tion. In the core of this approach is the architectural pattern (GENSH et al., 2017a) and

modelling techniques (GENSH et al., 2017b) which allow the developers to make optimal

decisions about holistic involvement of system components in system level error detection

and error recovery for each specific error.

Figure 6 shows the HFT architecture blueprint (GENSH et al., 2017a). The architecture

assumes that the application is build out of components (C1-C7) whose responsibility

is to deliver the main system functionality. The core of this architecture is a special

component called the HFT controller, which is supported by several HFT agents. These

elements of the architecture ensure dependable and optimal system operation. In addition,

they provide a clear view of the system FT mechanisms. The HFT controller coordinates

system-wide FT with the assistance of the HFT agents that simplify the implementation

and improve the scalability of the HFT controller. Each HFT agent acts as an intermediary

between the HFT controller and one or several system components. It is possible to go

without the HFT agents for small applications, given that the corresponding functionality
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Figure 6: HFT architecture from (GENSH et al., 2017a).

will be implemented by the HFT controller.

The FT mechanisms in the given architecture are distributed across the entire system,

but coordinated centrally by the HFT controller. In some cases, it is worth to introduce

some redundancy in FT mechanisms in such a way that the same error could be handled

by the component itself and by the HFT agent. The decision on suitable error handling

scenarios will be made by the HFT controller depending on the current system state. Such

an approach provides the flexibility in the choice of the optimal error recovery scenario.

A system designer should choose which system components will participate or will be

included in the HFT behaviour and which components will just provide their functionality

without being affected by the HFT controller and agents.

As part of the HFT architecture, (GENSH et al., 2017a) proposes to apply HFT for

modes and mode control, so that each mode supports a chosen interplay between relia-

bility, performance and energy consumption. In this context, an Operation Mode (OM)

could be defined as a functional state of the system. Another application of OMs is to

support system degradation by providing a non-functional distinction when one mode

describes full functionality of the system, whereas another mode is used for dealing with

exceptional conditions, including recovery and reconfiguration with degradation.
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3 Investigating the Impact of
Exception Handling on the
Robustness and Energy
Consumption of Android
Applications

This chapter shows in details, two studies carried out to investigate the impact of ex-

ception handling on robustness and energy consumption of Android applications. These

two non-functional requirements need to be taken into account when developing Android

applications, once they may impact negatively on the user experience and quality of

the applications. Android applications have different characteristics such as, different ab-

stractions, multiple entry points, etc. These abstractions are used intensively during the

development of applications, so the first study focuses on analyzing the relationship be-

tween the usage of Android abstractions and uncaught exceptions, to evaluate the impact

of exception handling on the robustness. It has analyzed 112 versions extracted from 16

software projects covering a number of domains. The second study was carried out with a

different focus, investigating the impact of the use of exception handling strategies on the

energy consumption of Android applications. It has analyzed 10 Android applications.

3.1 A Maintenance-Centric Study on the Relationship
Between Android Abstractions and Uncaught Ex-
ceptions

A previous work by Oliveira, Juliana, et al. (OLIVEIRA et al., 2016) analyzed Java stan-

dard applications and Android applications during the evolution and showed that there is

an excessive use of unchecked exceptions by developers and Android platform compared

to Java standard applications. This study points out that there is an ineffective use of
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exception handlers by developers that can be related to the excessive use of unchecked ex-

ceptions and outdated exception interfaces that affect program comprehension, since it is

not possible to know the exceptions that a method may throw just by looking at its excep-

tion interface. The study presented in this chapter continues this previous work focusing

on Android applications. The work by Oliveira, Juliana, et al. (OLIVEIRA et al., 2016)

shows there are general problems related to the use of Java EHM in Android applications

that can affect the robustness. Since Android applications have different characteristics

such as, different abstractions, multiple entry points and problems like the “Terminate

ALL" approach, this study deepens the analysis of the use of Android-specific abstrac-

tions and their impact on robustness of the Android applications during evolution. This

analysis is important to development of the exception handling mechanism proposed in

this research work and explained in section 4.2 of chapter 4, because this mechanism needs

to take into account how the use of these Android abstractions impact robustness, so that,

this impact is lessened by the use of the mechanism.

All the Android-specific abstractions can throw exceptions, with different effects. For

example, an ActivityNotFoundException thrown in a call to the startActivity

method can be caught similarly to any Java exception. However, if an exception is thrown

during the execution of a started activity, the only way of handling it is by creating

an instance of UncaughtExceptionHandler and associating it with the GUI thread.

Otherwise, these exceptions will always cause the application to crash (“Force Close” in

Android terminology). Both asynctasks and intent-related calls can end their execution

raising an exception. Since they execute asynchronously, the Android API provides means

for developers to check if execution finished with an exception and, if so, to throw that

exception in the UI thread, where it can be handled. On the other hand, asynchronous

execution of operations means that some exceptions might end up causing threads to fail.

Android’s abstractions are intensively used. In the group of 16 Android apps we have

analyzed, there is an average of approximately 53 activity-related calls and 9.3 asynctask-

related calls per version of each app. This means that, on the average, one in every 500

lines of code (LOC) performs an intent-related call and one in every 2880 uses an async-

task.To get an intuition of how big these numbers are, we can examine the usage of certain

constructs in non-Android Java applications. For example, previous work (PINTO et al.,

2015) has shown that, in a population of 1723 stable and mature Java (non-Android) ap-

plications from SourceForge, synchronized blocks, one of the most common constructs

for concurrency control in the language, appear on the average once for every 1517 LOC1.
1The paper reports an average of 65.93 synchronized blocks per 100KLOC. This average was
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Invocations of the notifyAll method, one of Java’s basic building blocks to implement

thread synchronization, appear on the average once for every 3667.62 LOC. In spite of the

intensive use of Android abstractions and the potential for uncaught exceptions stemming

from their use, no previous study has analyzed the relationship between these two factors.

Understanding if and when Android abstractions cause programs to fail, in particular due

to uncaught exceptions, can make developers use them in a more disciplined way. Testers

can also leverage this knowledge to create specific tests for common error conditions re-

lated to these abstractions. At the same time, bug finding tools can be augmented to

look for unprotected uses of these abstractions, e.g., calls to the get method of class

AsyncTask for which there is no handler and activities that run in a GUI thread that

has no associated UncaughtExceptionHandler.

This section presents an empirical study to analyze the relationship between the us-

age of Android abstractions and uncaught exceptions. Our approach is quantitative and

maintenance-centric. We analyzed changes to both normal and exception handling code

(or “exceptional code”, the catch blocks) in 112 versions extracted from 16 software

projects covering a number of domains, amounting to more than 3 million LOC. Change

impact analysis and exception flow analysis2 (SCHAEFER; BUNDY, 1993; ROBILLARD; MUR-

PHY, 2003) were performed on those versions of the projects. Since developers often report

errors stemming from uncaught exceptions (EBERT; CASTOR; SEREBRENIK, 2015; SENA

et al., 2016), similarly to previous work (CABRAL; MARQUES, 2007; COELHO et al., 2008;

ROBILLARD; MURPHY, 2003) we consider the presence of uncaught exception flows to be

an indicator of lack of robustness.

Next section presents the experimental procedure, including the hypothesis of the

study, the sample of applications and variables and metrics. Section 3.1.2 describes the

results found in the study with the analysis of the results in the context of Android abstrac-

tions and changes to exception handling code and Android abstractions and robustness.

Finally, section 3.1.3 presents the threats to validity.

3.1.1 Experimental Procedures

As described in the previous section, the use of Android’s abstractions can lead to

a number of different exceptions. These exceptions may cause programs to fail if not

obtained from 612,897,893 LOC, which have 404,019 synchronized blocks. This yields an average of
one synchronized block for every 1517 LOC.

2An exception flow is a path in the program call graph that may be traversed by an exception that it
throws. If an exception flow is uncaught, the corresponding path reaches one of the program entry points.
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properly handled. However, there is limited empirical knowledge about the impact of using

Android’s abstractions on program robustness, in general, and on uncaught exceptions, in

particular. Therefore, the goal of this empirical study is to investigate if and to what extent

typical uses of these abstractions affect software robustness during software evolution as

a consequence of uncaught exceptions.

We describe the experimental procedure of this study in four parts: (i) definition of the

the study hypotheses (Section 3.1.1.1); (ii) selection of the sample of subject applications

(Section 3.1.1.2); (iii) definition of the variables of the study and the suite of metrics to be

computed from the source code and binaries of the subject applications (Section 3.1.1.3);

and (iv) finally, statistical analysis of the collected metrics using the statistical package

SPSS (Section 3.1.2).

3.1.1.1 Hypotheses

Android development introduces a number of new abstractions that are not part of tra-

ditional Java development. Some of them are executed asynchronously or using a callback

style of programming. Usage of all of these abstractions may throw exceptions that can

cause apps to crash(WU et al., 2017). In addition, most of these exceptions are unchecked

and the Java compiler does not require them to be handled by the apps(COELHO et al.,

2015). This is in contrast to how Java frameworks are typically built. The latter usu-

ally employ mostly checked exceptions (BARBOSA; GARCIA, 2011; NAKSHATRI; HEGDE;

THANDRA, 2016) since checked exceptions are a form of compiler-enforced documenta-

tion. In addition, considering a more general perspective, although there is a considerable

body of knowledge on how exceptions are thrown, propagated, and handled in Java pro-

grams (CABRAL; MARQUES, 2007; FU; RYDER, 2007; ROBILLARD; MURPHY, 2000, 2003;

NAKSHATRI; HEGDE; THANDRA, 2016; KERY; GOUES; MYERS, 2016), the same cannot be

said about Android applications, although this is starting to change (COELHO et al., 2015;

KECHAGIA; SPINELLIS, 2014; WU et al., 2017). These factors motivate a more in-depth

analysis about the relationship between Android abstractions and exception handling.

This study relies on the analysis of the following hypotheses, which are set up as null

hypotheses:

• Hypothesis 1: There is no significant relationship between changes in the number

of method calls to Android abstractions and changes in the amount of exception

handling code (code within catch blocks).
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• Hypothesis 2: There is no significant relationship between changes in the number

of classes that extend Android abstractions and changes in the amount of exception

handling code (code within catch blocks).

• Hypothesis 3: There is no significant relationship between changes in the number

of method calls to Android abstractions and the number of uncaught exception flows

in a system.

• Hypothesis 4: There is no significant relationship between changes in the number

of classes that extend Android abstractions and the number of uncaught exception

flows in a system.

The first two hypotheses aim to investigate whether changes in the number of uses of

Android abstractions (methods and classes) are associated to changes in the amount of

exception handling code. Hypotheses 3 and 4 investigate whether variations in the number

of uses of these abstractions have side effects in terms of uncaught exception flows.

3.1.1.2 Sample

We selected our sample of subject applications based on the categories provided by

Google Play. We divided our subject applications in four categories: (i) Social Network:

Apps that connect people by means of text, voice, photos, or video; (ii)Communication:

Apps responsible for using 3G or WiFi to message with friends and family; (iii) Mis-

cellaneous: Apps that provide browser features, ebook reader, and so on; (iv) News

Reader/Media: Apps that provide information about current events. In our sample, we

include apps with a high number of installations(more than 50k) and with more than 7

versions available to download or with public version control systems available. In addi-

tion to these requirements, for us to be able to perform the manual and static analyses,

applications need to provide the source code of each version and the APK file.

In the process of selecting the subject applications, we identified that many of them

did not have significant changes between some pairs of versions. This is the reason why we

cannot choose the versions to be analyzed solely based on when they were released. In these

cases, we chose applications with a longer development time, and skipped minor versions,

e.g., analyzed changes between versions 1.1 and 1.3, instead of 1.1 and 1.2. Only apps with

at least 7 versions available were considered in the study. Our final sample comprised a set

of 16 open source Android apps and is particularly diverse in the way exception handling

is employed. For instance, when we consider a classification of how exception handling
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code can be structured (Castor Filho; GARCIA; RUBIRA, 2007), we could find almost all

the categories of the aforementioned classification among the 16 subject applications,

including nested exception handlers, masking handlers, context-dependent handlers, and

context-affecting handlers. We could also observe that the behavior of exception handlers

significantly varied in terms of their purpose (CABRAL; MARQUES, 2007), ranging from

error logging to application-specific recovery actions.

Table 1: Subject programs of the study

Name Versions Pairs AverageLOC Android
API

TweetLanes 1.2.1-release; 1.3.0beta1; 1.3.0beta4; 1.3.0release;
1.4.0beta1; 1.4.0beta2; 1.4.0release; 6 26.022,33 17

Twidere
0.2.9.7update1; 0.2.9.8; 0.2.9.8update2;

0.2.9.9; 0.2.9.10;
0.2.9.11; 0.2.9.12;

6 75.765,66 18, 19

Impeller 0.7.0; 0.8.2; 0.8.5; 0.8.6;
0.9.5; 0.9.5a; 0.9.5b; 6 8.930,66 18, 19

Andstatus 6.3; 7.0; 7.1; 8.0; 8.1; 8.2; 8.4; 6 20.130,50 10

S
oc
ia
l
N
et
w
or
k

SubTotal 24 785.095,00

ChatSecure 12.7.1; 13.0.3; 13.0.4; 13.0.6; 13.0.9;
13.2.0alpha6; 13.2.0beta1; 6 34.522,00 18, 19

ConnectBot 1.1; 1.3; 1.5.4; 1.6.1; 1.6.2;
1.7.1; 2014-03-02-12-38-08; 6 31.666,16 3, 6, 8, 15

TextSecure 2.0.4; 2.0.5; 2.0.6; 2.0.7;
2.0.8; 2.1.2; 2.1.6; 6 46.521,50 19

Adblock Plus 1.0; 1.0.1; 1.1; 1.1.1; 1.1.4; 1.2; 1.2.1; 6 9.872,66 7, 16

C
om

m
u
n
ic
at
io
n

SubTotal 24 735.494,00

K9mail 4.700; 4.701; 4.800; 4.801;
4.802; 4.803; 4.804; 6 77.093,66 17, 19

TintBrowser 1.3; 1.4; 1.5; 1.6; 1.6.1; 1.7; 1.8; 6 11.347,83 14, 17

FBReader
1.10.0.4; 1.10.2; 1.10.3.2;

2.0.4; 2.0.5;
2.0.5.2; 2.0.6;

6 64.183,66 14

Cgeo
20140330; 20140331; 20140401;
20140410-legacy; 20140419;

20140430; 20140514;
6 49.783,33 8, 9

M
is
ce
ll
an

eo
u
s

SubTotal 24 1.214.451,00
Serenity for Android 1.5.2; 1.5.3; 1.5.4; 1.5.5; 1.6.1; 1.7.3; 1.7.4a ; 6 32616,83 13, 19

RedReader 1.6.5; 1.6.9; 1.8.0; 1.8.2; 1.8.3; 1.8.5.2; 1.8.6.3; 6 15592,16 16

Vanilla 0.9.17; 0.9.18; 0.9.20; 0.9.21;
0.9.22; 0.9.23; 0.9.24; 6 10495 16

VLC for Android 0.9.0; 0.9.2; 0.9.4; 0.9.6; 0.9.7.1; 0.9.9; 1.0.0; 6 27355,83 19, 21

N
ew

s
R
ea
d
er

/
M
ed

ia

SubTotal 24 516.359,00
Total 96 3.251.399,00

Table 1 reports the name, number of analyzed version pairs, average number of lines

of code and the version of Android platform’s API of each subject applications. For the

TintBrowser app, for instance, we analyzed 6 pairs of versions: 1.3-1.4, 1.4-1.5, 1.5-1.6,

1.6-1.6.1, 1.6.1-1.7 and 1.7-1.8. The last column shows the version of Android platform’s

API used in each version of the subject applications. Many of them used more than one

version of the API throughout its evolution. For example, the Twidere application started

using version 19 of the API when it reached version 0.2.9.9 and employed version 18 prior

to that. For each category, Table 1 also shows the total number of pairs and the total

number of LOC analyzed. The last row shows the total number of pairs and the total

number of LOC analyzed in this study.



55

3.1.1.3 Variables and Metrics

The selected variables are metrics quantifying characteristics of both normal and

exceptional code. We chose different metrics to capture changes in the normal and the

exceptional code during software evolution, and also metrics that quantify the robustness

of a program. Therefore, the variables of interest of this study encompass a suite of metrics

classified in three categories: size metrics, robustness metrics, and change metrics. The

following subsections describe each suite of metrics and how they were computed.

Robustness Metrics: Robustness is the ability of a program to properly cope with

errors during its execution (LEE; ANDERSON, 1990). When an exception is thrown, if

a corresponding handler cannot be found, program robustness is decreased. Other fac-

tors can also influence robustness, for example, security vulnerabilities, excessive resource

consumption, and race conditions. These problems, albeit very important, usually do not

directly result in exceptions being thrown at runtime. Thus, we do not study them in this

work.

In order to measure software robustness, we followed the approach adopted by previous

work(CACHO et al., 2008; COELHO et al., 2008; CACHO et al., 2014, 2014). We used exception

flow information as an indicative of robustness (ROBILLARD; MURPHY, 2003; FU; RYDER,

2007; COELHO et al., 2008; MAJI et al., 2012). Exception flow is a path in a program call

graph that links the method where the exception is thrown to the method where the

exception is handled. If there is no handler for a specific exception, the exception flow

starts in the method where the exception was thrown and finishes at an entry point.

In standard Java applications, the entry point is the mainmethod if the exception was

thrown in the main thread, or the run method in case it was thrown in a separate thread.

Unlike standard Java programs, Android applications may have many entry points. These

entry points include Android lifecycle methods, like onCreate method, and user-defined

event handlers, like the onClick method that handles a button click performed by the

user. These methods are invoked by the Android framework at runtime and their order

of execution cannot be determined in advance. In this work we followed the approach

adopted by (CUI et al., 2015) to identify entry points for each component of an Android

application. In the context of our analysis of program robustness, we used the Uncaught

Exception Flow (or Uncaught Flow) metric. The uncaught exception flow is often used

as an indicative of software robustness (ROBILLARD; MURPHY, 2003; FU; RYDER, 2007;

COELHO et al., 2008;MAJI et al., 2012). Uncaught Flow counts the number of exception flows

that reach an entry point (main or runmethod) where the corresponding exception is not
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caught. This is an indicator of a potential fault in exception handling behavior. Uncaught

exceptions terminate the execution of a program or thread and, since exceptions indicate

errors, an uncaught exception is synonym with an error the program failed to handle.

We employed an extended version of the eFlowMining (GARCIA; CACHO, 2011) tool

to collect the robustness metric. eFlowMining is a multi-language static analysis tool that

uses the approach proposed by (FU; RYDER, 2007) to perform an inter-procedural and

intra-procedural dataflow analysis. This extended version of eFlowMining uses the Dex-

pler software package (BARTEL et al., 2012) to collect the structure (call graph, methods,

exceptions, etc) of Android applications. Then, the tool generates the exception flows and

computes the Uncaught Flow metric for all exceptions, explicitly thrown by the applica-

tion or explicitly thrown by library methods. In this study we are assuming that only one

exception is thrown at a time — the same assumption considered in (FU; RYDER, 2007).

Unlike (CABRAL; MARQUES, 2007; CACHO et al., 2014), we have taken into account all

exception flow types, including ones originating from unchecked exceptions, since recent

work (KECHAGIA; SPINELLIS, 2014; FRASER; ARCURI, 2015; KIM et al., 2013; COELHO et

al., 2015) has found that NullPointerException, IllegalArgumentException,

and IllegalStateException are among the most common reasons why Android

applications crash.

Figure 7: Collecting change impact measure: An example

Change Metrics: In order to quantify the changes in exception handling code, we

collected the EHChurnedLOC change impact metric (YAU; COLLOFELLO, 1985). This
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change impact metric is computed based on the difference between the source code of

a baseline version and the source code of a subsequent version. EHChurnedLOC counts

the number of lines of exception handling code added and changed between a pair of

versions. We considered to be exception handling code only the code that comprises the

catch blocks. In the example presented in Figure 7, two lines of exception handling code

are changed (within the first catch block) and three lines are added. Hence, the value of

EHChurnedLOC is 5.

Our main goal during the change impact analysis was to gather deeper knowledge

about the recurring change scenarios observed and their impact on software robustness.

Therefore, we had to not only compute the change metrics, but also describe each ob-

served change scenario and assess its impact on software robustness. Since part of this

information is inherently qualitative, we could not rely on any existing static analysis

tool to automatically extract it from the source code, nor implement a tool of our own.

In this manner, we had to perform a manual inspection in the source code to textually

describe the change scenarios and assess the impact of the observed changes on software

robustness. These tasks were performed by a group of three master’s students and two

researchers who acted as reviewers. These researchers are specialists on error handling

and have multiple papers published on the subject (Castor Filho et al., 2006; CACHO et al.,

2014, 2014, 2008; EBERT; CASTOR; SEREBRENIK, 2015; OLIVEIRA et al., 2016). Each mas-

ter’s student performed a manual inspection on the source code of the versions of a given

subject applications and simultaneously: (i) computed the change metrics, (ii) textually

described the observed change scenarios and (iii) assessed the impact of the changes on

software robustness by means of an exception flow analysis. The data produced by the

master’s students was reviewed by the two researchers. Further clarifications, modifica-

tion, or improvements were performed by the master’s students when divergences were

identified by the reviewers. Whenever necessary, the students performed an open discus-

sion with the reviewers to resolve conflicts and reach consensus on the data produced. If,

on the one hand, this manual inspection process did not allow us to scale our study to a

larger sample, on the other hand it provided us with more accurate data and a better un-

derstanding of the observed change scenarios. Moreover, it also allowed us to identify and

categorize change scenarios that improved or deteriorated the robustness of the subject

applications. Next, each task is described in more detail.

