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RESUMO 

 

Os curativos biopoliméricos estão sendo cada vez mais utilizados como uma alternativa 

eficaz para a cicatrização de feridas, uma vez que podem apresentar propriedades 

multifuncionais como: biocompatibilidade, baixa toxicidade, flexibilidade, 

permeabilidade, fácil remoção e dentre outras. Embora existam diversos biopolímeros 

para fins de cicatrização de feridas, um dos que mais se destacam, é a quitosana, devido 

a suas características e potencial de atuação, tal como anti-inflamatório e antimicrobiano. 

Neste contexto, este artigo teve como objetivo investigar estudos in vitro e in vivo de 

curativos de quitosana tanto isolada quanto em associações com outros componentes. Em 

estudos in vitro, foi possível analisar parâmetros como biocompatibilidade, atividade 

antimicrobiana e ensaios de liberação, confirmando resultados positivos para os curativos 

de quitosana associado com outros ativos. Nos estudos in vivo, avaliou-se o potencial da 

cicatrização em níveis macroscópicos e histológicos. Como principais resultados, foi 

observado que as feridas apresentaram taxa de cicatrização totalmente integralizada entre 

9 e 14 dias, reepitelização completa e formação de colágeno. Dessa forma, este trabalho 

revelou que é possível desenvolver curativos biopoliméricos de quitosana incorporados a 

outros polímeros ou insumos farmacêuticos ativos, visto que os resultados são 

extremamente satisfatórios, tornando uma estratégia promissora para a realização de 

estudos clínicos no tratamento de lesões cutâneas. 

 

Palavras-chave: Curativos poliméricos, feridas cutâneas, quitosana, ensaios biológicos, 

cicatrização de feridas, técnicas de caracterização.  



  

ABSTRACT 

 

Biopolymeric dressings are increasingly being used as an effective alternative for wound 

healing, since they may present multifunctional properties such as biocompatibility, low 

toxicity, flexibility, permeability, easy removal and many others. Although there are 

several biopolymers for wound healing purposes, one of the most prominent is chitosan, 

known it for characteristics and potential for action, such as anti-inflammatory and 

antimicrobial. In this context, this article aimed to investigate in vitro and in vivo studies 

of chitosan dressings both isolated and in associations with other components. In in vitro 

studies, it was possible to evaluate parameters such as biocompatibility, antimicrobial 

activity and release assays, confirming positive results for chitosan dressings associated 

with other components. In in vivo studies, it was possible to evaluate the healing potential 

at macroscopic and histological levels. As main results, it was observed that the wounds 

showed complete healing rate between 9 and 14 days, complete re-epithelialization and 

collagen formation. Thus, this work revealed that it is possible to develop biopolymeric 

chitosan dressings incorporated to other polymers or active pharmaceutical inputs, since 

the results are extremely satisfactory, making it a promising strategy for clinical studies 

in the treatment of skin lesions. 

 

Keywords: Polymeric dressings, skin wounds, chitosan, biological assays, wound 

healing, characterization techniques. 
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Abstract: Biopolymeric dressings are increasingly being used as an effective alternative for wound 10 
healing, since they may present multifunctional properties such as biocompatibility, low toxicity, 11 
flexibility, permeability, easy removal and many others. Although there are several biopolymers for 12 
wound healing purposes, one of the most prominent is chitosan, known it for characteristics and 13 
potential for action, such as anti-inflammatory and antimicrobial. In this context, this article aimed 14 
to investigate in vitro and in vivo studies of chitosan dressings both isolated and in associations 15 
with other components. In in vitro studies, it was possible to evaluate parameters such as 16 
biocompatibility, antimicrobial activity and release assays, confirming positive results for chitosan 17 
dressings associated with other components. In in vivo studies, it was possible to evaluate the 18 
healing potential at macroscopic and histological levels. As main results, it was observed that the 19 
wounds showed complete healing rate between 9 and 14 days, complete re-epithelialization and 20 
collagen formation. Thus, this work revealed that it is possible to develop biopolymeric chitosan 21 
dressings incorporated to other polymers or active pharmaceutical inputs, since the results are 22 
extremely satisfactory, making it a promising strategy for clinical studies in the treatment of skin 23 
lesions. 24 

Keywords: Polymeric dressings, skin wounds, chitosan, biological assays, wound healing, 25 
characterization techniques. 26 
 27 

1. Introduction 28 

Skin wounds consist of injuries that damage the integrity of the skin tissue, causing 29 
trauma. These wounds can be classified as acute and chronic. The first consists of a 30 
complete and orderly healing process, within a predictable time interval, depending on 31 
the depth, size and magnitude of the wound [1–3]. However, chronic wounds take longer 32 
to heal and do not follow the order of healing stages, which may present greater risks for 33 
microbial growth at the wound site [4]. Additionally, wounds can be evaluated according 34 
to their depth, being called superficial wounds, involving only the epidermis layer, having 35 
a healing time of around 10 days. While the deep dermal wound presents scarring and re- 36 
epithelialization between 10 – 21 days. Wounds that require longer healing time (>21 days) 37 
are called full-thickness wounds, due to the fact that they cause damage to the dermis and 38 
hypodermis [4].  39 