Change metrics computation and textual description. The change impact met-

rics were manually computed with the aid of the DiffMerge tool 3. DiffMerge performs a
3DiffMerge page: http://www.sourcegear.com/diffmerge/
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Table 2: Change Scenarios and Corresponding Descriptions

Scenarios Description

C
ha

ng
es

to
E
xc
ep

ti
on

al
C
od

e

Generic Handler added A catch block which catches a generic
exception is added

Empty Generic Handler added An empty catch block is added to handle a
generic exception

Generic Handler added to rethrow exception A catch block which catches a generic exception
is added to construct a new exception which is thrown

Generic Handler removed A catch block which catches a generic exception
is removed

Specialized Handler added A catch block which catches a specific exception
is added

Empty Specialized Handler added An empty catch blocks is added to handle
a specific exception

Specialized Handler added to rethrow exception A specific handler is added to construct a new exception
which is thrown

Specialized Handler removed A specialized handler is removed
Changing the Exception Handling Policy Changes how a specific exception type is handled

Changing the catch block to use normal code The catch block needs to change its code in order
to use some references of the normal code

Only modified the Exception Interface Only the exception interface is added, removed or modified
No changes to catch blocks The try blocks changes but the catch block is not modified.

C
ha

ng
es

to
N
or
m
al

C
od

e

Try block added to existing method A try block is added to an existing method declaration
New method added with try block A new method declaration with a try block is added
New method invocation added A new method invocation is added within a try bock
Variables modified A variable within a try block is modified
Method call replaced Replacing the method call by another
Intent call added An Intent call is added to the method
Control flow modified A control flow statement is modified within a try block
Try block removed A try block is removed from a method declaration

Method with try block removed A method declaration with a try block is removed
from the project

No changes to try blocks The catch block changes but the try block is not modified.

visual side-by-side comparison of two folders, showing which files are present in only one

folder, as well as file pairs (two files with the same name but in different folders) that are

identical or different. For file pairs with differences, the tool also graphically highlights the

changes between the two files. The DiffMerge tool was used to compare the project folder

of two subsequent versions of the subject applications. For each file pair with differences,

the master students manually computed the change impact metrics by inspecting the

differences pinpointed by the tool. For each change scenario analyzed, the students also

textually described the observed changes that occurred within try blocks, catch blocks,

and exception interface. For instance, in one of the change scenarios we analyzed, one of

the students described the following: “We observed a new IF statement added to the try

block and a new method invocation added to the catch block”. On a further step, the

researchers applied a coding technique to the textual descriptions of each change scenario

in order to extract categories of change scenarios, divided in categories of changes in the

normal code and categories of changes in the exceptional code. Table 2 presents the result
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Table 3: Occurrence of Change Scenarios per Project

Application Name

A
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T
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lla

V
LC

A
nd
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C
h
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S
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n
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s

Try block added
to existing method 3 5 9 19 30 6 7 1 14 5 7 1 2 10 0 6

New method with
try block added 2 13 35 26 22 18 10 2 5 1 13 5 7 24 0 1

Try block removed 5 18 7 12 9 8 3 0 2 0 4 2 0 4 1 0
Method with try
block removed 9 4 36 10 8 13 8 1 1 0 21 1 0 7 0 5

Method call added 2 0 14 15 7 2 2 2 1 0 10 0 2 1 1 1
Variables modified 1 16 1 5 25 0 4 0 3 0 0 0 1 28 1 14
Control flow modified 2 20 6 20 14 0 5 1 6 0 9 2 8 8 2 4
Method call replaced 0 10 20 11 4 6 0 9 1 0 1 0 0 10 0 0
Intent call added 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
No changes
to try block 3 7 0 4 4 2 0 0 3 0 14 1 3 2 0 2

No changes
to catch block 9 34 45 43 49 16 10 16 11 0 28 4 11 44 3 19

Specialized Handler added 3 4 8 30 34 8 9 2 4 5 21 6 11 16 0 4
Generic Handler added 3 7 23 9 12 2 3 1 3 1 4 0 0 2 0 2
Empty Generic Handler

added 0 0 3 4 0 2 0 0 0 0 1 0 1 1 0 1

Generic Handler added
to rethrow exception 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0

Specialized Handler added
to rethrow exception 0 4 0 0 3 1 0 0 11 0 1 0 0 2 0 0

Empty Specialized Handler
added 0 0 4 5 2 4 1 0 1 0 0 1 0 4 0 0

Generic Handler removed 2 8 22 8 6 11 0 0 0 0 1 2 0 0 1 0
Specialized Handler removed 12 12 20 15 11 7 11 0 3 0 20 1 0 14 0 5
Changing the Exception

Handling Policy 0 8 1 12 8 2 2 0 2 0 4 0 1 2 1 2

Changing the catch block
to use normal code 0 15 0 0 3 0 0 0 0 0 0 0 0 0 0 1

Only modified the
Exception Interface 1 12 0 1 30 7 2 0 0 0 24 0 2 32 0 0

of this categorization.

Table 3 shows the occurrence of the change scenarios in the normal code and the

exceptional code (Table 2), throughout all the versions of the analysed applications. It

is possible to see that the No changes to catch block scenario occurs in all applications,

most often in the ConnectBot application. The occurrence of the No changes in the try

block occurs with a lower frequency and in some applications it did not occur. These

results indicate that, in general, there were more changes in the normal code than in in

the exceptional code. We also noticed that 9 out of 16 applications had changes related

to the exceptional interface of the methods.

Exception flow analysis. Simultaneously to the computation of the change metrics,

the students also performed exception flow analysis for each identified change scenario.

The exception flow analysis was performed with the aid of the eFlowMining tool. For
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each pair of subsequent versions analyzed, eFlowMining computed the difference between

the number of uncaught exception flows observed for each method. The difference was

computed as: ∆Uncaught = UncaughtSubsequent − UncaughtBaseline.If the value of the

difference was higher than zero, then it meant that the number of uncaught exception

flows increased during the evolution. On the other hand, if the difference was lower than

zero, then it meant that the number of uncaught exception flows decreased during the

evolution, thus suggesting that the occurrence of uncaught exceptions became less likely.

Finally, if the value of the difference was equal to zero, then it meant that no changes

were observed in the number of uncaught exception flows; therefore, the change scenarios

observed had no impact on software robustness.

In this manner, by combining the change metrics values, the categories of change

scenarios extracted from the textual descriptions, and the exception flow analysis, we

were able to better understand which categories of change scenarios actually improved or

deteriorated the robustness of the subject applications. In particular, the manual inspec-

tion process allowed us to systematically discover the scenarios that were more prone to

generate uncaught exception flows.

Table 4: List of methods calls analyzed

Methods List of Thrown Exception

Activity

startActivity; startActivities;
startActivityForResult;
startActivityFromFragment;
startActivityFromChild;
startActivityIfNeeded

android.content.Activity
NotFoundException;
java.lang.IllegalState
Exception;
java.lang.IllegalArgument
Exception

Service startService; bindService;
unbindService java.lang.SecurityException

AsyncTask execute; executeOnExecutor java.lang.IllegalStateException

T
yp

e
of

A
n
d
ro
id

C
al
l

BroadCast

sendBroadcast;
sendOrderedBroadcast;
sendBroadcastAsUser;
sendOrderedBroadcastAsUser

-

Size Metrics: Size metrics capture the basic structure of the normal and the ex-

ception handling code of a software system. The size metrics used in this study are the

following. NClasses counts the number of classes of each version of a system that extend

android.app.Activity, android.app.Service, android.os.AsyncTask, or

android.content.Broad-

castReceiver. NMethodCall counts the number of method calls related to activities,

services, asynctasks, and broadcasts, respectively, for each version of a system. Table 4

lists all methods we have taken into account to compute the NMethodCall metric. For in-

stance, if an application places five method calls to method startActivity, the value
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for NMethodCall is 5. NTry counts the number of try blocks defined in the scope of

classes that extend Activity, Service, AsyncTask and Broadcast receiver

for each version of a system. Finally, DensityTry is defined as NTry divided by NClasses.

These metrics were computed using the eFlowMining tool (GARCIA; CACHO, 2011).

Table 4 also presents the list of exceptions that these methods may throw, as informed by

the Android documentation. The last two exceptions for the Activity type in this table

are thrown by startActivity implementations of android.support.v4 package

used by apps. We do not explicitly count method calls related to intents because they are

orthogonal to the aforementioned ones, e.g., one can use intents to send a broadcast, to

start a service, etc.

3.1.2 Results and Analysis

This section reports our empirical findings and statistical tests of the hypotheses

presented in Section 3.1.1.1. For the statistical tests performed along this section, we have

employed the statistical package SPSS. We assume the commonly used confidence level

of 95% (that is, p-value threshold = 0.05). The Spearman’s rank correlation test is used

to identify highly-correlated metrics. We use this test because in our analysis the metrics

are nonparametric. For evaluating the results of the correlation tests, we adopted the

Hopkins criteria to judge the goodness of a correlation coefficient (HOPKINS, 2013): < 0.1

means trivial, 0.1-0.3 means minor, 0.3-0.5 means moderate, 0.5-0.7 means large, 0.7-0.9

means very large, and 0.9-1 means almost perfect. The results of the correlation tests are

presented in the next sections.

3.1.2.1 Android Abstractions and Changes to Exception Handling Code

Android does not propagate exception among Activities, Asynctasks, Services,

and Broadcast receivers. All these abstractions need to handle all their exceptions

otherwise the Android platform will terminate the whole application. In this context, this

section investigates how exceptions are handled in the caller and callee, e.g, the caller in

Figure 5 is represented by method onClick at the MainScreen Activity whereas the

callee is represented by the class FileScreen.

Most of the Method Calls Are Not Protected. We first look at the caller side

by analyzing the number of method calls to Android abstractions that are protected by

try-catch blocks. Table 5 lists, for each Android abstraction, the number (NMethod-
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Table 5: Descriptive statistics of calls inside and outside of try/catch blocks for analyzed
categories.

Application Categories

Social
Network

Communication Miscellaneous
News Reader

/Media
Total

Percentage
of method

calls
Inside
Try

183/
12.42%

206/
13.51%

310/
17.50%

123/
10.54%

822/
13.85%

A
ct
iv
it
y

Outside
Try

1290/
87.57%

1318/
86.48%

1461/
82.49%

1043/
89.45%

5112/
86.14%

5934/
64.22%

Inside
Try

6/
4.91%

77/
12.60%

128/
33.24%

18/
6.97%

229/
16.64%

S
er
vi
ce

Outside
Try

116/
95.08%

534/
87.39%

257/
66.75%

240/
93.02%

1147/
83.35%

1376/
14.89%

Inside
Try

67/
23.18%

12/
3.44%

0/
0.0%

12
8.82%

91/
8.75%

A
sy
n
cT

as
k

Outside
Try

222/
76.81%

336/
96.55%

267/
100%

124/
91.17%

949/
91.25%

1040/
11.25%

Inside
Try

18/
4.29%

22/
13.66%

7/
5.03%

19/
11.11%

66/
7.41%

T
yp

e
of

A
n
d
ro
id

C
al
l

B
ro
ad

C
as
t

Outside
Try

401/
95.70%

139/
86.33%

132/
94.96%

152/
88.88%

824/
92.58%

890/
9.63%

Call) and percentage of method calls to the methods listed in Table 4 that are protected

(Inside Try) or not protected (Outside Try) by try-catch blocks. An analysis of the

last column in Table 5 reveals that method calls to activities are the most frequent ones

for all categories and represent 64.22% of the cases. This is to be expected, since activ-

ities implement UI operations. Moreover, we found that 86.14% of the method calls to

startActivity are not protected by try-catch blocks. This percentage is consis-

tently spread throughout all applications categories. The second most frequent abstrac-

tion is Service with 14.89%. Service is also the abstraction with the highest per-

centage (16.64%) of protected method calls. In contrast, AsyncTask (with 8.75%) and

BroadCast (with 7.41%) are the abstractions with the lowest percentages of method

calls protected by try-catch blocks.

Reduced number of try blocks. One possible reason for not protecting Android

method call invocation is that developers may know exceptions thrown by Android ab-

stractions are not propagated back to the point where the method was invoked (caller

side). Based on that, we now investigate whether developers are protecting the callee side

from exception occurrences. Table 6 lists the average value of DensityTry per Android

abstraction. For instance, the first row shows that there is less than one (0.59) try block

per class that extends Activity in the Social Network category. When we consider all

application categories, there are 2.641 classes that extend Activity against 1.711 try
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Table 6: Statistics of density by abstractions

Total

So
ci
al

N
et
w
or
k

C
om

m
un

ic
at
io
n

M
is
ce
lla

ne
ou

s

N
ew

s
R
ea
de
r
/M

ed
ia

M
ea
n

N
um

of
C
la
ss
es

N
um

of
Tr

y

P
er
ce
nt
ag

e
of

C
la
ss
es

w
it
h
Tr

y

Activity 0.59 0.87 0.62 0.46 0.65 2641 1711 30.02%
AsyncTask 0.81 0.85 0.67 0.46 0.77 1862 1432 58.43%
BroadCast 0.25 0.18 0.29 0.11 0.22 832 183 14.66%
Service 0.98 2.32 0.86 1.87 1.54 868 1333 39.97%
Total 0.69 0.96 0.62 0.76 0.75 6203 4659 37.88%

blocks. This produces a total average of 0.65 try block per Activity. It is a very low

density when considering that Android abstractions, such as Activities, have many entry

points and multiple try-catch blocks would be expected to protect them from crashing

the whole application.

The last column of Table 6 shows the average percentage of Android abstractions that

have at least one try block. For instance, only 30.02% of the analyzed Activities have at

least one try block. Overall, only 37.88% of the classes that extend Android abstractions

have at least one try block. This means that 62.12% of the classes that extend Android

abstractions have no exception handling code.

Insignificant variation in the number of try blocks per class. Figure 8 presents

the value of the DensityTry measure, i.e., the number of try blocks per class, for each

analyzed version of each subject applications. Each graph presents the data for the pro-

grams in each application category. There is little variation in the value of the metric

in the versions of 13 out of the 16 subject applications. The exceptions are: AndStatus

application had a slight decrease, VLCAndroid application presented a slight increase and

ConnectBot had a moderate to significant increase in the DensityTry metric.

Figure 9 depicts an example for such stability. This figure shows the evolution in the

exception handling code for the startFromActivity method, over four versions of the

AndStatus application. From version 6.3 to 7.0, the developer added a try block with a

specific handler for android.content.pm.Pack-

ageManager.NameNotFoundException checked exception. This method did not change

for version 7.1 and the try block was removed for version 8.0. It is possible to see that
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Figure 8: Values of the DensityTry measure throughout the versions.

the developer did not declare NameNotFoundException in the exception interface of

the method nor treats it in any other version of the application.

In order to understand in greater depth the reasons for this apparent stability in

the value of DensityTry, it was necessary to manually inspect all classes that extend

Android abstractions (Activity, Services, AsyncTask and Broadcast) and changed (or were

added) during the evolution of the application. In particular we inspected 220 change

scenarios encompassing addition, modification and deletion of try-catch blocks. We

observed and distinguished: (i) recurring co-changes between the normal code blocks and

exception handling blocks, and (ii) independent changes made to either of them. Each

change scenario was classified according to the action taken on the normal code (try block

only) and exception handling code (catch block), following the classification presented in

Section 3.1.1.3. Table 7 summarizes the frequency of change scenarios involving co-changes

between the normal (columns) and exceptional (rows) code. The frequency of independent

changes made to the normal code is captured in the row “No changes to catch blocks”

whereas independent changes to the exceptional code are captured in the last column

“No changes to try blocks”. The bottommost row, labeled “Percentage for Normal Code

Changes”, shows the distribution of the frequency of normal change scenarios.

More modifications than additions of try blocks. An analysis of the last row
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Figure 9: Example of Evolution in Handling an Exception in the AndStatus Application.

of Table 7 reveals that changes in the try blocks represent the most common change

scenarios. The most common kinds of modifications involve changes to variables inside

existing try blocks (fifth column), 19.64% of the cases, and modifications in the program

control flow (sixth column), 15.47% of the cases. However, for those scenarios involving

changes in try blocks, developers usually perform no change to handlers. These are cases

where the try block was modified but not an accompanying catch block. For instance,

no change to handlers occurs in: (i) 87.87% of the cases where variables were modified,

and (ii) 80.76% of the cases here the control flow was modified. In fact, when we consider

the overall distribution of exceptional change scenarios (last column), 37.3% of them

did not involve changes to handlers in the Android apps (No changes to catch blocks).

This is potentially dangerous because new methods and modifications to the program

control flow may result in new exceptions being thrown that the associated catch blocks

cannot capture. The actions performed by the catch blocks may help to explain this

lack of change. In fact, a recent study of Nakshatri and colleagues (NAKSHATRI; HEGDE;
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Table 7: Classification of Normal and Exceptional Change Scenarios related to Activity
abstraction

Changes in the normal code (try blocks only)

Changes in the
exceptional code

Tr
y
bl
oc
k
ad

de
d

to
ex
ist

in
g
m
et
ho

d

N
ew

m
et
ho

d
ad

de
d

w
ith

tr
y
bl
oc
k

Tr
y
bl
oc
k

re
m
ov
ed

M
et
ho

d
w
ith

tr
y
bl
oc
k
re
m
ov
ed

Va
ria

bl
es

m
od

ifi
ed

C
on

tr
ol

flo
w

m
od

ifi
ed

M
et
ho

d
ca
ll
re
pl
ac
ed

In
te
nt

ca
ll
ad

de
d

N
o
ch
an

ge
s
to

tr
y
bl
oc
ks

Pe
rc
en
ta
ge

fo
r
Ex

ce
pt
io
na

l
C
od

e
C
ha

ng
es

Generic Handler added 21.42% 30.30% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.52%
Empty Generic Handler added 14.28% 3.03% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.97%
Generic Handler removed 0.0% 0.0% 47.82% 30.0% 0.0% 0.0% 0.0% 0.0% 0.0% 8.33%
Specialized Handler added 39.28% 54.54% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 16.66% 17.85%
Empty Specialized Handler added 14.28% 12.12% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.76%
Specialized Handler added to rethrow exception 10.71% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.78%
Specialized Handler removed 0.0% 0.0% 52.17% 70.0% 0.0% 0.0% 0.0% 0.0% 0.0% 11.30%
Reference change 0.0% 0.0% 0.0% 0.0% 0.0% 3.84% 0.0% 0.0% 0.0% 0.59%
Changing the Exception Handling Policy 0.0% 0.0% 0.0% 0.0% 12.12% 11.53% 12.5% 0.0% 16.66% 5.35%
Changing the catch block to use normal code 0.0% 0.0% 0.0% 0.0% 0.0% 3.84% 0.0% 0.0% 16.66% 1.19%
No changes to catch blocks 0.0% 0.0% 0.0% 0.0% 87.87% 80.76% 87.5% 100.0% 50.0% 37.30%
Percentage for Normal Code Changes 16.66% 19.64% 13.69% 5.95% 19.64% 15.47% 4.76% 0.59% 3.57%

THANDRA, 2016) analysed 554,864 Java project in the GitHub repository and 50,692

Java project in the SourceForge repository. They observed that the most common action

performed by catch blocks are: printStackTrace, log methods and empty blocks.

Similar result was observed by Kery and colleagues (KERY; GOUES; MYERS, 2016) who

analysed nearly 8,000,000 Java repositories and perceived that the most common action

performed by catch blocks are: empty blocks (12.4%), print statement (10%), and log

methods (10%). These results suggest that with small or no code the catch blocks will

poorly evolve from one version to the other.

For instance, a common change scenario in the exceptional behavior occurs when try

blocks are added. They are either added to existing methods (first column), in 16.66% of

the cases, or together with the addition of new methods (second column), in 19.64% of the

cases. However, for those scenarios involving new try blocks, developers usually attached

poor exception handlers. For instance, generic handlers were introduced in: (i) 30.30%

of the cases of new methods, and (ii) 21.4% of the cases of new try blocks for existing

methods. The addition of try blocks to existing methods is also performed together with

other forms of handlers: (i) addition of empty generic handlers (14.2% of the total), and

(ii) addition of empty specialized handlers (14.28% of the total).

Testing hypotheses 1 and 2. In order to assess the first and second hypotheses, we

analyze the data presented in Table 8. Its last column 4 shows the overall result of
4Correlations at the 95% level are marked with * in Table 8, while those at the 99% level are marked
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Table 8: Spearman rank correlation between changes metrics, call metrics and calls related
to abstractions.

Application Categories

Social Network Communication Miscellaneous
News Reader

/ Media

Total

E
H
C
hu

rn
ed

L
O
C NMethodCall 0.207 0.179 0.309 -0.154 0.133

NClasses 0.432* 0.320 0.161 -0.036 0.253*

U
n
ca
u
gh

t
F
lo
w

NMethodCall 0.674** 0.922** 0.472* 0.782** 0.771**

NClasses 0.762** 0.929** -0.044 0.700** 0.783**

DensityTry -0.729** -0.421* -0.791** -0.397 -0.507**

the correlations when considering all applications, regardless of program category. The

first row shows that there is no significant correlation between the EHChurnedLOC and

NMethodCall metrics. Thus, we are unable to refute Hypothesis 1. In other words, this

result shows that when the NMethodCall is changed, exception handling code is usually

not added or changed to handle possible exceptions propagated by the new method calls.

The second row lists the correlations between the EHChurnedLOC and NClasses metrics

(Section 3.1.1.3). This row presents only one statistically significant correlation. Consid-

ering that this correlation is only moderate (< 0.5) and no correlation was observed for

the remaining application categories, we are unable to refute Hypothesis 2. This means

that the data suggests a trend: when the number of NClasses changes, this change is not

likely to affect the amount of exception handling code added or changed.

3.1.2.2 Android Abstractions and Robustness

The previous section reported that there is no significant correlation between exception

handling code changes and the NMethodCall and NClasses metrics. This section discusses

the relation between these two metrics and program robustness. We assessed if changes

in the values of NMethodCall and NClasses are related to an increase (or decrease) in

the number of uncaught exception flows. Table 8 presents the correlations between the

metrics quantifying changes in the Android abstractions (NMethodCall and NClasses)

and the metric for system robustness that we employ (Uncaught Flow).

Use of Android abstractions often decreases robustness. The analysis of Table

8 reveals that there is often a strong or very strong correlation between the use of Android

with **
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abstractions (NMethodCall and NClasses) a the number of uncaught flows. The level of

correlation varies according to: (i) the application category, and (ii) the type of change to

exceptional code. The strongest correlations were observed in Android programs falling in

the Communication category. In particular, for this category, there was an almost perfect

correlation (> 0.9) between the use of Android abstractions (NMethodCall and NClasses)

and uncaught exceptions. This type of correlation was also very strong (> 0.7) for the

News Reader/Media category. As far as the Miscellaneous category is concerned, there

is no correlation between changes in NClasses and the number of uncaught flows. On

the other hand, there is a moderate correlation between NMethodCall and the number of

uncaught flows.

Table 9: The Percentage of Uncaught Exceptions Generated by Change Scenarios

Scenarios Activity AsyncTask BroadCast Service Total
No changes to
catch blocks 38.9% 42.9% - - 32.3%

Specialized Handler
added 22.2% 28.6% - 33.3% 22.6%

Generic Handler
added 5.6% 14.3% 66.7% 33.3% 16.1%

Specialized Handler added
to rethrow exception 5.6% - - - 3.2%

Empty Specialized
Handler added 5.6% - - - 3.2%

Generic Handler
removed - 14.3% - - 3.2%

Specialized Handler
removed 16.7% - - 33.3% 12.9%

Changing the Exception
Handling Policy 5.6% - 33.3% - 6.5%

Lack of changes to exception handling code leading to uncaught exceptions.

An analysis per application category indicates that when method calls (NMethodCall) to

and classes (NClasses) that extend Android abstractions are added without the addition

of the corresponding exception handling code, there is usually an increase in the number

of uncaught flows. Table 9 lists the change scenarios that most often generated uncaught

exceptions. The No changes to catch blocks scenario was responsible for generating 32.3%

of the uncaught exception flows (last column) and the most common one for Activities

and AsyncTask.

Method calls to Android abstractions usually propagate unchecked exceptions (see

Table 4) and the Java compiler does not perform reliability checks for this type of ex-

ception. Hence, the developer cannot determine whether a catch block needs to be

added or changed to handle exceptions without examining the documentation. For exam-
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ple, according to the documentation of class Activity5, 12 public methods may throw

SecurityException, 10 may throw ActivityNotFoundException, and 6 may

throw SendIntentException. Among these exceptions, only the latter is checked.

Any other exception thrown by these methods is necessarily also unchecked. Additionally,

according to the documentation of the AsyncTask class6, none of the methods listed in

Table 4 throw checked exceptions, which means that any problem during the execution of

an AsyncTask results in the throwing of an unchecked exception. Furthermore, the caller

of an AsyncTasks must start its execution by invoking the methods execute() or

executeOnExecutor(). Both may throw IllegalStateException, an unchecked

exception. In the Android platform, unchecked exceptions thrown by entry point methods

of Android abstractions (such as the onCreate method of the Activity class) are not

received by the caller, generating the propagation of the exception to the platform. Un-

fortunately, in all the analyzed applications, we could not found any class implementing

the Thread.UncaughtExceptionHandler. This interface defines handlers capable of

handling exceptions in threads that are about to terminate due to an uncaught exceptions.

Type of changes that decrease robustness. Even when the number of handlers

increases over time, program robustness is reduced if exceptions are not properly bound

to handlers. For instance, there is moderate, significant correlation between EHChurned-

LOC and NClasses for the Social Network category. However, there is also very strong,

significant correlation between Uncaught Flow and NClasses for the same category. We

observed that certain types of change unexpectedly led to uncaught exception flows. For

instance, Table 9 shows that the addition of catch blocks seemed to increase the number

of uncaught flows. In particular, this was the case when adding specific handlers. This case

represented 22.6% of the uncaught exception flows (last column of Table 9). This result

seems to be related to the low frequency of exceptions declared in the exceptional interface

of methods implementing Android abstractions (COELHO et al., 2015). In fact, outdated

exception interfaces affect program comprehension, since it is not possible to know the

exceptions that a method may throw just by looking at its exception interface. However,

Java programmers are used to relying on exception interfaces to obtain this information.

As a consequence, when they implement code to invoke methods with outdated exception

interfaces, if they only provide handlers for the exceptions in the interfaces, new uncaught

exceptions may flow through the system.
5http://developer.android.com/reference/android/app/

Activity.html
6http://developer.android.com/reference/android/os/

AsyncTask.html



70

Testing hypotheses 3 and 4. The last column of Table 8 shows the overall result of the

correlations when considering all applications, regardless of category. The results show

that all correlations are very strong and significant. In other words, when using Android

abstractions (NMethodCall and NClasses) such usage may be reflected in the robustness of

the system. Specifically, when exceptional handlers are not properly employed to protect

the utilization of Android abstractions, there is an increase in the number of uncaught

flows. Therefore, we reject Hypotheses 3 and 4. Finally, we also observed a negative and

moderate (-0.507) correlation between DensityTry and uncaught flows. This means that

when developers increase the number of try blocks per class, the number of uncaught flow

decreases.

Figure 10: Example of Changes that Affect the Number of Uncaught Flows.

Figure 10 shows two examples of changes that affect the number of uncaught flows

in ConnectBot and TweetLanes applications in classes of type Activity. According to

figure, we can see that there was an addition of a try block with a handler specific to the

ClassCastException exception, in version 1.5.4 of the ConnectBot application. In this

handler was added code for the exception handling, where the addPreferencesFrom-

Resource method of the android.preference.PreferenceActivity class is
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called again in the catch block. There were, for this couple of versions of the applica-

tion, an increase of 22 uncaught flows for the java.lang.RuntimeException ex-

ception. This exception is thrown explicitly by the method called within the code of

the addPreferencesFromResource method and is not being handled in this ex-

ample. In Figure 10 we also see an example call to the startActivityForResult

method in the TweetLanes application. The onTweetFeedItemSingleTap method

calls this method without adding a suitable handler. This method explicitly throws the

java.lang.IllegalArgumentException exception, which is not being handled in

this example. These examples support rejection of hypotheses 3 and 4 as they show that

the use of Android abstractions may reflect the robustness of applications.

3.1.3 Threats to Validity

This section discusses threats to validity that can affect the results reported in this

research work.

Internal Validity: Threats to internal validity are mainly concerned with unknown

factors that may have had an influence on the experimental results (WOHLIN et al., 2000).

To reduce this threat, we have selected a set of subject applications whose developers

had no knowledge that this study was being performed.Additionally, our results can be

influenced by the performance, in terms of precisions and recall, of the used tools. We

tried to limit the number of false positive through a manual validation. The use of this

validation mitigates threats to internal validity, but does not completely remove them as

a certain amount of imprecision cannot be avoided by the tools that generally deal with

undecidable problems. Likewise, the change metrics collected manually were validated by

one researcher who was not aware of the experimental goal.

Construct Validity: Threats to construct validity concern the relationship between

the concepts and theories behind the experiment and what is measured and affected

(WOHLIN et al., 2000). To reduce these threats, we use metrics that are widely employed

to quantify the extent of changes over the software evolution (YAU; COLLOFELLO, 1985;

NAGAPPAN; BALL, 2005; GIGER; PINZGER; GALL, 2011) and to measure the software ro-

bustness (ROBILLARD; MURPHY, 2003; FU; RYDER, 2007; COELHO et al., 2008; MAJI et al.,

2012).

External Validity: External validity issues may arise from the fact that all the data

is collected from 16 software systems that might not be representative of the industrial

practice. However, the heterogeneity of these systems helps to reduce this risk. They are
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implemented in Java, which is a representative language of the state of object-oriented

programming practice. Furthermore, the characteristics of the selected systems, when

contrasted with the state of practice, represent a first step towards the generalization of

the achieved results.

It is fair to argue that a number of recent studies have targeted hundreds of sys-

tems (COELHO et al., 2015; KECHAGIA; SPINELLIS, 2014; LINARES-VáSQUEZ et al., 2013;

OKUR; DIG, 2012; PINTO et al., 2015), which is in stark contrast to the 16 that we have

analyzed. However, these studies are designed so that they can be performed in a com-

pletely automated manner. This is inherent to the data they aim to collect, e.g., syntactic

information about usage of specific constructs (PINTO et al., 2015) or stack traces (COELHO

et al., 2015). However, it is impractical to generalize the collection of information about

exception handling change scenarios, e.g., Changing the catch block to use normal code

(Table 2). Moreover, we have performed exception flow analysis on these systems. This

kind of analysis requires all the dependencies of a system to be resolved and is expen-

sive to conduct. It is also important to mention that we have analyzed 112 versions of

these systems. Each one of these versions had to be analyzed both in isolation and in

comparison to previous versions. These factors hint at the depth of the analysis that was

performed in this study but also explain the limited number of systems that we are able

to analyze. Finally, other studies (CABRAL; MARQUES, 2007; CACHO et al., 2014; ZHANG;

ELBAUM, 2012) that analyzed exception usage and also employed a mixture of manual

and automated program analysis also targeted a relatively small number of systems and

some of them (CABRAL; MARQUES, 2007; ZHANG; ELBAUM, 2012) targeted only a single

version.

Reliability Validity: This threat concerns the possibility of replicating this study.

The source code of the subject applications is publicly available. The way our data was col-

lected is described in detail in Section 3.1.1.3. Moreover, the eFlowMining tool is available

to obtain the same data. Hence, all the details about this study are available elsewhere

to enable other researchers to control it.

3.2 Energy Consumption of EH Strategies

Energy consumption is an important non-functional requirement for mobile appli-

cations that execute in devices with a limited battery capacity. Some studies aim to

investigate energy consumption of specific device components like Screen, GPS, Network
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(LI et al., 2014), and others investigate that at the code level (LI et al., 2013), approach level

(OLIVEIRA; OLIVEIRA; CASTOR, 2017) or API level (LINARES-VÁSQUEZ et al., 2014). The

work of Chowdhury, Shaiful, et al. (CHOWDHURY et al., 2018) analyzes energy consump-

tion for the common strategy of Log information used widely by developers and Zhang,

Jack, Ayemi Musa, and Wei Le (ZHANG; MUSA; LE, 2013) evaluate bugs that cause reduced

battery life. To the best of our knowledge, no study has set out to investigate whether

the use of exception handling strategies has an impact on energy consumption of Android

applications. In this context, the following study aims to investigate the power consump-

tion of the applications using specific exception handling strategies, to see if there is an

impact on the power consumption.

3.2.1 Study Setting

3.2.1.1 Goal Statement and Study Hypothesis

The purpose of this study was to identify if there is a difference in the energy con-

sumption of the applications when executed with and without exception handling. In the

experiments, the focus is on running components by performing specific exception han-

dling activities or by running normally. The definition of our hypotheses uses the following

metrics collected from the power consumption experiments: PercentageUsage, is the per-

centage of battery used by the application; BatteryLevel, is the battery level in percentage

at the end of the experiment and Power, is the amount of energy consumed by the appli-

cation. In this study this metric is measured in Watts (W). The main hypothesis is the

null hypothesis that states there is no difference of energy consumption for applications

that do not use the EH strategies and applications that use the EH strategies. There are

three null hypotheses, one for each metric of interest.

• Null hypothesis (H01): The PercentageUsage distribution is the same in the Strat-

egy categories.

• Null hypothesis (H02): The BatteryLevel distribution is the same in the Strategy

categories.

• Null hypothesis (H03): The distribution of Power is the same in the Strategy

categories.
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3.2.1.2 Target Applications

We select a set of ten Android applications with different characteristics, developed

to different domains. Fala Natal is an application for citizen engagement. K9mail is an

mail application where the user can manage various types of email accounts. Bitcoin

Wallet is a bitcoin application where the user can send and receive bitcoins via NFC,

QR codes or using bitcoin addresses, make payments via Bluetooth. MediaPlayer is an

application that offers the functionalities of a music player for the user. NotesList and

Contacts are respectively, applications to notes management and contacts management on

the smartphone. Cafe is an application that the user can find coffee places nearby, using

the map. BluetoothChat is an application that allows the user to control the Bluetooth of

the smartphone and AndroidSecurity is an application that the user can use to do secure

authentication. Finally, VisitNatal, that is a mobile tourist guide application implemented

in Java for Android Platform that aims to enhance tourists’ travel experience. Visit Natal

is the official tourist guide application for the city of Natal in Brazil.

3.2.2 Experiments Execution

After selecting the set of applications, three exception handling strategies were defined

to be analyzed in the experiments: Error log, error display using Android Toast, and

save the error message in a file. These strategies were manually inserted in the code of

the applications for lifecycle methods like onCreate and event-handlers methods like

onClick. For each method, a try/catch block was added throwing a runtime exception

and handling this exception with the selected strategy. We inserted the strategies in the

code of classes that represents the main functionalities of the application. We use Monkey

tool to generate random events in the user interface. We created a seed value for the

pseudo-random number generator (700). The seed value generated the same sequence of

events for all applications.

The experiments were performed as follows: Each application was executed four times,

once without using any exception handling strategy and the other three times using the

strategies; the initial smartphone battery level must be above 60%; the interaction events

with the user interface were generated automatically by the Monkey tool; in each ex-

periment the Monkey was executed 380 times, generating 1000 random events for each

execution; The experiments were executed on the Samsung Galaxy S7 edge device; energy

consumption data obtained through batterystats tool from Android and visualized

with Battery Historian tool. In total, 10 experiments were performed without exception
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Figure 11: Percentage of battery usage by applications

handling and 30 experiments were performed with the use of exception handling strategies.

3.2.3 Study Results

From the experiments, data were collected such as: battery level at the beginning and

end of the experiments, percentage of battery use by the application, initial and final

levels of the battery in mAh, voltage and initial and final time of the experiments. From

these data, energy consumption in Watts can be calculated. This section shows the results

obtained from the execution of the experiments.

Figure 11 shows data on the percentage of battery usage by applications and by type of

strategy. We can see that in general when the application is executing exception handling

to save the error data in a file, the percentage of battery usage by the application is

higher, indicating that this strategy can be more costly in terms of energy consumption

in relation to the others. Analysis of graphics indicates that the strategy of showing a

message with the error using Android’s Toast feature is more costly than using just the

Log in most cases, except for the k9mail and BluetoothChat applications. These graphics

demonstrates that in most cases the addition of exception handling in the application

resulted in a greater use of the battery during the experiments. Only in some cases,

FalaNatal and BluetoothChat applications for example, the use of Log or Toast did not

result in an increase in this percentage.

Figure 12 shows the graphics with energy values (power, W) in Watts consumed by

the device during experiments by applications and by type of strategy. Looking at the

graph it can be seen that in most applications the experiments with exception handling

resulted in an increase in energy consumption, with some exceptions like the K9mail and

NotesList applications and some cases in which the use of Log or Toast did not result
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Figure 12: Power consumption by applications

in an increased energy consumption. It can be noted that in half of the applications the

experiments that used the strategy of saving the error in a file consumed more energy

than using the strategy with Toast and in eight applications, the vast majority, using

the exception handling strategy with Toast consumed more energy than using just the

Log. Saving the error to a file also consumed more energy than using the log in most

applications.

In order to assess the hypotheses whether the results for percentage of battery usage,

battery level and power have significant difference we need to check first whether the data

is parametric or not, this is important to decide the statistical method that will be used.

For this purpose we need to check if the data follows the normal distribution and to verify

the homogeneity of variance. To perform the statistical analysis of the collected metrics

we use the statistical package SPSS. We assume the commonly used confidence level of

95% (that is, p-value threshold = 0.05).

We use two grouping variables for the data: NoEH and EH, the first indicates the

values collected from the experiments where the applications do not use EH strategies,

the second one, represents the values when the applications are using EH strategies. Table

10 shows the two normality tests employed by SPSS, Kolmogorov-Smirnov and Shapiro-

Wilk for the data. The results show that there is no statistically significant difference for

the metrics (column Sig. of Shapiro-Wilk), so we can assume that the data follows the

normal distribution.

Verifying that the data follows a normal distribution is not enough to verify whether

they are non-parametric or not. It is necessary to perform a second test to verify the

homogeneity of variance, if there is a statistically significant difference between the data

in this second test, the data will be non-parametric, otherwise, they will be parametric
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Table 10: Normality Tests of the study

Kolmogorov-Smirnov Shapiro-Wilk
Strategy Statistic gl Sig. Statistic gl Sig.
NoEH 0,221 10 0,184 0,917 10 0,331PercentageUsage EH 0,184 10 0,200* 0,936 10 0,507
NoEH 0,184 10 0,200* 0,948 10 0,639BatteryLevel EH 0,179 10 0,200* 0,962 10 0,807
NoEH 0,131 10 0,200* 0,932 10 0,469Power EH 0,221 10 0,181 0,942 10 0,575

Table 11: Homogeneity of Variance Test of the study

Levene gl1 gl2 Sig.
Based on average 7,069 1 18 0,016
Based on median 5,692 1 18 0,028
Based on median and adjusted gl 5,692 1 11,163 0,036PercentageUsage

Based on average trimmed 6,825 1 18 0,018
Based on average 11,539 1 18 0,003
Based on median 10,869 1 18 0,004
Based on median and adjusted gl 10,869 1 12,833 0,006BatteryLevel

Based on average trimmed 11,562 1 18 0,003
Based on average 4,548 1 18 0,047
Based on median 1,755 1 18 0,202
Based on median and adjusted gl 1,755 1 10,985 0,212Power

Based on average trimmed 4,476 1 18 0,049

data. Table 11 shows the results of the homogeneity of variance test for the metrics. The

results show that there is a statistically significant difference between them (column Sig.),

which means that the data is non-parametric.

Based on this result we select the non-parametric Kruskal-Wallis test to assess the

three null hypotheses of the study. The Figure 12 shows the results of the Kruskal-Wallis

test for the three metrics of the study. The results show that there is a statistically

significant difference in energy consumption in terms of percentage usage of energy by

the application, battery level, and power. Based on these results we reject the three null

hypothesis (H01, H02 and H03).

The EH strategies used in this study are commonly used by developers when they want

to handle exceptions and are not so complex to implement. It is important to mention

that if a developer uses one or more of these strategies in a few places in the application

Table 12: Kruskal-Wallis Test of the study

PercentageUsage BatteryLevel Power
H of Kruskal-Wallis 12,623 14,318 14,286
df 1 1 1
Significance Sig. 0,0001 0,0001 0,0001
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that in the running time are not activated or rarely activated, this will not contribute to

increase the energy consumption of the application. However, these results indicate that it

is important to evaluate the impact on energy consumption at this level, especially in cases

where the EH strategy is more complex and requires more processing or in cases where

an error can occur repeatedly in the application. So, during the application development

if a developer needs to make a trade-off between reliability and energy efficiency maybe

it is interesting considering EH strategies used in the application, not only the behaviour

of the components.

3.3 Conclusion

These two studies showed that in fact, exception handling has an impact on robustness

and energy consumption of Android applications. Energy consumption has been a concern

for developers of Android applications, the platform encourages developers to develop

applications that optimize energy consumption, providing tools for inspection of energy

use, such as Energy Profiler, and energy consumption analysis such as Battery Historian,

as well as optimization tips for implementing applications. Developing robust applications

is also important to provide applications that are reliable for users. Some studies has shown

that Android developers do not use the platform’s EHM properly and that the crash of

applications is the biggest cause of complaints among users.

The results presented in this chapter showed the need to propose an approach that

takes into account the relationship between the use of exception handling with other

non-functional requirements in Android applications. This solution needs to guide the

developer to think about these factors while developing, not just the features that need

to be developed.
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4 Proposed Methodology to
Engineering Efficient Exception
Handling for Android Applications

The previous chapter described two studies that showed how exception handling may

impact on the robustness and energy consumption of Android applications. Two problems

inherent from the EHM used by the Android platform were mentioned in the Section 1.1

of the introduction. Both are related to the standard strategy of the platform to deal

with unchecked exceptions that are not handled in the application and the lack of a

holistic view for the exception handling. Many of these exceptions can be thrown by

Android abstraction methods, which can lead to an application crashing if these excep-

tions are unchecked and have not been properly handled. In addition, developers are not

properly handling erroneous situations during development, section 3.1 points out that

UncaughtExceptionHandler, a strategy encouraged by the Android platform, was

not used in any of the applications. Energy consumption is a concern for developers of

Android applications and users, and it is an important non-functional requirement to be

considered when developing these applications. So the exception handling strategies that

will be used in the application as well as the functioning of certain components must take

into account the impact on energy consumption. This chapter aims to present a proposed

methodology for efficient engineering exception handling for Android applications, which

includes tools and a new exception handling mechanism to support the utilization of the

methodology.

4.1 Proposed Methodology

This section describes a systematic methodology for designing efficient Android appli-

cations through an interactive process of exploring the possible design spaces and finding

the efficient fault tolerance solutions. Its main contributions are as follow:
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• a comprehensive methodology that supports trading off power consumption, relia-

bility and resource usage during exception handling design,

• a selection of tools and guidelines that support the methodology, including the

automated model generation,

Android applications are getting more complex than ever been before. They are every-

where, on everyone’s mind, and in many different forms: social media, healthcare, security,

government, and so on. Android developers have to balance diverse requirements such as

connectivity, location, robustness, user-friendly interface and energy efficiency; this has

given developer teams the hard task of choosing, without having a comprehensive method-

ology to handle many trade-offs, such as the one between application robustness and en-

ergy efficiency. To make such a choice, developers ask themselves the following questions:

When and where should I employ exception handling for my Android application? What

is the impact on energy efficiency? What is the impact on application performance? All

these questions are running around in the minds of most Android developers and this

work aims to help identify the places where exception handling should be used and its

impact on energy efficiency and performance.

4.1.1 Proposed Workflow

An overview of the proposed workflow is shown in Figure 13, the blue boxes represent

the activities that are performed automatically using the tools that support the method-

ology. The gray boxes represent the activities that will require manual work by the person

responsible for the application, the green boxes represent sub-activities, and finally the

white boxes represent the artifacts generated and used in each activity. Archon (RAFIEV et

al., 2014) is a modelling framework that has an implementation that uses resource-driven

graph representation to represent the application components and resources. For systems

whose design domains are organized into multiple layers or levels, Archon facilitates the

analysis and potentially its design and synthesis. Using Archon simulations developers or

system designers can reasoning about robustness, energy consumption, and performance.

The following subsections explain in more detail the workflow activities using the Visit

Natal application as an example.
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Figure 13: Proposed Workflow

4.1.1.1 App characterization

The App Characterization is the first activity of the workflow and is executed by a

developer or software engineer responsible for the application. This activity splits into

three other subactivities: Understanding the functioning of the application, Select ap-

plication components, and Execution of Characterization Experiments to collect energy

consumption data.

The first subactivity consists in understanding the functioning of the application in

terms of components and their interactions and main functionalities. This can be repre-

sented by sequence diagrams of the main functionalities. Figure 14 shows an example of

sequence diagram generated for Visit Natal application, showing the interactions for the

LocationService component. In the Visit Natal application scenario, background services

such as LocationService can consume a lot of battery, so this is an scenario that can be

analyzed using the methodology workflow.

In the Figure 14 we can see the components of the application that interacts of Lo-

cationService. The component MainFragment initialize the LocationService through a

Intent call. This service runs continuously in background executing POST requests to



82

Figure 14: Sequence diagram for LocationService component of Visit Natal application

send the current location for an external component, the web application server. Knowing

the functioning of the application, components can be selected to perform the experiments

of energy consumption (Select application components subactivity). It is interesting se-

lect components that may affect the energy consumption of the application. Components

that make use of GPS, camera, network, location, for example, may be candidates for the

execution of energy consumption experiments.

Thr Execution of Characterization Experiments to collect energy consumption data

subactivity consists in execution of experiments with the components for idle mode of

the smartphone, change the application code to allow the component to run continuously,

installation of the application and execution for a period of time to collect the data. All

the data collected from these experiments are used in the activity, Generate Sim File and

Exceptions Probabilities.

4.1.1.2 Generate Sim File and Exceptions Probabilities

The application bytecode is considered as input unit, guiding the development from

the simulation to the implementation of the application. This allows to easily integrate

our approach to any real-world development lifecycle. Based on the bytecode file (APK

file) and the app characterization (Section 4.1.4), the Generate Sim File and Exceptions

Probabilities activity is responsible for generating the model of the application in the SIM

file format and exceptions probabilities (Sections 4.1.2 and 4.1.3). An example of Sim file

generated for Visit Natal application, baseline version, can be seen in the Appendix B.

An example of the SIM file format declaration for an application component can be seen

as follows:
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#assign MainActivity ".FaultyTask"

#setup MainActivity "type:userCmd; preDelay:2; postDelay:0;

power:14.63; pEx1:0.48; pEx3:0.02; pEx2:0.07"

The first declaration is used to assign an application component declaring it name and

the type, in this example, the component MainActivity is a FaultyTask that has a

probability of throwing exceptions. The second declaration is the setup of the application

component, where its properties are defined.

The Generate Sim File and Exceptions Probabilities activity splits into two other sub-

activities: Generating the model of the application in the SIM file format and Use of

tool to generate exception probabilities. These subactivities are executed by the support

tools of the methodology and generate two artifacts: A CSV file with exception probabil-

ities data and a SIM file that is the model of the application, with the components and

interactions, used by Archon tool simulations. The data collected from characterization

experiments related to power, battery and delay of components should be updated in the

SIM file (Update SIM File subactivity) and also, the automatically generated exception

probability data.

4.1.1.3 Simulate

After generating the SIM File for a specific version of the application, this model is

simulated in the ArchOn tool for a fixed period of virtual time (model time) (Section

4.1.5). In the workflow this process is represented by Simulate activity. The simulation

outputs a JSON file that includes average response time (ms), amount of energy (Joules)

consumed, number of exceptions thrown, among other relevant information. The Appendix

C shows an example of the JSON file generated by Archon tool.

4.1.1.4 Choose Best Architecture

These data generated by Archon tool are used in the next activity, Choose Best Archi-

tecture, to make design choice on which error handling strategies should be used in order

to provide an improved balance between performance, energy, and reliability. To make

design choices developers can run simulations that represent different behaviors of the ap-

plication components according to the non-functional requirement (performance, energy,

and reliability) that is a priority in a given scenario, comparing the results with the base-

line simulation, for example, in the baseline simulation a component can execute without
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using any exception handling strategy, and in another simulation some strategy can be

used. These simulations can represent different operation modes for the application.

4.1.1.5 Change App

Finally, application developers should code back the required changes to the appli-

cation, build a new APK file, from which a new iteration of the workflow can be exe-

cuted, this is represented by the activity Change App in the workflow. The developer uses

DroidEH to implement the different behaviors on the components related to exception

handling strategies and general component behaviour using the controller of DroidEH.

App characterization is not required for the second and following iterations as the data

from the first iteration should still be relevant.

4.1.2 Modelling

4.1.2.1 Resource Driven Modelling

The central subject of our method is the study of a computational platform com-

prising a number of diverse resources and the way resources may be handled in order to

realize a computation. A resource is in this case an indivisible element required by the

system in order to change its state, and it is defined by its function and availability in

relation to this transition. With the word “resources" we make the point that we do not

exclude computation, communication, or other facilities, e.g. energy and time. The work

in (RAFIEV et al., 2014) proposes to represent a system with a relation graph, consisting

of a set of nodes and a set of edges, where each node represents a single resource, and

each edge represents a dependency between two resources.

Resource nodes also have a transient states that depend on the state of adjacent nodes.

In the context of this work, the state of a resource represents resource activation, which

can be used to track system energy and performance.

The ArchOn 1 tool is used to perform model simulation and analysis. Its features

include a support for analyzing extra-functional properties at arbitrary abstraction levels.

In this work, we implement and simulate abstract application models at the level of task

graphs.
1https://github.com/ashurrafiev/ArchOn
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Figure 15: Using request-acknowledge protocol to model task interactions: (a) syn-
chronous, (b) asynchronous.
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Figure 16: Modelling different exception handling scenarios: (a) do nothing, (b) retry task,
(c) proceed to a recovery or an alternative task.

4.1.2.2 Modelling Patterns

The core resource element of the proposed application model is a task. Interactions

between tasks are modelled using request-acknowledge protocol as shown in Figure 15.

When a task is activated, it toggles a req to the next task after a delay. This delay

represents the task performance and can be found by profiling the task experimentally as

shown in Section 4.1.4. In synchronous interaction, the ack is toggled only after the ack

from the next task is received; in asynchronous, ack is triggered instantly by the outgoing

req. Synchronous interactions can provide an estimate for response time. Asynchronous

interactions do not affect response time, but still are accounted for when calculating

system energy consumption.

Certain tasks are not dependent on other tasks and require an external trigger. The

proposed model provides two components that perform task invocation: timer and user.

The timer resource calls a specific task at regular intervals, which represents a back-

ground service. The user (environment) resource attempts to mimic user behavior by

doing stochastic task invocation with normally distributed random delays, which models

GUI interactions. Additionally, the user model can emulate an application life cycle (start

and stop); time intervals between the subsequent application launches are exponentially
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distributed.

In order to model fault-tolerance, we introduce additional model elements. The faulty

task works like a regular task but has a probability to go to the exception branch instead

of issuing the next request. This is the probability of a component going from normal

state of operation to abnormal, and it is not affected by error handling, which must be

modelled outside the faulty task element. The exception arc from the faulty task connects

to a catch element, whose job is to issue event handling mechanisms depending on the

type of the exception. Figure 16 shows possible handling scenarios. One catch node can

branch into different scenarios depending on the exception type and other conditions.

4.1.2.3 Power and Energy model

In this work, we use power state modelling to describe system energy consumption.

The total energy of system E is calculated as the time-weighted sum of powers:

E =
∑
i

Pi · ti, (4.1)

where Pi is the power dissipation during some state i, and ti is the time spent in the state

i. Ideally each task should correspond to its own power state as each task uses a different

ratio of system resources. However, it is more practical to group power states by the task

type, for instance, GUI tasks (Activity or Fragment), location service tasks, web service

tasks, etc.

In addition to active power states associated with task execution, there are two idle

power states: user idle state, when the application is displayed in the foreground and is

awaiting for user input, and sleep state, when the application is closed, the screen is off,

and the background services are awaiting their schedule.

The estimated duration of each state can be found from simulations, and the power dis-

sipation can be found from the characterization experiments as described in Section 4.1.4.

4.1.3 Model Generation

This section presents the model generation from an Android application in order to

perform the ArchOn simulation. To generate this model it is necessary a component and

control flow analysis to identify elements of the application that need to be represented

in the model and interactions between them.
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4.1.3.1 Component Analysis

Subsection 4.1.2 shows modelling elements that represent a system. To simulate an

application it is necessary to declare these elements in a SIM file and execute the ArchOn

tool. Android applications have specific components (Activity, Service, AsyncTask, Broad-

Cast Receiver, Fragment) to represent user interface, background services, and tasks.

These components are implemented through Java classes and communicate with each

other. Our implementation needs to analyzing these components and generate model el-

ements. We used the Soot framework (VALLéE-RAI et al., 2000) and the Dexpler software

package (BARTEL et al., 2012) to process Java bytecode of the application APK file.

In the first place, the implementation declares the package that contains the classes

that represent the modeling elements and the Archon class that it is responsible for

calculating the estimation values in the simulation. There are specific commands used

in the SIM file declaration to declare modeling elements (assign) and declare the initial

values of the properties of each element (setup), for example, the implementation has an

internal list of all commands.

The first assignment generated is for the User that represents the person that will

interact with the interface of the application and initiate some tasks. The User has prop-

erties necessary to the simulation like time of simulation, delay, power, battery, and tasks

connected to it.

After that, the implementation iterates over the application classes in Java bytecode

using an iterator provided by Soot element Scene to generate the assignments and se-

tups. For each class inside the APK file, verification is run to check if the class is an

application class, this is necessary because the file contains all classes of application, An-

droid components, and third-party libraries. And if this class has some interaction with

another component that will be reflected in the simulation. Another verification is made

to verify if the class is an Android component. The implementation has a HashMap to

save the classes that in the model will be a connection with a Handler, if the class has

this connection the implementation write it like a FaultyTask in the SIM file, if not, the

class will be a Task element. Tasks and FaultyTasks have properties of delay and power,

but FaultyTask has properties to indicate the probability of an exception is thrown

inside.

At last, the implementation generates assignments to Handlers, Invokers, and external

components (remote server, other applications). The implementation has internal counters
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that save the number of interactions with handlers and invokers and based on this is

generated the correct number of assignments and setups.

4.1.3.2 Control Flow Analysis

This analysis is done before the generation of assignments because the implementation

needs the control flow information to identify the interactions between application com-

ponents and save this information. The User has a maximum number of tasks that are

defined by the designer, so the implementation will take this into account to generate the

interaction. The User interacts with tasks that are user interface components inside the

application like, Activities and Fragments. These tasks can start other tasks to perform

background operations like AsyncTasks.

Interactions between tasks are modeled using request-acknowledge protocol 4.1.2. In

the first step, the implementation analyzes the bytecode of ArchOn classes to get the name

of the input and output ports of each modeling element. After that, the implementation

iterates over application classes. For each class, the implementation iterates over the

methods to analyze the method body and identify an interaction between the class and

another application component. To iterate over units of a method it is used the Soot

element UnitGraph.

In terms of bytecode analysis, interaction is a statement that contains an invoke

expression that invokes another component of the application. For example, to invoke

a Service, a component needs to declare an Intent object with the name of the

calling class and the name of the class that represents the service and then calling the

startService method passing the Intent object. To invoke an AsyncTask the class

needs to call the execute method.

The implementation analyzes the body of each method of an application class iden-

tifying these types of interaction in the bytecode and writing this interaction in the SIM

file using the information about input and output ports and information obtained from

invocation expressions, classes, and methods.

4.1.4 Model Characterization Experiments

The main idea behind extra-functional simulation is that the model designer provides

performance and power characteristics for individual components of the system, and the

simulation then uses these characteristics whilst considering complex interactions between
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the components to provide estimates of the total performance and energy for the entire

system.

Experimental power characterization of model components is a challenging task that

may require special instrumentation in both hardware and software. The presented work-

flow does not depend on a specific characterization method. The method described in

this section presents a good balance between the accuracy and effort. Section 6.4 in the

chapter of related works describes a number of existing alternative techniques.

4.1.4.1 Power Characterization

Different platforms usually display different power characteristics, hence the absolute

power values obtained on one platform cannot be applied globally. However, it is reason-

able to assume that the relative power consumption of application components should stay

approximately the same in all Android devices that use similar Java VM. Consequently,

the relative differences between extra-functional properties of application modes can also

be valid across platforms.

The proposed method of measuring the power consumption on an Android device

is based on observing the battery level, so it relies on the built-in sensors and does not

require any additional hardware instrumentation. To get the battery information, we use

batterystats tool from Android and visualize the data with Battery Historian tool.

The method also requires minimal instrumentation of the target application to enable

running the application in a specific power state, which corresponds to the Task element

being characterized. In order to achieve that, the task can be frequently rescheduled to

emulate a continuous execution of a task over a period of an experiment (one hour) while

the number of task invocations and the total CPU time of the task are being tracked.

The duration of the experiment must be long enough to have a detectable impact on the

battery level.

The respective power consumption is derived from the reported battery use for the

application by converting from mAh to Watts as follows:

TaskPower (W) =
3.6 · BatteryUse (mAh) · Voltage (V)

TotalTaskTime (s)
.

Voltage is the battery voltage, which is also available from the Battery Historian report.

According to Section 4.1.2.3, our model distinguishes two idle power states: sleep and

user idle. Sleep state is when the screen of the device is off and only background processes
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are running. For sleep state characterization, we leave the device idle for one hour with

no background applications running except the system-related processes.

SleepPower (W) =
3.6 · BgBatteryUse (mAh) · Voltage (V)

TotalTime (s)
,

where BgBatteryUse is the sum of the battery use for all background processes, and

TotalTime is the duration of the experiment.

User idle state happens when the application is open and displayed on the screen,

but awaiting user input. Screen battery use can be found in the battery usage report

in Android system settings. The reports provides the total time the screen has been on,

and the percentage of the battery used specifically by the screen. By knowing the total

capacity of the battery from the device specification, it is possible to calculate the screen

power and idle power:

ScreenPower (W) =
ScreenBattery (%) · Capacity (Wh)

ScreenTime (h)
,

UserIdlePower (W) = ScreenPower (W) + SleepPower (W) .

Since the proposed characterization method relies on the battery level measurements,

it is efficient for large-scale analysis, but fails to reliably determine the power of small tasks

(less than 2ms), so it is not recommended for detailed application modelling. Section 5.1.3

in the chapter 5 discusses the advantages and drawbacks of the method in the context of

an actual use case example.

4.1.4.2 Exception Probabilities

The ArchOn simulation takes into consideration, in addition to battery consump-

tion, the probabilities of exceptions in the application. For this study was developed an

application that performs static analysis and calculates probabilities at three levels: ap-

plication level, classes or components level, and method level. This application makes use

of the Soot framework to analyze the Android Package (APK) file of the application and

generate the data in a CSV format.

There are two abstractions that represent the classes and methods of an applica-

tion: ProbabilityClass that has attributes like name, a list of methods, a Hashmap

which saves the probabilities of each exception in the class, a method count, the gen-

eral probability of the class and the total probability of the methods of the class. And
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ProbabilityMethod that has attributes like name, list of all exceptions that the

method can raise, a list of exceptions that are declared in the exceptional interface of

the method, a Hashmap that saves the number of times that an exception can be raised

by one unit or statement inside the method, a Hashmap which saves the probabilities of

each exception in the method, the number of units inside the method and the general

probability of the method.

To calculate the probabilities the application developed first iterates over the classes of

the Android application to analyze the methods of each class. For each method, it gets the

Soot ExceptionalUnitGraph that provides an iterator for the units of the method

and exception information of these units. For each unit of a method, the application

gets a set of exceptions (ThrowableSet) that can be raised by unit using the Soot

element UnitThrowAnalysis that provides this information executing the method

mightThrow. After that, a check is made to see if that unit is protect iterating through

a collection of ExceptionDest objects provided by the exceptional graph and verifying

if there is any catch that handles an exception type for this unit. If the unit is unprotected

the component sets the values of the attributes of the ProbabilityMethod and sets

the values for the attributes of the ProbabilityClass.

The application developed calculates a probability that an exception is raised inside

an android application, it indicates that a specific type of exception has more chance

to be raised and not handled during the execution of the application. For the method

level, the application calculates the probability in the following way: the total number of

exceptions that may be raised inside the method is divided by the size of the units of the

method. This total number of exceptions is the sum of exceptions that are declared in the

exceptional interface and the number of exceptions that can be raised by units inside the

method. The probability of a class is the average of the probabilities of its methods and

the probability of the entire application is average of the sum of class probabilities.

4.1.5 Model Analysis and Reiteration

Once the model is generated and characterized, it is simulated in the ArchOn tool

for a fixed period of virtual time (model time). The reported results include the following

estimates for extra-functional properties:

• the number of issued user commands and the average response time (ms);

• the total amount of energy (Joules) consumed during the simulated period, as well
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as the per-component breakdown of energy consumption;

• the total number of exceptions thrown and per-component statistics on each excep-

tion type;

• the number of successful calls per component type, which can also be used to track

exception handler invocations.

These data can be used to make design choices on which error handling strategies

should be used in order to provide an improved balance between performance, energy,

and reliability. The changes are then coded back to the application, from which a new

iteration of the model is automatically generated. It is also possible to make a quick

iteration by changing the model directly; however, doing it through the application code

ensures that the application and the model always stay synchronized.

The design decisions depend on the application. As a general guideline, it is recom-

mended to start optimization from the components that have the most impact on the

energy consumption. Saving energy at the expense of reliability or user experience can

be reserved for alternative operation modes and conditions like low battery or unavail-

able network signal. In order to make the methodology feasible to be used in practice,

next section describes the new mechanism created to support the proposed methodology

requirements.

4.2 A Novel Exception Handling Mechanism For An-
droid

In order to support the proposed methodology, we propose a new exception handling

mechanism for Android applications, named DroidEH. Section 4.2.1 describes the concepts

that underpin the DroidEH mechanism. Section 4.2.2 illustrates how to use DroidEH to

handle exceptions in Android applications. Finally, Section 4.2.3 describes implementation

details of the proposed solution.

4.2.1 Conceptual Model

The DroidEH mechanism is grounded on two main approaches: the EFlow model

(CACHO et al., 2008; CACHO; COTTENIER; GARCIA, 2008) and the concept of Holistic

Fault Tolerance(GENSH et al., 2017a).
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EFlow(CACHO et al., 2008; CACHO; COTTENIER; GARCIA, 2008) is a platform-independent

model of exception handling whose major goal is to make exception flows explicit, safe,

and understandable by means of explicit exception channels and pluggable handlers. An

explicit exception channel (channel, for short) is an abstract duct through which excep-

tions flow from a raising site to a handling site. More precisely, an explicit exception

channel Ecc is a 5-tuple consisting of: (1) a set of exception types E, (2) a set of raising

sites RS; (3) a set of handling sites HS; (4) a set of intermediate sites IS ; and (5) a

function EI that specifies the channel?s exception interface.

Exception types, as the name indicates, are types that, at runtime, are instantiated to

exceptions that flow through the channel. The raising sites are loci of computation where

exceptions from E can be raised. The actual erroneous condition that must be detected to

raise an exception depends on the semantics of the application and on the assumed failure

model. For reasoning about the exception flow, the fault that cause an exception to be

raised is not important, just the fact that the exception is raised. The handling sites of an

explicit exception channel are loci of computation where exceptions from E are handled,

potentially being re-raised or resulting in the raising of new exceptions. In languages such

as Java, both raising and handling sites are methods, the program elements that throw

and handle exceptions.

If an explicit exception channel has no associated handlers for one or more of the

exceptions that flow through it, it is necessary to define its exception interface. The latter

is a statically verifiable list of exceptions that a channel signals to its enclosing context,

similarly to Java’s throws clause. In EFlow model, the exception interface is defined as

a function (Ex1→Ex2) that translates exceptions flowing (Ex1) through the channel to

exceptions signaled (Ex2) to the enclosing exception handling context (EHC). EHCs are

regions in a program where the same exceptions are always treated in the same way.

Raising and handling sites are the two ends of an explicit exception channel. Handling

sites can be potentially any node in the method call graph that results from concatenating

all maximal chains of method invocations starting in elements from HS and ending in

elements from RS. All the nodes in such graph that are neither handling nor raising sites

are considered intermediate sites. Intermediate sites comprise the loci of computation

through which an exception passes from the raising site on its way to the handling site.

Intermediate sites in Java are methods that indicate in their interfaces the exceptions

that they throw, i.e. exceptions are just propagated through them, without side effects to

program behavior. Note that the notions of handling, raising, and intermediate site are



94

purely conceptual and depend on the specification of the explicit exception channel. They

are also inherently recursive. For example, an intermediate site of an explicit exception

channel can be considered the raising site of another channel.

A pluggable handler is an exception handler that can be associated with arbitrary

EHC, thus separating error handling code from normal code. A single pluggable handler

can be associated, for example, with a method call in a class DataPersistUtil, two

different method declarations in another class, UserData, and all methods in a third

class DownloadFile. In this sense, they are an improvement over traditional notions of

exception handler. Another difference is that a pluggable handler exists independently of

the exception handling context (EHC) to which it is associated. Therefore, these handlers

can be reused both within an application and across different applications.

Holistic fault tolerance (HFT for short) has been recently proposed (GENSH; RO-

MANOVSKY; YAKOVLEV, 2016; GENSH et al., 2017a) to support engineering of a cross-

layer fault tolerance coordination to impose modularity to perform cross-cutting error

detection and recovery for mobile many-core applications and to ensure improved system

performance and power consumption. In the core of this approach is the architectural

pattern (GENSH et al., 2017a) and modelling techniques (GENSH et al., 2017b) which allow

developers to make optimal decisions about holistic involvement of system components in

system level error detection and error recovery for each specific error.

The HFT architecture (GENSH et al., 2017a) has two main components: HFT con-

troller and HFT agents. The HFT controller is the central element of the architecture.

It coordinates system-wide FT strategies and distributes available computer resources

among the application components. In addition, it reconfigures the application compo-

nents if it detects that application can operate faster or more reliably. The HFT agent

is a special auxiliary object assisting the HFT controller. Each HFT agent is responsible

for monitoring certain non-functional feature, such as error handling in one or more ap-

plication components. The HFT agent monitors and, if needed, intervenes in the control

flow of critical functions in application components. Figure 17 illustrates the architectural

view of the example depicted in Figure 5 by means of DroidEH concepts. For the sake of

simplicity, connections between the functional components are omitted. This architecture

comprises four application components that are monitored by one or more HFT agents

and provide the interface for the HFT controller. Thus, the given components can be used

for monitoring their inner operation to reason about the state of the entire application.

When an exception occurrence is detected by an HFT agent, the HFT controller is in-
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Figure 17: Architectural View of an Android Application using DroidEH. (OLIVEIRA et
al., 2018a)

voked to check if there is any explicit exception channel defined for that exception. In

that case, the HFT controller decides which pluggable handler should be used to handle

that exception.

The main novelty of DroidEH is in supporting systematic engineering of holistic fault

tolerance by applying cross-cutting reasoning about systems and their components. The

EFlow model offers very useful and efficient structuring mechanisms for supporting cross-

cutting thinking about complex systems. But it mainly leave with the developers the

complexity of making the decisions about which system components to crosscut and how.

The holistic fault tolerance tells the developers exactly which parts of the systems should

be involved in tolerating the abnormal situations and how they should be involved. Hence

the approach we are putting forward in this research work combines the benefits of these

two complementary ways of architecting dependable systems.

4.2.2 DroidEH Abstractions

This section presents DroidEH abstractions, inherited from the EFlow model, ex-

pressed by means of Java annotations. DroidEH allows developers to define explicit ex-

ception channels and pluggable handlers in terms of the abstractions provided by Android.

4.2.2.1 Defining Raising Sites

DroidEH provides annotations for defining methods that can represent raising, inter-

mediate or handling sites. This annotations are defined inside the class that represents

the handler for the application. Raising sites are defined as follows:
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@RaisingSites({

@AndroidRaisingSite(name = "rSite1",

target = "com.util.DataPersistUtil.getFileFromUrl")

})

Based on the hypothetical scenario in Figure 5, we define a raising site called rSite1

bounded to method DataPersistUtil.getFileFromUrl. If the raising site spans

for multiple classes and methods, DroidEH provides an economical way to define all those

raising sites. For instance, one developer could use com.util.DataPersistUtil.*
or com.util.* to define as the raising site all methods of DataPersistUtil and all

method of package com.util, respectively.

4.2.2.2 Explicit Exception Channels

After the raising sites are defined, the developers define explicit exception channels

using an annotation that takes 4 parameters: the channels name, the exception type, the

raising site and the intermediate sites. Explicit channels are defined as follows:

@EChannels({

@AndroidExceptionChannel(name = "EC1",

exceptions =

"java.lang.IndexOutOfBoundsException",

raisingSite = "rSite1",

intermediateSite = "")

})

The above example defines one explicit exception channel called EC1, which represents

exception IndexOutOfBoundsException flowing out of raising site rSite1, defined

earlier. Notice that the definition of intermediate sites is not mandatory.

The implementation of EChannels attempts to locate methods that raise the excep-

tion supplied as an argument and considers them raising sites. A method can only be

considered a raising site if the act of raising the exception is not a consequence of another

exception, neither an implicitly propagated one nor an exception raised by a handler.

The analysis then proceeds upwards, through the method call graph, considering every

method to be part of the explicit exception channel, either as intermediate or handling

sites. For the example given in Figure 5, method getFileFromUrl() is identified as

raising sites of IndexOutOfBoundsException, and UserData.downloadfile()

and doInBackground() as either intermediate and handling site. In summary, EC1

matches all calls through which exceptions that were raised as a result of the execution
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of methods getFileFromUrl(), including calls to methods doInBackground() and

downloadfile().

It is important to note that though method getFileFromUrl is raising two excep-

tions, the EC1 channel is only “conducting” exception IndexOutOfBoundsException.

To capture all exceptions through the same channel, the following declaration of channel

EC1 could be used:

@EChannels({

@AndroidExceptionChannel(name = "EC1",

exceptions =

"java.lang.ArrayStoreException,

java.lang.IndexOutOfBoundsException",

raisingSite = "rSite1",

intermediateSite = "")

})

The problem of such exhaustive definition of exception types is that it can impair the

usefulness of our approach. Hence, EChannels supports patterns to match exceptions

related to a single class, a full class hierarchy, a class with a wildcard (*), or a combina-

tion of classes using logical operators. Therefore, rather than defining channels for excep-

tions ArrayStoreException and IndexOutOfBoundsException, one can use just

(java.lang.RuntimeException+) to match all subtypes of RuntimeException.

Note that the explicit need for adding of plus (+) after the exception type declaration

eliminates the undesirable problems related to exception subsumption defined elsewhere

(ROBILLARD; MURPHY, 2003). When the plus is not used, the exception subtypes are not

captured by the channel.

The explicit exception channel defined above is too general once it will capture the

signalling of any exception that is a subtype of RuntimeException. It is possible to

specify more specific channels by explicitly indicating the raising sites of a channel. The

code snippet below illustrates the definition of two explicit exception channels that include

their respective raising sites:

@RaisingSites({

@AndroidRaisingSite(name = "rSite1",

target = "PersistenceDAO.*")

@AndroidRaisingSite(name = "rSite2",

target = "withincode(public void saveData())"

})

@EChannels({

@AndroidExceptionChannel(name = "EC1", exceptions = "java.lang.
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RuntimeException+", raisingSite = "rSite1", intermediateSite = ""),

@AndroidExceptionChannel(name = "EC2", exceptions = "java.lang.

NullPointerException", raisingSite = "rSite2", intermediateSite = "")

})

The second parameter of a channel definition identifies its raising site. The two ex-

amples above define the raising sites as separate annotations that the definitions of EC1

and EC2 use (Figure 5). The EC1 definition captures all exceptions that are subtypes of

RuntimeException and occur inside the model layer. The second channel EC2 cap-

tures occurrences of one runtime exception (NullPointerException) raised within

the body of method saveData. It follows that as long as the exception type is defined

using the EChannel annotation, DroidEH does not make any distinction between checked

and runtime exceptions. Both of them are equally monitored by the defined channels.

The EChannel annotation primarily supports the specification of channels that have a

single raising site. Moreover, exception channels can also be associated with multiple rais-

ing sites as compositions of simpler channels, each containing a sole raising site. DroidEH

supports the definition of multi-raising site channels by means Java’s union operator:

@EChannels({

@CompositeChannel(name = "ECCompose1",

channels = "EC1 || EC2")

})

The use of the union operator allows us to keep simple the specification of both simple

and complex channels and be coherent with Java’s syntax and semantics.

A channel might fork at intermediate sites, resulting in two or more different excep-

tion control flows for the same exceptions. For example, suppose that there is an extra

arrow from getFileFromUrl to doInBackground in Figure 5. If we wanted to define

EC1 to be exactly, it would be necessary to exclude this extra propagation "branch".

The definition of a channel can be constrained even further. The programmer can include

intermediate sites to the channel definition. In a similar vein, one can exclude some in-

termediate sites. In both cases, the semantics is to include or exclude the entire subtree

of the channel whose root is the provided intermediate site. Intermediate sites, whether

included or excluded, are supplied arguments to Echannel. The following snippet presents

a simple example:

@RaisingSites({
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@AndroidRaisingSite(name = "rSite1",

target = "com.util.DataPersistUtil.*")

})

@IntermediateSites({

@AndroidIntermediateSite(name = "iSite1",

target = "com.model.UserData.downloadfile")

})

@EChannels({

@AndroidExceptionChannel(name = "EC1",

exceptions =

"java.lang.RuntimeException+",

raisingSite = "rSite1",

intermediateSite = "iSite1"),

})

The EChannels annotation EC1 above defines an explicit exception channel through

which sub-types of exception RuntimeException flow. This channel has rSite1 as its

raising site. However, it only includes branches that crosses method UserData.download-

file and ends at doInBackground().

4.2.2.3 Pluggable Handler

Explicit exception channels defined with EChannelsl are incomplete, as they are asso-

ciated with neither a handling site nor an exception interface. If one compiles a program

that defines such a channel, the DroidEH will always indicate an error. For instance, if

there are exceptions that should be propagated to the enclosing exception channel, but

they are not part of the exception interface of the channel, then the program will not

successfully be compiled. Unlike Java, DroidEH verifies if exceptions flowing through an

explicit exception channel are handled or declared in its exception interface regardless of

the exception type, i.e., these rules apply to both checked and unchecked exceptions.

In order to specify the handling site of an explicit exception channel, DroidEH pro-

vides the AndroidExceptionHandler annotation. This type of annotation supports the

implementation of pluggable handlers. It encapsulates the exception handling code that

is executed when a certain point in an explicit exception channel is reached. Each An-

droidExceptionHandler annotation consists of: 1) the associated channel?s name; (2) the

handling exception type; (3) the handling site, and (4) the body of the actual handler

implementation that implements method handler. The following code snippet presents

a simple handler:
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public class HandlerExample

extends DroidEHHandler {

@AndroidExceptionHandler(

channel = "EC1",

catching = "",

handlingsite = "DownloadFile.doInBackground")

public void handler(EHContext context) {

Toast.makeText(context.getAppContext(),"Operation unsuccessful, please try

again.", Toast.LENGTH_SHORT).show();

....

}

}

This method handles exceptions flowing through the channel EC1. The handler is

activated when such exceptions reach method DownloadFile.doInBackground. The

handler first display simple feedback about the operation in a small popup and invokes

some methods to start again the MainActivity activity. For this hypothetical scenario,

the user would have to choose another song. A pluggable handler can be associated with

multiple explicit exception channels by means of Java’s set union operator. The handler

in the following code snippet is executed when exceptions from channels EC1 or EC2 are

raised:

@AndroidExceptionHandler(

channel = "EC1 || EC2",

catching = "java.lang.SecurityException",

handlingsite = "com.activities.*")

public void handler(EHContext context) {

Log.d("Handling exception: ",

context.getException().toString() + "Exception in class " +

context.getDeclaringClass());

terminate(context.getException());

}

For the example above, the use of the catching clause can even further narrow the

scope to which the handler is associated. This clause states that the handler should only

be executed if the specified exception is caught. Hence, the example above catches any

SecurityException flowing through EC1 or EC2 that reaches any method of the

activities package. The defined handler first log the exception and then invokes the

DroidEH’s terminate() method. This method throws an exception to the Android
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runtime environment to crash the whole application.

4.2.2.4 Defining Channel Exception Interface

When an application cannot handle all the exceptions that flow through an explicit

exception channel, it is necessary to declare these exceptions in the channel exception

interface. The eInterface annotation serves this purpose. The following code illustrates

typical examples of exception interfaces:

@eInterfaces({

@AndroidEinterfaces(channel = "EC1",

exception = "java.lang.NullPointerException+"

interfaceSite = "DataPersistUtil.*"

)

@AndroidEinterfaces(channel = "EC2",

exception = "",

interfaceSite = "DataPersistUtil.*"

)

})

The first declaration explicitly indicates that exception NullPointerException

is part of the exception interface of the channel. Alternatively, the second declaration

specifies only the explicit exception channel to which the exception interface is associated.

This second format is more general. It states that every uncaught exception that flows

through channel EC2 is part of the channel exception interface.

Finally, the abstractions supported by DroidEH (channels, handlers, interfaces, etc.)

enable holistic fault tolerance. They offer flexibility and modularity for introducing ex-

ception handling that crosscuts the components of any Android application, including

activities, services, asynctask and broadcasts, as well as Java classes/objects. It is possi-

ble to clearly see where the explicit exception channels are defined and where exceptions

are handled. In summary, the code snipped above shows that the DroidEH mechanism

provides means to specify, in a local manner, non-local information pertaining to exception

flows of an entire component or the software architecture implementation.

4.2.3 Implementation Details

The Figure 18 shows a overview of using DroidEH. To use the DroidEH abstractions in

Android projects, the developer needs to import two libraries that provides the DroidEH

annotation definitions: DroidEHModel.jar and AnnotationDroidEHModel.jar.
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The DroidEHModel.jar library provides the base classes to create pluggable handlers

(i.e.: the DroidEHHandler class). The AnnotationDroidEHModel.jar library pro-

vides the Java annotation definitions that allows us to specify the DroidEH abstractions

as explained in section 4.2.2. The box DroidEH Instrumentator in the Figure 18

represents the DroidEH solution that has the following structure: codeinsert package,

contains the main class that calls the transformer class and processes the annotation’s

data; model package, contains model classes for context, controller; transformers package,

contains the class that instrument the bytecode of app and util package. The current

implementation of DroidEH can be used in the Android Studio IDE after the following

configuration:

1. Add the DroidEHModel.jar file as the library in the Android Studio project

2. Add the "annotationprocessor" module in the Studio project - File -> New ->

Import Module

3. Add the lines below in "dependencies" in the build.gradle of the app module and

synchronize: provided project (’: annotationlibrary’) annotationProcessor project (’:

annotationprocessor’)

4. Create abstraction declaration class, for example, HandlerExample implementing

the Handler interface

5. Declare channel annotations, raising sites, etc.

6. Give a build in the project to generate the APK and file with the notes data

Figure 18: Overview of using DroidEH solution.
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DroidEH receives the APK file of the app, package name of the app and data of anno-

tations that the developer uses to describe the EH behaviour in terms of explicit exception

channels, raising sites, interfaces and pluggable handlers that contains the implementa-

tion of EH strategies. The current implementation supports Error Handling agents and

a controller to decide which handler call to handle an exception. The agents have access

to the context object of the application and method information like declaring class,

method name, exception interface of the method, exception caught message, etc.

DroidEH has a class called MethodsTransformer. This class performs two trans-

formations: life cycle methods and raising sites. In the life cycle transformation, DroidEH

inserts agents who call default handlers when an exception is detected, this transformation

is performed in life cycle methods of the Android abstractions classes (Activity, Service,

etc). The life cycle transformation is performed to mitigate problems pointed out in the

study of the section 3.1. In the raising site transformation, the agents are inserted in the

methods defined in the explicit exception channels. When an agent detects an exception,

the controller is invoked to decide which pluggable handler should be used.

The Error Handling agents are implemented using Soot framework abstractions like

"Trap" class that it’s like a "catch" in bytecode level. And others Soot abstractions to

insert the statements to execute the behaviour of the agent (call a handler, call the con-

troller). The controller is a Java class (DroidEHHandler) that contains the implementation

of default handlers.

After compiling the Android application, the Android Studio compiler provides as

output an AnnotationData.out and an unsigned Android Package Kit (APK for

short). The APK file format used by the Android operating system for distribution and

installation of mobile applications. The AnnotationData.out contains information

about (i) all declared explicit exception channels, (ii) a list of declared exception inter-

faces, and (iii) an internal representation of pluggable handlers which includes bodies,

catching types, and channel attachment information. Based on those two files, we used

the Soot framework (VALLéE-RAI et al., 2000) and the Dexpler software package (BARTEL

et al., 2012) to process and instrument the Java bytecode of the unsigned APK file. This

instrumentation allows to insert, by means of Soot transformation, the HFT agents and

connect them to the HFT controller. At the end, we generate the instrumented APK and

perform a post-instrumentation analysis to ensure that all exceptions flowing through the

explicit exception channel are handled or declared.

To create explicit exception channels, we first obtain from the AnnotationData.out
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file the list of all declared explicit exception channels. Based on this list, we perform a Soot

transformation to iterate through all the parts of a method where an exception can be

raised. As soon as a raising site can occur, we construct, based on the algorithm proposed

by Fu and Ryder (FU; RYDER, 2007), chains of exception-flow to link the corresponding

raising site with its possible handling sites.

For each such handling site, the DroidEH checks each pluggable handler associated

with that explicit exception channel in the application and determines if the handler’s

annotation can match that handling site. If it can match, we add a new entry to the

enclosing method’s exception handler table for the bytecode corresponding to the handling

site. The code for the handler is inlined whenever the handler method body implements

any return operation, otherwise the code is inserted as a call to the handler method. At

the same time, checked exception(s) propagated along the call chain are declared in the

method interface until meet some handler or channel’s exception interface. At the end, we

generate the instrumented APK and perform a post-instrumentation analysis to ensure

that all exceptions flowing through the explicit exception channel are handled or declared.

The implementation of method retry comprises bytecode instrumentation and the use

of ActivityManager2 component to get all tasks running in the current Activity and

initiate the defined Activity.

DroidEH implements the EFlow model and inherits its abstractions to allow devel-

opers to define explicit exception channels and pluggable handlers. In a different way the

implementation of DroidEH included specific handling methods for Android abstractions,

such as method terminate that can be used by the agents or the controller, for exam-

ple. In addition DroidEH implements HFT concepts like the HFT controller and the HFT

agent.

2https://developer.android.com/reference/android/app/ActivityManager.html
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5 Evaluation

This chapter presents the application of the proposed methodology in real Android

applications and the evaluation of the proposed exception handling mechanism, DroidEH.

The purpose is to assess the feasibility of using the proposed methodology to support de-

velopers to make decisions taking into account non-functional requirements, robustness

and energy consumption, and to determine through the trade-off between these require-

ments, different operation modes that can be implemented in the application using the

DroidEH. Moreover, this chapter assesses the adequacy of DroidEH for improving robust-

ness.

5.1 Applying the Proposed Methodology: Use Case

This section describes our case study and some guidelines to employ our proposed

methodology. The goal of this case study is to evaluate the impact of the proposed method-

ology on designing efficient mobile applications. Two versions of four target applications

have been compared in order to observe the positive and negative effects of using our

methodology. The first version (V1 ) was developed without using the proposed method-

ology and has one Baseline operation mode. In contrast, the alternative version (VA)

was developed using the proposed methodology and has two operation modes: DEH and

DEH-LP. DEH operation mode is represents the application that implements exception

handling strategies, and DEH-LP operation mode is an operation mode in which the ap-

plication applied some strategy for improve energy consumption, based in the execution

of the methodology.

5.1.1 Target Applications

One major decision that had to be made for our investigation was the selection of

the target applications. We have selected four applications with different purposes and
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functionalities. The first application is a medium-sized application (Visit Natal) to which

there was a Java version available. The Visit Natal App is a mobile tourist guide appli-

cation implemented in Java for Android Platform that aims to enhance tourists’ travel

experience. Visit Natal is the official tourist guide application for the city of Natal in

Brazil and provides city visitors with a wide range of functionalities, such as the list of

attractions to browse, detailed information about a specific attraction, how to arrive at

an attraction, etc.

Fala Natal is an application for citizen engagement. The citizen can use the application

to register a demand, for example, a broken pole on your street, register a compliment

or a suggestion. To register a demand the citizen can use the phone camera to take a

photo of the problem, choose an address and describe the demand. Also the citizen can

consult the progress of the registrations. K9mail is an mail application where the user

can manage various types of email accounts, the application supports three types: IMAP,

POP3, and WebDAV. Using the application the user can view, send and receive e-mails

for the registered accounts. Also the application send notifications for a new mail and

error notifications. The last application selected is a Bitcoin Wallet, that is a bitcoin

application where the user can send and receive bitcoins via NFC, QR codes or using

bitcoin addresses, make payments via Bluetooth.

5.1.1.1 Interactions

The target applications have components that interact with each other to perform

a given task according to user interaction. Identifying these interactions is important to

generate a model of the application that can be used in the simulation and to guide

the characterization of an application. Visit Natal has important scenarios related to its

operation and main functionalities: Initialization of application, location, the update of

data locally, show map routes, synchronization issues and send attraction reviews. The

main scenario of Fala Natal is to register a demand, the application also allows viewing a

specific demand or a list of demands and register a compliment or suggestion. For K9mail

the main scenarios are send email and read email, and the main scenario for Bitcoin Wallet

application is send bitcoins.

Each interaction related to the scenarios, has two or more components that interact

by calling methods, sending and receiving messages. For example, for the location sce-

nario in Visit Natal application, there are four components interacting, one activity, one

fragment, one service and the web application. The activity initiates the fragment that
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shows the interface with the main functionalities of Visit Natal by calling the method

beginTransaction. This fragment initiates a location service sending an Intent mes-

sage to the Android platform, this service executes in the background sending GPS data

of the user to the server making POST requests. This scenario is similar to the update of

data locally, with the difference that in this scenario the service receives a message from

the Web application with the data and saves in a local database.

In the send bitcoin scenario there are three interface components involved that repre-

sent the screens that the user needs to interact to finally execute the task. One component

initiates other calling Android methods like startActivity and setContentView.

These interface components interact with the blockchain service calling the method start.

The register demand scenario in Fala Natal application also have interface components

that interact with an asynctask component, calling the method execute and a remote

server. In the scenario send mail for K9mail application the interface component interacts

with an asynctask responsible for build and send the message.

5.1.1.2 Events and Handlers

The target applications have to handle in general input events and notification events.

The input events are the result of user interaction with the UI elements on screen. Exam-

ples of notifications are when the application receives notifications from the server when

the data changes, this is one type of notification event that needs to be handled, another

type is generated inside the application when the location of the user is near to a specific

tourist attraction, the application can receive a notification when receive a new mail.

For the input events like clicks, touches or focuses on the screen, and when the user

selects a menu item, the application implements callback methods called event handlers,

for example, to handle a click event, method onClick must be implemented inside an

app. For the notifications from the remote server, the application implements a service

class that has methods to receive and handle the notifications. From a notification gen-

erated based on user’s location, the app calls a pending intent that shows a notification

message on the phone.

5.1.2 Characterization Experiments

Section 4.1.3 in chapter 4, explains the methodology used to generate a model from

the applications based on application’s APK and app characterization. In order to do
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the application characterization it’s necessary to execute characterization experiments to

collect power and performance data from the components of the applications. This data

is used in the model that will be simulated by ArchOn tool.

To execute the experiments we select a set of devices with different configurations

in terms of model, Android version, battery capacity and memory. Table 13 shows the

configurations. The objective of selecting different devices was to obtain relative values of

energy consumption of the applications. The characterization of each application (5.1.1)

was carried out through the selection of the main functionalities and construction of

sequence diagrams for the components most likely to consume energy, describing their

interactions with other components. Some of the application components are grouped

together to reduce the model complexity. The result models consists of the following Task

components for each application:

• Visit Natal: LocationService, service that runs in the background by continu-

ously sending the user’s location to the server in a given time interval and application

data update service represented by UpdateRatesIntentService.

• Fala Natal: NetworkAsyncTask, asynctask that runs in the background, check-

ing the user’s location and network connection to show a map on the screen and

RegistrationRequestActivity, uses the camera to capture photos that will

be used to register the complaint in the application.

• K9mail: onCheckMail, checks for new messages to the user’s inbox and onOpen-

Account, loads the screen with all email information for a given user account.

• Bitcoin Wallet: NetworkMonitorActivity, monitor active peers and blocks to

show the user that can click for more information on the internet and SendCoins-

Fragment, allows the user to send coins using the camera or by address.

We also outline the following potential exception handling scenarios: retry failed task,

add log entry, display error message, save state, terminate. All these scenarios, except

retry, are modelled as special tasks and also have performance and power characteristics.

A total of 36 experiments were carried out according to the following run protocol:

Select two components for each application, one hour of execution, screen on all the

time. To minimize the contamination from other applications during the experiments

we install only the target app on the device and use devices with only the Android

system and proprietary apps running on the smartphone. Continuous execution of the
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Figure 19: Energy consumption data of the components in different smartphones.

components, uninstall target app for the idle mode experiment, get the battery data

using batterystats tool from Android and visualize the data with Battery Historian

tool 1.

With the execution of the experiments, energy consumption data, such as voltage,

battery level, percentage of battery usage by the target app and time execution were

collected. With these data we can measure the energy consumption of each component

of the applications during the experiments. Figure 19 shows the energy consumption of

application components on different smartphones.

According to Figure 19, it can be identified that the Motorola device showed the most

divergent energy consumption values, this device is the one with the oldest version of

Android among the set of devices in the study. In order to find relative values of energy

consumption we normalize the energy data and obtained the relative values of standard

deviation of the Table 14.

With these values we can say that it is possible to carry out the characterization

experiments by choosing only one of the devices, since the energy consumption of the

components will be relatively similar in other devices. In this way, the experimental effort

to obtain these values is reduced and the model used in the simulations can use the power

data from one smartphone in the ArchOn tool. The developer has the freedom to choose

to perform the experiments on more than one smartphone if he wants to evaluate his

application in a specific configuration. In this case the SIM model needs to be generated
1https://bathist.ef.lc/
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Table 13: Smartphones Configurations

Model Android
Version

Battery
Capacity Memory Voltage

Samsung Galaxy
S7 edge 8 3600 mAh 32GB

4GB RAM 3,85

Nexus 6P
HUAWEI ce0168 6 3450 mAh 64GB

3GB RAM 3,82

LG Nexus
5X H791 6.0.1 2700 mAh 32GB

2GB RAM 3,8

Motorola Moto
G XT1032 5.1 2070 mAh 8GB

1GB RAM 3,8

Table 14: Relative standard deviation values for application components.

Application Component Relative std values (%)
LocationService 22,04
UpdateRateService 5,52
NetworkAsyncTask 13,65
RegistrationRequestActivity 7,47
onCheckMail 5,01
onOpenAccount 12,04
NetworkMonitorActivity 9,86
SendCoinsFragment 16,77

for each device.

5.1.3 Characterization Results

Table 15 presents the successfully measured component characteristics. The selected

application components make use of some device components like internet, location, and

camera. The UpdateRatesIntentService consumes more power than the Location-

Service, the first component use the internet to get the rate value and saves the data in

a local database, the LocationService get the location and sends to a remote service.

The components that use the camera consumed more power than other in the same ap-

plication, for example, RegistrationRequestActivity and NetworkAsyncTask

in the Fala Natal application.

Any task that completes one request in a very short time, does not leave a distin-

guishable footprint in the battery use unless it is running continuously, but that would

imply a complete redesign of the application, which we want to avoid in the proposed

methodology. Our suggestion is to group small tasks into larger ones whenever possible

or otherwise assume they have zero power and zero delay. Such zero-cost tasks are called
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Table 15: Task power and performance characteristics

task delay, ms power, W
LocationService 10 1.108
UpdateRatesIntentService 10 2.772
NetworkAsyncTask 10 1.2474
RegistrationRequestActivity 2000 4.1580
onCheckMail 6 2.6334
onOpenAccount 100 2.7720
NetworkMonitorActivity 1000 1.8018
SendCoinsFragment 1000 2.6334
idle — 0.554
sleep — 0.554

token tasks, they do not have direct impact on system’s extra-functional properties, but

can still be counted during the simulations. For our use case, this is an accepted trade-off

between model accuracy and design effort. In the target applications, exception handlers

(logging, saving state, etc.) are considered as token tasks.

Table 16 shows the relative probability values of throwing a specific exception for each

task. Exceptions types that are not considered specifically are grouped under the general

Throwable interface. These values are provided by the static analysis of the application

code as described in Section 4.1.4.2 of chapter 4. The absolute values are specifically large

for the sake of fault injection.

5.1.4 Application of the Methodology

The first iteration of the model represents the original application behavior with no

DroidEH infrastructure. The user interface components are missing handling of runtime

exceptions listed in Table 16. For Visit Natal Location and data update background tasks

are scheduled every 10ms and are always retried on failure. The components of the other

applications are executed with the intervals shown in the Table 15.

Figure 20 shows the simulation-estimated active energy consumption per one hour of

application usage; the original application behavior is called the Baseline mode. Since

the model has stochastic elements (user events and exceptions), the presented result is

averaged over one hundred simulations. It is worth noting that, for the model of this size,

the ArchOn tool takes about 1–1.03s of real time to simulate 100 hours of virtual time

on Intel Core i5-7200U at 2.7 GHz. The tool can handle larger and more detailed models;

the bottleneck is in being able to characterize smaller size model components.
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Table 16: Relative exception probabilities
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Throwable 0.21 0.38 0.13 0.31 0.28 — 0.19 0.36
NullPointerException 0.19 — 0.19 0.11 0.07 — 0.21 0.09
ClassCastException 0.02 0.01 0.07 0.02 0.01 — 0.03 0.02
NegativeArraySizeException — — — 0.01 0.01 — 0.01 —
ArrayIndexOutOfBoundsException — — — 0.01 0.01 — 0.01 0.01
ArrayStoreException — — — — 0.01 — — —
MessagingException — — — — 0.01 — — —

Figure 20: Per-component estimated energy in different application modes.
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The simulation results reveal that the major contributors to energy consumption

are the background services, hence they are selected as the primary targets for energy

optimization. Also, the components that make use of the camera consume more energy.

The main concern is that these background service tasks are being retried on failure while

it may, in fact, be unnecessary as they are rescheduled every 10ms anyway. Therefore,

in the second iteration of the workflow cycle, the error handling strategy for background

service tasks are changed to lightweight handlers (error logging). The exception handlers

are implemented using DroidEH annotations.

Additionally, we add lightweight handlers to all user interface components: exceptions

in MessagingController of K9mail application lead to the graceful termination of

the app, exceptions in RegistrationRequestActivity of Fala Natal application

display an error message to the user, and exceptions in WalletActivity of Bitcoin

Wallet application are followed by saving the application state. This iteration is labeled

as the DEH mode in Figure 20. It can be observed from the simulation results that this

mode of operation can save energy while maintaining an accepted level of fault tolerance.

The reported energy saving is 13%; however, note that this number is tied to the exception

probabilities, which are artificially increased in this model.

The benefit of the HFT with DroidEH approach is that HFT controller can switch

between different application modes in runtime by means of using pluggable handlers

that can be plugged and unplugged according to the operation mode. Hence the proposed

workflow does not require each iteration to be an absolute improvement over the previous

one, and can be used as an exploration of different operating modes instead. One of the

possible alternative modes for the target application is the energy saving mode.

From the simulation results, we can see that the DEH mode still has the room for im-

proving energy consumption at the cost of the background services; Also some components

that use camera or components that make internet requests with data can be improved

for energy consumption. However, at this point, any further reduction may impact user

experience. In the DEH-LP mode we increase the scheduling period for the location and

data update services from 10ms to 30s in the Visit Natal Application. For Fala Natal

application we remove the component that verifies the internet connection and location

in the registration of a demand. In the k9mail application we change the component to

limit number of displayed folders, and in the Bitcoin Wallet application we limit the num-

ber of peers and blocks to be consulted by the component NetworkMonitorActivity

Simulation results show 50% energy saving compared to the DEH mode (this time, the
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value is independent of the exception probabilities), but the application has significantly

larger delays in exchanging the data with the server. Therefore, this mode is used only

when the device battery is low and energy saving becomes a priority.

The conclusion after three iterations of the workflow is to configure the HFT controller

to use DEH as the primary operating mode for the applications and switch to the DEH-LP

mode when the battery level is low.

5.2 Assessment of DroidEH

DroidEH is conceived as a means to improve robustness of Android applications that

have to deal with exceptional situations. This section presents an in-depth study per-

formed to assess the adequacy of DroidEH for improving robustness.

5.2.1 Study Setting

5.2.1.1 Goal Statement and Study Hypothesis

The goal of this evaluation is twofold. First, we evaluate the adequacy of DroidEH for

improving robustness of Android applications. Second, we compare the results gathered

for the DroidEH implementations with the Java and a third-party implementation. The

third-party implementation used in this study was proposed by Choi and Chang (CHOI;

CHANG, 2015). This approach provides a component-level exception handling to allow

developers to build robust Android applications. Hereafter, we refer to this approach as

Android Component-level Exception Mechanism (ACEM, for short).

The definition of our hypotheses uses the following metrics to be collected and anal-

ysed: IT (Implementation time), NU (Number of exceptions uncaught), NC (Number of

Crashes), and ST (Startup Time). IT is the amount of time spent by developers realising

the tasks. NU denotes the number of uncaught exceptions collected through static analysis.

NC is the number of crashes the testing tool found after executing the refactored applica-

tions. We collected ST using the information provided by Android ActivityManager

in the logcat of Android Studio. According to the Android documentation 2, ST is defined

as the amount of time elapsed between launching the process and finishing drawing the

corresponding activity on the screen.

Each of these metrics has three variations corresponding to Java (J), DroidEH (D),
2https://developer.android.com/topic/performance/vitals/launch-time
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and ACEM(A). For example, there are the Number of Crashes metrics defined for the Java

(NCJ), DroidEH (NCD), and ACEM (NCA). The definitions of the following hypotheses

use these symbols. The main hypothesis is the null hypothesis that states there is no

difference in using either Java, DroidEH or ACEM. There are four null hypotheses, one

for each metric of interest. Alternative hypotheses are defined to be accepted when each

of the corresponding null hypotheses is rejected.

• Null hypothesis (H01): IT using DroidEH is not different from the ones for Java

and ACEM approaches.

• Null hypothesis (H02): NU for DroidEH is not different from NU for Java and

ACEM approaches.

• Null hypothesis (H03): NC for DroidEH is not different from NC for Java and

ACEM approaches.

• Null hypothesis (H04): ST for applications that use DroidEH is not different from

ST for applications that use Java or ACEM approaches.

5.2.1.2 Subjects

Four participants took part in this study. All participants were last-year undergraduate

students with one or more years of programming experience in Android and an age range

of nineteen to twenty-three years. None of the participants had prior knowledge of the

applications. Their level of experience provided a good match for this study as we were

interested in assessing the ability of DroidEH adopters to correctly grasp and use the

notion of exception channels and pluggable handlers.

5.2.1.3 Target Applications

For the study we select 10 different Android applications written in Java to evaluate

our solution (see Table 18). Hereafter we call them “target applications”. This set of

applications is practically the same used in the study of Chapter 3, Section 3.2.1.2, except

for the MigrateClinic application, which in the previous study was replaced by another

one.

As we are comparing DroidEH with ACEM implementations, we tried to use the

same benchmarks used to assess the ACEM approach elsewhere(CHOI; CHANG, 2015).

However, we were able to effectively use 8 out of 9 applications as we could not use
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Table 17: Subject Android Applications

App TotalLOC TotalFiles Apk Size
AndroidSecurity 932 19 343
BluetoothChat 667 3 26

Cafe 1570 13 1408
Contacts 1319 12 32

MigrateClinic 805 12 50
Noteslist 902 6 55

MediaPlayer 438 5 149
Bitcoin-Wallet 16662 114 3244
K-9-master 53696 345 5371
FalaNatal 37250 399 3893

Table 18: Experimental Results, Exception Flows Data, Execution Data and Application
Test Data

Implementation Time Number of Uncaught Exceptions Number of Crashes Startup TotalLOC
Application ACEM DroidEH Java ACEM DroidEH Java ACEM DroidEH Java ACEM DroidEH Java Java

AndroidSecurity 5.0 10.0 7.0 2.0 1.0 6.0 0.0 0.0 0.0 521.0 678.0 462.0 932.0
BluetoothChat 16.0 16.0 13.0 1.0 0.0 16.0 0.0 0.0 59.0 209.0 355.0 366.0 667.0
Cafe 3.0 18.0 18.0 11.0 1.0 11.0 0.0 0.0 0.0 576.0 679.0 468.0 1,570.0
Contacts 7.0 22.0 23.0 9.0 3.0 14.0 2.0 0.0 0.0 493.0 471.0 522.0 1,319.0
MigrateClinic 9.0 11.0 10.0 5.0 0.0 7.0 0.0 0.0 60.0 0.0 0.0 0.0 805.0
NotesList 10.0 20.0 8.0 3.0 2.0 5.0 3.0 0.0 8.0 458.0 541.0 451.0 902.0
MediaPlayer 3.0 15.0 15.0 0.0 0.0 0.0 0.0 0.0 0.0 610.0 703.0 359.0 438.0
Bitcoin-Wallet 16.0 12.0 41.0 179.0 13.0 174.0 4.0 1.0 1.0 1,606.0 1,590.0 1,629.0 16,662.0
k-9-master 41.75 43.50 23.0 2,076.5 152.75 1,926.0 16.25 0.50 3.0 372.25 600.75 477.0 53,696.0
FalaNatal 19.5 18.75 17.0 43.0 3.0 44.0 1.25 0.0 5.0 704.25 821.50 620.0 37,250.0

Mean 19.62 23.31 17.50 543.0 40.19 220.30 4.94 0.19 13.60 548.69 669.13 535.40 11,424.10Total Sum 314 373 175 8,688 643 2,203 79 3 136 8,779 10,706 5,354 114,241

the Earthquake application since it uses a deprecated version of Google Maps API. We

replaced Earthquake app with two other applications: Fala Natal and K-9-Master. Hence,

our set of applications consist of three commercial program (Bitcoin-Wallet, FalaNatal

and K-9-Master), two sample programs (BluetoothChat and NotesList) developed by

Google, one student project program (Cafe), and the remaining three programs excerpted

from advanced Android applications development books (CHOI; CHANG, 2015). Table 17

shows the total LOC, number of files in the Android project, and the size of the APK

file. The largest applications in term of LOC, number of files and size of the APK are

Bitcoin-Wallet, K-9-master and FalaNatal.

We believe that these applications are representative of how exception handling is

typically used to deal with errors in real Android software development for several reasons.

First of all, these applications were selected mainly because they include a large number

of exception handlers implementing very different exception handling strategies, from

basic to sophisticated, including logging, return, throw, rollback, etc. Secondly, they have

different characteristics, meet diverse requirements, represent different domains, and use

a large set of real-world software technologies.
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5.2.1.4 Study Phases

The study was divided into three major phases: (1) training, (2) developing the refac-

tored versions of the target applications using the abstractions to be assessed (provided

by Java, DroidEH and ACEM), and (3) assessing the set of versions developed in phase

2. The first phase comprised of an one-week training session in order to allow the partici-

pants to familiarize themselves with the exception handling abstractions provided by Java,

DroidEH and ACEM. For this first phase we create a document showing an overview of

basic concepts related to exception handling in the Java language, presenting their defini-

tions and code examples. And showing exception handling in the Android perspective. In

addition, the document shows the concepts and examples of using DroidEH and ACEM.

During the training session, the subjects used a list of steps and guidelines to refactor a

mobile application using Java, DroidEH and ACEM abstractions.

For the second phase, we designed the experiment as a crossover design (KUEHL,

2000), due to two reasons: (i) it requires fewer participants and (ii) it accounts for differ-

ences between participants. Crossover is a particular type of design where each experimen-

tal subject applies all treatments, but different subjects apply treatments in a different

order. The use of a crossover design poses two well-known threats(VEGAS; APA; JURISTO,

2016): the effect of order and carryover from one technique to another. To reduce the ef-

fect of order, we defined two sequences with three periods (S1: DroidEH-ACEM-JAVA, S2:

ACEM-DroidEH-JAVA). Each subject was randomly assigned to one of those sequences.

At the end, two students performed S1 and two performed S2. For the carryover threat,

we used the “two-stage procedure” to examine the possibility of carryover having occurred.

We judged it has not occurred, then we believe the results of the analysis are reliable.

For sequence S1 we only considered the set of 8 applications used in the ACEM

benchmark. For sequence S2, all subjects refactored the two remaining applications (Fala

Natal and K-9-Master). Notice that for the case of Java refactoring, the subjects were

asked to improve the exceptional behavior of the pre-existing Java version.

Each refactoring session consisted of the following steps. First, the experimenter in-

troduced to the subjects the overall goal and format of the experiment. A printed copy

of the task descriptions was given to each subject. The main task assigned to them was

to identify the scenarios in which exceptions are not being handled and to refactor these

scenarios using the approaches, each task is related to one application and one technique

(DroidEH, ACEM or Java). It was not defined a number of scenarios that should be refac-

tored, each participant could freely define this amount according to each application. The
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experimenter then ensured that the subjects could use the programming environment to

edit, compile and run the target applications.

The subjects were given 4 hours to perform each task. The experimenter was present

during this period and available to answer questions about the tasks and the program-

ming environment. At the end of each task, which was either when the subjects finished

the task, or the end of the 4 hours, the subjects completed a questionnaire regarding the

perceived usability of the approach used. In this questionnaire the subject fills personal

information like, name, age, gender, course name or area of expertise and level of aca-

demic training. After that, the subject responds three questions about the experiment:

What functionalities of the approach used were useful; What difficulties were encountered

during refactoring and What characteristics do you think should be added to the ap-

proaches. Then, the generated source code and the questionnaire were collected. We have

also recorded the time necessary for each subject to finish the task (i.e, the IT metric).

The goal of the third phase was to compare the robustness of DroidEH applications

with the robustness of Java and ACEM implementations. In order to support a multi-

dimensional data analysis, the assessment phase was further decomposed in two stages.

The first stage examines the overall robustness by means of software testing technique.

A full test set was built from scratch. In order to reduce test effort and avoid systematic

bias during test creation, test cases were automatically generated with an adequate tool

support. We used Monkey3, a stress-test tool that runs on device and generates pseudo-

random streams of user events such as clicks, touches, or gestures, as well as a number of

system-level events. Which is not the best approach to evaluating if the exception handling

code is correct, but it is a very useful tool for identifying crashes.

We created three seed values for the pseudo-random number generator (700, 701 and

702). Each seed value generated the same sequence of events for all application versions

(Java, DroidEH, and ACEM), we defined a number of 7000 events for each seed. Each

application version was executed on an Android Galaxy S5 device. Every crash identified

during the assessment phase was documented in a customised report form and reflected

in the Number of Crashes(NC) metric.

The second stage of the assessment phase aims to complement the test cases by using

static analysis. We followed the typical approach adopted in the community in which

the uncaught flow is used as an indicative of robustness (ROBILLARD; MURPHY, 2003; FU;

RYDER, 2007; COELHO et al., 2008; MAJI et al., 2012). Exception flow is a path in a program
3https://developer.android.com/studio/test/monkey.html
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call graph that links the method where the exception is raised to the method where the

exception is handled. If there is no handler for a specific exception, the exception flow starts

in the method where the exception is raised and finishes at the program entrance point.

In the context of our study we used the Uncaught Flow metric to support our analysis, as

it is often used as an indicative of software robustness (ROBILLARD; MURPHY, 2003; FU;

RYDER, 2007; COELHO et al., 2008; MAJI et al., 2012). Uncaught Flow counts the number

of exception flows that leave the bounds of the system without being handled. Therefore,

this is the key indicator of a potential fault in the exception handling behavior and,

therefore, often represents lower robustness. Uncaught exceptions terminate the execution

of a program, hence, the higher the number of uncaught exception flows is, the lower the

system robustness is.

We employed an extended version of the eFlowMining (GARCIA; CACHO, 2011) tool to

collect the robustness metrics. eFlowMining is a multi-language static analysis tool that

uses the approach proposed by (FU; RYDER, 2007) to perform an inter-procedural and

intra-procedural dataflow analysis. The extended version of eFlowMining uses the Soot

framework (VALLéE-RAI et al., 2000) and the Dexpler software package (BARTEL et al.,

2012) to collect the structure (call graph, methods, exceptions, etc.) of Java and Android

applications, respectively. Then, the tool generates the exception flows and computes NU

for all exceptions, explicitly thrown by the application or implicitly thrown (e.g.,thrown by

library methods). In this study we assume that only one exception is thrown at a time —

the same assumption considered in (FU; RYDER, 2007). Unlike (CABRAL; MARQUES, 2007;

CACHO et al., 2014), we have taken into account all exception flow types, including ones

originating from unchecked exceptions, since some recent works (KECHAGIA; SPINELLIS,

2014; FRASER; ARCURI, 2015; KIM et al., 2013; COELHO et al., 2015) have found that

NullPointerException, IllegalArgumentException and IllegalState-

Exception are among the most common reasons for Java and Android applications to

crash.

5.2.2 Study Results

This section presents the results of our measurement. Table 18 shows the mean of

the implementation time (in min), the number of Lines of Code (LOC), the number of

uncaught exceptions, the startup time (in ms), and the number of crashes for all tasks

performed by the subjects for each target application. The results are grouped in terms

of the three analysed approaches (Java, ACEM and DroidEH). The last row, named



120

“Total" indicates the sum and mean for each analyzed variable. To illustrate the different

aspects of each finding, we provide a selection of quotes from the questionnaire. To enable

traceability, each subject has an identification which can be traced in our database using

the following convention: S#. For instance, S1 corresponds to an answer provided by

Subject 1.

5.2.2.1 Implementation Time

A careful analysis of the total(sum) implementation time (IT) measures (Table 18)

determines that with the ACEM approach, the subjects performed the tasks 15% faster

than the subjects using the DroidEH approach. In the ACEM implementation, the sub-

jects focus on refactoring the target applications by applying some rules defined by ACEM

designers(CHOI; CHANG, 2015), such as: (i) every class that extends Activity should be

replaced to extend ExceptionActivity, all onCreate, onClick, and onActivityResult

declared methods should be renamed as OnCreate, OnClick, and OnActivityResult, etc.

This simple set of rules to apply the ACEM approach was reported by some subjects. For

instance, "The use of ACEM is easy, requiring only the renaming of methods and classes

used." [S3]. In contrast, to apply DroidEH the subjects needed to capture the architectural

view of the exceptional behavior and model it by means of DroidEH abstractions. For in-

stance, "To use DroidEH, I need to know all the flow of exceptions and its use requires

a detailed knowledge of the code." [S1]. In order to assess the first hypotheses whether

the results for the three groups (ACEM, DroidEH, and Java) are different, we tested if

there was a statistically significant difference between the values of IT computed for each

approach. The results of the Friedman‘s ANOVA test for IT (χ2 (2)=1.50, p = 0.653)

showed that there is no statistically significant difference between them. In this manner,

we retain the null hypothesis (H01)

5.2.2.2 Number of Uncaught Exceptions

In terms of the uncaught exception flow, the eFlowMining (GARCIA; CACHO, 2011)

tool found 2,203 and 8,688 uncaught exceptions in the Java and ACEM approaches, re-

spectively. The DroidEH implementations are superior with only 643 uncaught exceptions

found. To further understand the possible causes of such difference between DroidEH and

the others two approaches, we analyzed all the uncaught exception control flows and ob-

served that most of them are related to uncaught exceptions raised by the methods defined

by the Android platform like execute, from AsyncTask component, startActivity,



121

from Activity component, startService and bindService, from Service component.

These flows are most related to exceptions android.content.ActivityNotFound-

Exception, java.lang.SecurityException and java.lang.IllegalState-

Exception. As the ACEM approach does not provide corresponding implementation for

those methods (like the OnCreate for the onCreate), they became unprotected and can

raise many exceptions flows that eventually can cause an application crash. In contrast, the

result of the DroidEH implementation is related to the enforcement of exception channels

introduced at compile time. Reliability checks enforce exception flows to be made from the

raising sites to their handling sites. This avoids the problems of having entry points and

listeners methods without any recovery action. When such a harmful scenario occurs in

the DroidEH implementation, the compiler issues a message making the problem explicit

for the developer. By running the statistical test, the results of the Friedman?s ANOVA

test for UC (χ2 (2)=8.00, p = 0.005) showed that there is a statistically significant dif-

ference between them. ACEM and Java programs showed higher median values (2132.00

and 2001.00) against 157.5 in DroidEH. Thus, we reject the null hypothesis (H02).

5.2.2.3 Number of Crashes

For the number of crashes, the DroidEH refactored versions had 3 crashes against 136

in Java, and 79 for ACEM approach. This represents a reduction of around 90% and is a

result of the DroidEH ability to handle exception and terminate the application when an

exception is unrecoverable. Most of the crashes in the refactored ACEM apps were related

to exceptions java.lang.ClassCastException, java.lang.Instantiation-

Exception and java.lang.NullPointerException. The first two exceptions oc-

curred inside components of the ACEM library. The crashes in apps using only Java

approach were related to problems with null references, illegal arguments and class cast

exceptions. The three crashes of the DroidEH approach were related to unrecoverable

issues. Based on that numbers, the result of the Friedman‘s ANOVA test for NC (χ2

(2)=6.50, p = 0.039) showed that there is a statistically significant difference between

them. Therefore, we reject the null hypothesis (H03).

5.2.2.4 Startup Time

The data in Table 18 shows that DroidEH implementations tend to be worse in ST,

and this difference gets larger when compared to Java. In fact, the result of the Friedman?s

ANOVA test for ST (χ2 (2)=8.00, p = 0.018) showed that there is a statistically significant



122

difference between them. The median for STD was 657.5ms whereas the median for STA
and STJ was 548.00 and 539.5, respectively. Therefore, we reject the null hypothesis (H04).

The STD data show that DroidEH implementations increases the average startup time

in 0.11s as DroidEH introduces agents to monitor one or more system components. To

better understand the effects of the DroidEH agents on the application performance, we

look more closely to the time needed to run the stress-test. On average, each Java, ACEM

and DroidEH app took 300.43ms, 317.84ms, and 327.65ms, respectively, to run 21,000

events (3 * 7000 events). It represents a very small increase of 0.027s for the DroidEH

applications when compared to Java ones and this difference is never noticeable.

5.2.2.5 Execution Time of Monkey Tests

Table 19 shows the mean of the execution time, in seconds, that Monkey tool took

to complete the execution of the tests for each seed value for each target application.

The results are grouped in terms of the three seed values (700, 701 and 702). The last

row, named “Total" indicates the sum and mean for each analyzed variable. During the

execution of the tests, Monkey generates 7000 interaction events with the application

interface. The “Total" column indicates that on average Monkey took longer to run the

tests on applications that use DroidEH than on applications that use ACEM. In fact,

the result of the Friedman?s ANOVA test for ST (χ2 (2)=9.39, p = 0.008) showed that

there is a statistically significant difference between the three variables. For seed 700,

the average for DroidEH was 96.88%, for ACEM 94%. For seed 701, DroidEH averaged

108.74% versus 92% of applications using ACEM. For seed 703 this pattern repeats itself.

For all seed values, Java-only applications have slightly longer run-time values than those

using ACEM and smaller than applications that use DroidEH, except for seed 700, where

Java has an average of 102.05%. Looking at the lines in Table 19 we can see that in

six cases Monkey could not test the application that uses ACEM and in two cases the

same applies to applications that use DroidEH, this influenced the final values of average

runtime.

5.2.2.6 Questionnaire Data

In this subsection we will describe the answers obtained from the questionnaire filled

out by the four subjects during experiment. This answers are important to have a feedback

of DroidEH usability and limitations. Another important thing to note are the improve-

ments proposed by the subjects that can be used as future directions for implementing
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Table 19: Execution Time of Monkey Tests

TimeSeed700 TimeSeed701 TimeSeed702
Application ACEM DroidEH Java ACEM DroidEH Java ACEM DroidEH Java

AndroidSecurity 103.82 97,53 111.02 97.95 121.87 92.25 99.84 105.24 86.20
BluetoothChat 100.60 103.90 137.25 108.50 118.60 116.16 75.15 133.25 126.76
Cafe 78.73 88.90 56.75 61.66 96.54 57.62 68.95 103.77 64.58
Contacts 118.02 136.23 106.75 107.54 134.28 99.86 141.17 244.23 110.55
MigrateClinic 0.0 113.65 125.78 0.0 113.65 141.85 0.0 113.65 141.85
NotesList 0.0 68.74 82.66 0.0 85.96 89.18 0.0 107.65 88.82
MediaPlayer 88.95 86.22 81.83 89.35 59.12 68.52 113.55 67.92 79.91
Bitcoin-Wallet 110.83 0.0 117.32 98.82 92.10 97.13 105.56 0.0 103.80
k-9-master 117.35 103.88 96.62 110.10 114.03 67.16 123.71 120.33 86.05
FalaNatal 108.40 109.86 104.56 116.96 115.42 102.11 97.17 120.81 104.72

Mean 94 96.88 102.05 92 108.74 93.18 92.98 115.02 99.42Total Sum 1504 1550.17 1020.54 1472.08 1739.96 931.84 1487.74 1840.33 994.24

DroidEH.

The first question of questionnaire is related to what functionalities of the approach

used were useful. Subjects points out that “DroidEH allows exception handling to be

done externally to the source code of the application, allowing a modularization of error

handling functions and a broad view of where they can occur”. Another subject says that

“in DroidEH the fact that we do not change the original code in practically anything to be

able to use it prevents errors related to the adaptation of the project to use the tool”. A

subject points out that “DroidEH approach allows the exception handling specification to

be well detailed”. The individual implementation for each type of exception thrown in the

functions can be very useful. We can see that the modularization of exception handling is

seen as a good thing by the subjects and the global view of exceptions of the application

it’s another good funcionality for the subjects.

The second question is related to difficulties encountered during refactoring. This data

is important to know what we need to improve to benefit from the developer’s use of the

tool. Subjects points out that the “exhaustive registration of exceptions inside DroidEH

annotations makes the process slower than treating the exception in the code itself”.

This can be improved by providing autocomplete functionality. One subject argues that

“DroidEH requires a knowledge of the whole flow of exceptions and a detailed knowledge

of the code base, making the library difficult to use in applications with a high number

of classes or by users who are not well versed in the source code of the application”.

Another observation of the subjects was that “the process of describing the exception

handling with DroidEH is quite repetitive, but it requires a lot of attention, since there

is a lot of naming and, if they are inserted erroneously, they do not present any type of

error in time compilation”. A subject said that “the amount of annotations can end up
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being huge depending on the application, the class for handling the exceptions can get

huge and with a difficult reading”.

While DroidEH allows you to make extremely detailed and targeted exception han-

dling, it also allows you to define generic handlers for multiple exceptional channels that

filter generic exceptions, which may be an option for developers who have little knowl-

edge of the application or want to generalize treatment in some part of the code. It is also

interesting that DroidEH offers standard handlers for some types of exceptions that can

be reused by the developer.

The last question of the questionnaire asks the subjects to point out functionalities

that could be added in the tool. The subjects suggested some improvements: A path that

searches through the code base for throw-exceptions and automatically registers them as

"exception sites", or a way to create self-completion for the information being entered by

the programmer in the annotations , which are currently treated only as normal strings;

The writing of the RaisingSites and the Channels is very repetitive and end up getting

big, a new form of writing can be thought, for example the exceptions treated in the

Channels can be specified in another space and associated with a name, diminishing the

size of the Channels; The intermediate is still very limited, it should allow specification

between different classes.

The suggestions are directly related to Handler class writing and annotation, which

has proved to be a repetitive and tiring process at times and should be taken into account

in the implementation of another version of DroidEH.

5.2.3 Threats to Validity

This section discusses threats to validity that can affect the results reported in this

work.

Internal Validity: Threats to internal validity are mainly concerned with unknown

factors that may have had an influence on the experimental results (WOHLIN et al., 2000).

To reduce this threat, we have selected a benchmark used to assess ACEM approach.

Construct Validity: Threats to construct validity concern the relationship between

the concepts and theories behind the experiment and what is measured and affected

(WOHLIN et al., 2000). To reduce these threats, we use metrics that are widely employed

to measure software robustness (ROBILLARD; MURPHY, 2003; FU; RYDER, 2007; COELHO

et al., 2008; MAJI et al., 2012).
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External Validity: External validity issues may arise from the fact that all the

data is collected from 10 application that might not be representative of the industrial

practice. However, the heterogeneity of these systems helps to reduce this risk. They

are implemented in Java, which is a representative language of the Android ecosystem.

Furthermore, the characteristics of the selected applications, when contrasted with the

state of practice, represent a first step towards the generalization of the achieved results.

Reliability Validity: This threat concerns the possibility of replicating this study.

The source code of the target applications is publicly available. The way our data was

collected is described in detail in Section 5.2.1.4. Moreover, all the tools used are available

to obtain the same data. Hence, all the details about this study are available elsewhere

(OLIVEIRA et al., 2018b) to enable other researchers to control it.
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6 Related Works

6.1 Exception Handling and Robustness Studies

The first exception handling mechanisms date back to the early sixties with LISP

(GABRIEL; STEELE JR., 2008) and PL/I (GRONER, 1971). Since the early days of excep-

tion handling, researchers have studied its relationship with program robustness (PAR-

NAS; WURGES, 1976; MELLIAR-SMITH; RANDELL, 1977; LISKOV; SNYDER, 1979). This

early work focused on the design of new mechanisms aimed at promoting robustness

and modularity (LISKOV; SNYDER, 1979), on principles guiding the design and use of ex-

ception handling to improve these quality attributes (PARNAS; WURGES, 1976), and on

the design of integrated solutions for software fault tolerance that leverage exception han-

dling (MELLIAR-SMITH; RANDELL, 1977). Although much research has been conducted

to study different aspects of the design and use of exception handling since then, there

was a notable scarcity of empirical studies in this area. Only in the last 15 years, with

the wide availability of large-scale, complex open source software systems, such empir-

ical studies have started to surface. A number of these studies analyse design issues of

exception handling mechanisms and practices of software developers that affect program

robustness.

Marinescu (MARINESCU, 2011) analyzed three Eclipse releases and discovered that

classes that throw or handle exception have a higher defect-proneness than classes that

neither throw nor handle exceptions. A follow-up study by the same author (MARINESCU,

2013) has shown that classes using exceptions in Eclipse are more complex than those

not using exceptions. Moreover, classes that use well-known exception handling antipat-

terns (MCCUNE, 2006), such as general catch blocks and general throws clauses have

a higher probability of exhibiting defects than classes that do not employ such idioms.

These studies differ from ours from section 3.1 in a number of ways. First, they do not

target Android applications and analyze a single application, whereas we have studied 16.

Second, they employ bug reports as indicators of defect-proneness, whereas we employ
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potentially uncaught exceptions elicited by means of static analysis, similarly to previous

work (ROBILLARD; MURPHY, 2003; FU; RYDER, 2007). Third, we identify change scenarios

that are more likely to impact program robustness.

Sawadpong et al. (SAWADPONG; ALLEN; WILLIAMS, 2012) analyzed six major releases

of Eclipse and compared the defect densities of exception handling code and normal code.

They used scripts to extract exception handling information from the source code of

applications and also analyzed the bug reports. Their findings show that the defect density

of exceptional code for the subject applications is considerably higher than the overall

defect density.Our studies are similar in the sense that we both investigate the impact of

exception handling on software robustness. However, our study is more precise because

it describes the recurring change scenarios where possible exception handling faults were

introduced, whereas their study only shows that exception handling code is more fault-

prone than normal code. Moreover, our studies also differ in: (i) the metric used to measure

robustness: we used the metric of Uncaught Exception Flows, while they used the metric

Defect Density ; (ii) the scope of the study, since we analyzed 16 different apps and a

total of 112 versions; and (iii) the target application platform since, as shown previously,

Android apps make extensive use of constructs that are not available for standard Java

applications.

Coelho et al. (COELHO et al., 2008) studied the use of exception handling and soft-

ware robustness in the context of aspect-oriented programs. The authors analyzed three

medium-sized programs implemented in AspectJ. Similarly to our approach, they assessed

the subject applications during their evolution and used the Uncaught Exception Flows

metric. Their study showed that the exception handling code is error-prone, since the

number of uncaught exception flows increased during program evolution. Nonetheless,

Coelho et al. did not employ change metrics and did not explore the relationship between

maintenance tasks and software robustness. Moreover, they analyzed fewer systems (only

3), these systems were not Android apps, and did not include constructs for asynchronous

execution.

Linares-Vasquez et. al. (LINARES-VáSQUEZ et al., 2013) investigated the relation be-

tween the success of Android applications (in terms of user ratings) and the change- and

fault-proneness of the underlying APIs. They have computed bug fixes and changes in

the interfaces, implementation and exception handling of 7.097 Android applications be-

longing to different domains. They found that APIs used by successful apps (high user

ratings) are significantly less change- and fault-proneness than APIs used by unsuccessful
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apps. In terms of changes to the set of exceptions thrown by methods, the study did not

observe any significant difference between different levels of rating. These studies comple-

ment ours. Furthermore we have analyzed exception flows that may cause unknown bugs,

due to our focus on the code, instead of preexisting stack traces or bug fixes. Also, we

elicited change scenarios that have a negative impact on software robustness.

Cacho et al. (CACHO et al., 2014) conducted an empirical study with the goal of

understanding the relationship between changes in C# programs and their robustness.

This study targeted C# applications, whereas the subjects of our study are Android

apps. Previous work has shown that Java and C# applications differ in the ways they use

exception handling (CABRAL; MARQUES, 2007). Also, as mentioned before, Android apps

make extensive use of constructs for asynchronous execution, and we have investigated

whether the use of these constructs impacts program reliability. This kind of investigation

could not be conducted within the context of C# applications.

Shaw and colleagues (SHAW; SHAW; UMPHRESS, 2014) evaluated 10,740 apps from the

Slide Me market, and analyzed them using quality related metrics. The authors down-

loaded the APK files and reverse-engineered using the apktool to extract the Dalvik

bytecode, with resources and the manifest file. The purpose of the analysis was predict

marketing rating based on quality metrics by verifying the correlation between rates and

the metrics. Our work performs a static analysis using the APK files to extract exception

handling and structural information of applications, but differently from this work, we do

not reverse engineered the APK files, we use the static tool Dexpler to analyse applica-

tions. In this work the authors proposes size metrics, object oriented metrics and Android

Specific metrics that directly influence the user’s experience, all this metrics can be ob-

tained from an automatic way. Differently from this work, we propose change metrics and

robustness metrics. The change metrics are only obtained from manual analysis.

Bhattacharya et al. (BHATTACHARYA et al., 2013) performed an in-depth empirical

study on bugs in 24 widely-used open-source Android apps from diverse categories such

as communication, tools, and media. They sought to understand the nature of bugs and

bug-fixing processes associated with smartphone platforms and apps. They defined several

metrics to analyze the bug fixing process. They showed how differences in bug life-cycles

can affect the bug fixing process and performed a study of Android security bugs. The

authors found that, although contributor activity in these projects is generally high, de-

veloper involvement decreases in some projects; similarly, while bug report quality is high,

bug triaging is still a problem. Furthermore, they observed that in Android apps security
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bug reports are of higher quality but take more time to fix than non-security bugs. This

study analyzed 24 Android apps, one version per app, while in our study we analyzed

seven versions of each app taking into account the evolution of the applications. The fo-

cus of our study is on the analysis of the source code of the applications and analysis of

the exceptional flows that may cause unknown bugs. Our study did not focus on security

bugs.

White et al. (WHITE et al., 2015) proposed an approach to automate the process of

reproducing a bug by translating the call stack from a crash report into expressive steps to

reproduce the bug and a kernel event trace that can be replayed on-demand. To evaluate

the solution, they used six open-source Android apps infected with errors. Our study

evaluates how changes in the source code can impact the robustness of the application

during evolution and analyzed multiple versions of the 16 subject applications.

In a different vein, Bavota et al. (BAVOTA et al., 2015) conducted two case studies to

investigate how the fault- and change proneness of APIs used by Android apps are related

to their success estimated as the average rating provided by the users to those apps. In

the first study the authors analysed 5,848 free Android apps from the Google Play Market

and investigated how the ratings that an app had received correlated with the fault- and

change-proneness of the APIs such app relied upon. They used a set of tools to do this

automatically, firstly they built a crawler to downloading the apps of market and select

apps that have at least 10 votes, then they used a tool to convert the APK file to JAR

file and a tool to extracted references/calls to API classes. Furthermore, the authors have

mining commits from developers to identify bug-fixing commits activities and finally to

analyse changes affecting APIs. In the second study the authors surveyed 45 professional

Android developers to assess (i) to what extent developers experienced problems when

using APIs, and (ii) how much they felt these problems could be the cause for unfavourable

user ratings. Differently of this study, we analyse the Dalvik bytecode directly from APK

file. The authors justified the second study because they did not have visibility over the

source code of such apps and of their issue trackers and it is difficult to provide a strong

rationale and, possible, a cause-effect relationship for findings of first study. In our study

we conduct a manual analysis of source-code to identify change scenarios between versions

of apps and correlate change metrics with the others metrics.
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6.2 Exception Handling Approaches

ACEM (CHOI; CHANG, 2015) is the most related approach to our one since they

propose a component-level exception handling to allow developers to build robust An-

droid applications. They extended Android components like Activity, Service and

BroadcastReceiver in a manner that all life cycle methods are protected by a generic

try/catch block for catching all exceptions and relaunching to other components. All these

methods have java.lang.Throwable in its exception interface. This approach differs

from ours in a number of ways. First, they replaced the startActivity method for

startActivityFor-

Result in a way that all Activities should return a result in order to support the prop-

agation of exceptions. This mimics the exception handling mechanism of the standard

Java and inherits all its side effects. For instance, there is no holistic view of the excep-

tion handling code and no reliability checks for exception control flows. Second, to use

this approach, the developer needs to change all Activity, Service and BroadCastReceiver

classes to use the ones provided by the proposed solution. It is also necessary to change

calls to onClick, startActivity, and startActivityForResult methods.

In contrast, DroidEH offers developers an approach that supports a holistic view

of the exception handling behavior. There is no need to change the application code,

it is enough to just implement a handler class and use annotations. Finally, DroidEH

performs reliability checks to ensure that exceptions are being handled appropriately. We

have compared those approaches (and included Java in this comparison) in Chapter 5.2

and the observed results showed that DroidEH led to fewer uncaught exceptions and

crashes. This indicates that the use of DroidEH abstractions helps to improve program

robustness.

The work of (BEZERRA et al., 2019) presents an empirical study of Inter-Component

Exception Notification in Android Platform. They investigated how Android developers

deal with the problem of exceptions raised in parts of the application that are not respon-

sible for handling the error, checking if exception notification were used in projects and

how they were used. This is an inherent problem of the Android platform architecture that

this research also tries to mitigate with the use of DroidEH. This work aims to contribute

with the implementation of better mechanisms for communicating exception notifications

in Java-based Android applications. The methodology proposed for this research work is

more comprehensive, as it addresses other issues related to other non-functional require-

ments, as well as proposing a solution to improve the robustness of Android applications.
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DroidEH solution addresses this problem globally through the EFlow model, protecting

the different entry points of the application.

The work of (XIE et al., 2020) presents an approach to automatically detect exception

handling defects related to external resources in Android applications. The work aims to

mitigate problems of robustness of applications by implanting exception control codes into

the input application an running UI tests. They evaluated the approach in six different

types of applications with stable operation. This work is similar in terms of the problem

faced, but the approaches are different in the sense that this work focus on the detection

of defects and the present research work focus on a more comprehensive approach and

the handling of errors that may occur in the application.

Other approaches related to our are described in subsection 2.6.1. These approaches

implements the Eflow model like DroidEH but are not focused in Android applications

and in solving the problems that were reported in this work related to exception handling

in Android platform. The implementation included specific handling methods for Android

abstractions, such as method terminate, for example. In addition DroidEH implements

HFT concepts like the HFT controller and the HFT agent.

6.3 Robustness of Android applications

Several studies (KECHAGIA; SPINELLIS, 2014; ZHANG; ELBAUM, 2012; COELHO et al.,

2017, 2015; WU et al., 2017; CHOI; CHANG, 2015) analyze issues in implementing excep-

tion handling code and practices of software developers that affect program robustness

in Android. For instance, Kechagia and Spinellis (KECHAGIA; SPINELLIS, 2014) examine

crash stack traces from 1800 Android applications. Their main finding is that most crashes

originated from unchecked exceptions. More recently, Coelho and colleagues (COELHO et

al., 2015) analyzed 6005 stack traces extracted from issues reported for 639 Android open

source projects. They discovered that unexpected cross-type exception wrapping, e.g.,

catching an OutOfMemoryError and throwing an Exception that wraps it, and the

use of undocumented exceptions, both checked (for the standard Android library) and

unchecked (for both the Android library and third-party code), can be considered bug

hazards (BINDER, 2000), circumstances that increase the chance of a bug to be present

in the software. Zhang and Elbaum (ZHANG; ELBAUM, 2012) studied bug reports of five

popular open source applications for the Android phone platform. By searching for “ex-

ception”, “throw”, and “catch” in the bug tracker and manually reviewing the results, the
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authors have identified 282 bug reports. Almost a third of the bugs that led to code

fixes have been recognized as being caused by poor implementation of exception han-

dling constructs. The authors also proposed an approach for amplifying existing tests to

validate exception handling code associated with external resources. This work targets ex-

ceptions stemming from accesses to external resources, whereas our study does not make

this distinction. Wu and colleagues (WU et al., 2017) analysed the Android source code

and perceived that exceptions not caught by any application handler (or entry point han-

dlers), will finally be trapped by function uncaughtException which is part of the exception

handling mechanism of the Android platform. This function kills the exceptional process

straightforwardly regardless of the process’ attribute (WU et al., 2017). They have designed

a protection extension, named ACEM, an Android patch that re-catches the uncaughtEx-

ception exception and avoids the critical system services to be killed exceptionally. In a

different vein, Choi and Chang (CHOI; CHANG, 2015) develop a component-level exception

handling to allow developers to build robust Android applications. None of these studies

focus on analysing the trade-off between exception handling and energy efficiency/perfor-

mance. Moreover, they do not provide an approach to engineering efficient system-wide

exception handling code.

6.4 Energy Estimation and Modeling for Mobile Appli-
cations

Measuring energy consumption in mobile application with power tools is expensive,

time-consuming and requires skills out of the domain of most practitioners (CRUZ; ABREU,

2019). To overcome these issues, many approaches have been proposed to measure energy

consumption using software-based estimators (Hao et al., 2013; CRUZ; ABREU, 2019). Hao

and colleagues (Hao et al., 2013) propose a lightweight approach that provides fine-grained

estimates of energy consumption at the code level. It achieves this using a combination

of program analysis and per-instruction energy modeling. Le et al. (LE; BUI; TRUONG,

2019) proposed an approach to modeling and estimating power consumption based on

the definition of power consumption automaton of hardware components. In this ap-

proach, developers can model source code with respect to power consumption and this

can pinpoint which parts of source code might lead to energy leaks. Other researches

observed that wrong choices made by programmers during the development tend to neg-

atively influence the energy usage of mobile apps (PALOMBA et al., 2019). For instance,

Sahin and colleagues (Sahin et al., 2012) highlighted the existence of design patterns that
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negatively impact the power efficiency, as well as the role of code obfuscation in the

phenomenon (Sahin et al., 2014). Linares-Vasquez et al. (LINARES-VáSQUEZ et al., 2014)

studied the API usage of Android apps and their relationship with energetic character-

istics of apps. More recently, paper (CHOWDHURY et al., 2018) investigates the impact

of the logging on Android application, finding that although there is little to no energy

impact when logging is enabled for most versions of the studied applications, about 79%

(19/24) of the studied applications have at least one version that exhibit medium to large

effect sizes in energy consumption when enabling and disabling logging. Different from

the above approaches, this work builds the energy consumption models to explore factors

of energy consumption prevalent in the execution of the exception handling behaviour.
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7 Final Remarks

This work is focused on improving the exception handling for Android applications

and to provide the design of fault tolerant for Android applications. These applications

are widely used by users worldwide and provide the most diverse services and purposes

making use of device components like GPS, Camera, network connection, and so on.

Hence, these devices have different characteristics and resource capacity.

Android applications are mostly written in Java that have an EHM where the program

can indicate that an error has occurred by throwing an exception and this exception can be

handled locally in the code. If the exception is not handled, the application may crash. So

Android applications written in Java inherit this exception handling mechanism. However

Android applications are different from standard Java applications, these applications have

abstractions that are not present in Java applications and represent everything, from the

user interface on the device, to services that run in the background. In addition, Android

applications have multiple entry points that can throw exceptions during application

execution and can be activated asynchronously. In Java standard applications this does

not happen, there is only one entry point for the program. Android applications also have

a different form of communication between components, through Intent objects. The Java

EHM was not developed with these specific differences in mind, making it as a solution

that does not fully address the problems that need to be mitigated in the exception

handling of Android applications.

The exception handling mechanism provided by the Android platform has introduced

two main problems for application developers: (1) the “Terminate ALL" approach and (2)

the lack of a holistic view on exceptional behavior. Also, the use of exception handling may

impact on the energy consumption of Android applications, in this way the application

can consume more battery during its operation and impair the use of the device.

Studies (COELHO et al., 2015, 2017; WU et al., 2017; OLIVEIRA et al., 2018) have shown

that there are problems related to the robustness of Android apps and lack of robust-
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ness from users’ perspective (KHALID et al., 2015; MAN et al., 2016; LIM et al., 2015). Bat-

tery consumption is among the main complaints of users (KHALID et al., 2015; MAN et

al., 2016), related to applications draining battery. This work evaluated the impact of

exception handling on robustness and energy consumption of Android applications and

proposed a general engineering methodology to help developers in making informed de-

cisions about which architectures to select during the application development process.

Through an interactive process the developers can make these decisions taking into ac-

count non-functional requirements such as robustness and energy consumption to build

more efficient and reliable applications. A set of tools were developed and used to support

this methodology, including the proposal for a new exception handling mechanism for

Android applications.

The methodology was applied in real applications and proved to be satisfactory in

achieving the objective of allowing the developer to make decisions taking into account

these non-functional requirements and to determine through the trade-off between these

requirements, different operation modes that can be implemented in the application using

the DroidEH. The evaluation of DroidEH was also carried out in comparison to Java and

a third-party implementation. The results showed that the use of DroidEH in applications

of the study can enhance its robustness.

7.1 Main Contributions

To solve the problem presented in section 1.1, this work proposed a methodology to

efficient engineering of Android applications and a new exception handling mechanism,

called DroidEH, to support this methodology. Studies have also been carried out to better

understand the impact of exception handling on the robustness and energy consumption

in Android applications, and was carried out the evaluation of the proposed methodology

and the proposed mechanism. The main contributions of this work are:

• Important findings from the first study to analyze the relationship between the usage

of Android abstractions and uncaught exceptions: Increases in the number of uses of

Android-specific abstractions are not in general related to increases in the number of

lines of exception handling code; An increase in the use of Android-specific abstrac-

tions positively correlates (with a p-value of 0.01) with an increase in the number of

uncaught exception flows; New exceptions being thrown without the accompanying

try blocks; No implementation of the UncaughtExeptionHandler interface in
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the applications (OLIVEIRA et al., 2018).

• Study to investigate whether the use of exception handling strategies has an im-

pact on energy consumption of Android applications. The results indicate that it is

important to evaluate the energy consumption at exception handling level to make

better EH design decisions.

• A comprehensive methodology that supports trading off power consumption, relia-

bility and resource usage during exception handling design, a selection of tools and

guidelines that support the methodology, including the automated model genera-

tion.

• Proposal and evaluation of a new exception handling mechanism for Android appli-

cations that uses the concepts of the EFlow model and HFT to improve the exception

handling and robustness of Android apps (OLIVEIRA et al., 2018a; OLIVEIRA, 2018),

that supports the proposed methodology.

7.2 Limitations

This work proposed a methodology for designing efficient Android apps and the EHM

DroidEH. This methodology supports the developer or system designer in choosing appro-

priate HFT strategies for the application through an interactive process. The main limi-

tation is that these tools that support the methodology are not integrated with DroidEH,

and the model is not fully integrated with the application code.

Regarding the DroidEH, usability needs to be improved based on the questionnaire

data applied on the study of chapter 5.2. To use the current version of DroidEH the

developer needs to import the library and annotation module on Android Studio, could

be interesting investigate a better integration with this IDE and with other IDEs like

IntelliJ IDEA. The DroidEH was evaluated with Android applications written only in

Java language, maybe it’s interesting to evaluate the solution in Android applications

written with Kotlin or generated by frameworks based in JavaScript, for example, to see

if the solution needs any improvement.

Regarding to the experiments carried out, the energy consumption experiments used

the batterystats tool from Android to get the battery data and visualize the data

with Battery Historian tool. This is a good option because the visualization of the data

is intuitive and the data collected is more accurate than using other types of Android
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profilers, but to have more accurate energy consumption data the experiments could use

a hardware solution with a proper power meter. The energy consumption experiments

of applications using some EH strategies gave an indication that can be interesting to

evaluate the power consumption at that level in the application, the chosen strategies

were simple to implement. It would be a good improvement to perform experiments with

more applications and more complex EH strategies to expand the experiments.

7.3 Future Works

Future work could focus on the integration of the tools that support the proposed

methodology, with this integration the changes in the model can be reflected in the appli-

cation code more efficiently, including the changes that need to be done using DroidEH,

like the instrumentation of the code based on the model behaviour or the addition of new

explicit exception channels and handlers. Another future work could focus on improving

the DroidEH implementation to mitigate the limitations of usability, integration with

other IDEs, and different approaches to programming Android applications. Another op-

tion is migrate the solution to a web tool, with reporting, instrumentation, usage guides

and tutorials. To better explore the proposed methodology, it can be applied in several

applications from the critical domains, such as healthcare, law enforcement, well-being,

transport and smart cities. As well as evaluating the use of the methodology by more

developers who will be able to evaluate it. Another direction for future work can be to

investigate further the trade-off between exception handling and energy consumption, do-

ing experiments with EH strategies more complex and using a hardware solution with a

proper power meter to collect energy data.
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APPENDIX A -- Questionnaire form applied
in the DroidEH experiment

Experimento - Informações

Nome:

Idade:

Gênero:

•Feminino

•Masculino

Nome do Curso/Área de aruação:

Nível:

•Graduação

•Mestrado

•Doutorado

Quais funcionalidades da abordagem utilizada foram úteis? (Explique o motivo para

ambas).

Quais dificuldades foram encontradas durante a refatoração?

Quais características você acha que deveriam ser adicionadas nas abordagens? (Ex-

plique o motivo).



149

APPENDIX B -- SIM file example for Visit
Natal baseline version

#aliaspk "ncl.cs.prime.archon.arch.modules.tasks"

#estim ".TaskEstimation"

#assign User ".UserModelT" // UserModelT.TASKS = 0 Dummies: 1

#setup User "simulate: 360000; delayMean:5000; delaySDev:1000; idlePower

:0.554; sleepPower:0.554; battery:10; pTask1:0.000"

// Component definitions and parameters

#assign UpdateRatesIntentService ".FaultyTask"

#setup UpdateRatesIntentService "type:UpdateRatesIntentService; preDelay

:10; postDelay:0; power:2.772; pEx1:0.38; pEx3:0.01"

#assign LocationService ".FaultyTask"

#setup LocationService "type:LocationService; preDelay:10; postDelay:0;

power:1.108; pEx1:0.21; pEx3:0.02; pEx2:0.19"

#assign Catch1 ".Catch"

#setup Catch1 "delay:0; power:0"

#assign MergeTask1Catch11 ".MergeAck"

#assign MergeTask1Catch12 ".MergeAck"

#assign MergeTask1Catch13 ".MergeAck"

#assign Catch2 ".Catch"

#setup Catch2 "delay:0; power:0"

#assign MergeTask2Catch21 ".MergeAck"

#assign MergeTask2Catch22 ".MergeAck"

#assign Timer1 ".Invoker"

#setup Timer1 "period: 10"
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#assign Timer2 ".Invoker"

#setup Timer2 "period: 10"

#assign Retry1 ".Retry"

#assign Retry2 ".Retry"

// Interactions between Applications components

// ------- DUMMY -------

User.ack1 = User.req1

// Task->Invoker asynchronous

Catch1.ex = LocationService.ex

Retry1.req = Timer1.req

LocationService.req = Retry1.nextReq

Retry1.nextAck = LocationService.ack

Retry1.retry = Catch1.catch1

MergeTask1Catch12.ack1 = Retry1.ack

MergeTask1Catch12.ack2 = Catch1.catch3

MergeTask1Catch13.ack1 = MergeTask1Catch12.ack

MergeTask1Catch13.ack2 = Catch1.catch2

Timer1.ack = MergeTask1Catch13.ack

LocationService.nextAck = LocationService.nextReq

// Task->Invoker asynchronous

Catch2.ex = UpdateRatesIntentService.ex

Retry2.req = Timer2.req

UpdateRatesIntentService.req = Retry2.nextReq

Retry2.nextAck = UpdateRatesIntentService.ack

Retry2.retry = Catch2.catch1

MergeTask2Catch22.ack1 = Retry2.ack

MergeTask2Catch22.ack2 = Catch2.catch3

Timer2.ack = MergeTask2Catch22.ack

UpdateRatesIntentService.nextAck = UpdateRatesIntentService.nextReq

@loop

!

[^User.finished] #jump @loop

[^Timer1.finished] #jump @loop

[^Timer2.finished] #jump @loop

#estprint

!stop
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APPENDIX C -- JSON file generated by
Archon tool

{

"Total time": 360003796,

"Total time (str)": "100h 0min 3s",

"User commands": 72117,

"Mean response time": 0,

"Total energy": 1038331,679,

"Total active energy": 838889,576,

"Total exceptions": 17113077,

"Simulation time": 68092,

"Energy per component": {

"User (idle)": 199442,103,

"LocationService": 222839,464,

"Catch2": 0,000,

"Catch1": 0,000,

"User (sleep)": 0,000,

"UpdateRatesIntentService": 616050,112

},

"Calls per task type": {

"updateratesintentservice": 13554060,

"locationservice": 11668758

},

"Exceptions per component": {

"LocationService (ex3)": 401432,

"LocationService (ex2)": 3817944,

"LocationService (ex1)": 4223731,

"UpdateRatesIntentService (ex3)": 221911,

"UpdateRatesIntentService (ex1)": 8448059

}

}