The wound healing process requires a series of complex and dynamic events that make 40 
it possible to repair the structural integrity of the skin [5]. After the appearance of an 41 
injury, the immune system activates various intracellular and intercellular pathways that 42 
promote homeostasis of the affected tissue [6]. The human body's normal response to 43 
injury occurs in 4 distinct stages, which include homeostasis, inflammation, proliferation 44 
and remodeling. Superficial, small, clean wounds are generally associated with a short 45 
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duration of the hemostatic and inflammatory phase, this is because there is blood clot 46 
formation, which is effective in stopping the bleeding and there are small amounts of 47 
cellular debris. However, deep, large, contaminated wounds require more time to heal 48 
because the initial phases of wound healing include more time for hemostasis, removal of 49 
cell debris and necrotic tissue before granulation tissue begins to form [7]. 50 

In this context, the development of traditional dressings has partially improved the 51 
progress in the treatment of cutaneous wounds, because they aim to control blood loss 52 
and healing takes place through a natural process. Thus, these dressings usually only have 53 
the potential to cover the wound and hinder the proliferation of bacteria, but are generally 54 
powerless against recurrent wound infections and tissue healing [8]. The market for the 55 
treatment of skin wounds urgently needs more efficient products and new technologies 56 
to deal with the healing processes, infection control and skin regeneration. 57 

Modern dressings are increasingly valued in the field of health care and innovation due 58 
to their multifunctional properties that are extremely essential and beneficial for wound 59 
care, such as anti-inflammatory, antioxidant and healing [9]. Over time, dressings have 60 
been modified using materials to provide appropriate properties and promote optimal 61 
healing. Thus, a dressing considered ideal must have the following main characteristics: 62 
(1) low adhesion to the wound, allowing easy removal; (2) removal of exudate while 63 
ensuring a certain degree of moisture for healing; (3) protection from bacterial infection; 64 
(4) low toxicity and (5) non-allergenic [1,9].  65 

Thus, several types of modern dressings are developed based on biopolymers or 66 
synthetic polymers for the treatment of skin lesions and can be categorized as films, 67 
hydrogels, hydrocolloids, sponges, alginates, scaffolds, mats and many others. [10]. They 68 
are usually used as a flat dressing in the form of a film, which can have different shapes, 69 
or as a free-flowing gel that can be suitable for different types of wounds [8]. 70 

Among the materials used to obtain the dressings are biopolymers, which are 71 
polysaccharides of natural origin existing in various organisms and are closely related to 72 
all types of biochemical metabolism [11]. Polysaccharides can be classified into two types: 73 
terrestrial polysaccharides and marine polysaccharides [10]. Chitin is one of the most 74 
abundant marine polysaccharides in nature after cellulose, found mainly in the 75 
exoskeletons of crustaceans such as crabs and shrimp, and its main derivative is chitosan 76 
(Figure 1). 77 

Chitosan is composed of randomly distributed N-acetyl-D-glucosamine and β (1 → 4)- 78 
D-glucosamine units [12]. When it reaches a partial degree of deacetylation, it becomes 79 
soluble in acid medium, allowing its wide use for obtaining solutions and hydrogels. This 80 
solubilization occurs through the protonation of the amine groups (-NH2) at the C-2 81 
position of the D-glucosamine repeating unit [13]. 82 

 83 

Figure 1. Structure of chitin and chitosan. Created by the author.  84 
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Chitosan has attracted significant attention from researchers due to its vast 86 
properties, such as biocompatibility, biodegradability, low toxicity and antimicrobial 87 
activity, which makes it an attractive polymeric matrix for the development of dressings 88 
[11,14–16]. Chitosan is very versatile both in terms of its applications and due to its 89 
possibilities of chemical modifications, allowing the obtaining of functionalized 90 
derivatives through the alteration of hydroxyl and amino groups [17]. 91 

An additional advantage of this polymer is the fact that it promotes the proliferation 92 
of fibroblasts [18] and prevent microbial growth in wound healing. The antibacterial 93 
property of chitosan is due to the presence of free amine groups in its structure, which can 94 
cause cellular lysis by binding to negatively charged carboxyl groups present in 95 
peptidoglycans, a constituent of the bacterial cell wall [19]. Furthermore, chitosan can 96 
induce remarkable morphological changes in fungal cells, such as structural changes and 97 
molecular disorganization, and is effective in inhibiting pathogen growth [20,21]. 98 

Therefore, this review is an approach to the different types of polymeric dressings, 99 
specifically those developed in chitosan matrix, in order to analyze and describe some of 100 
the in vitro (biocompatibility, antimicrobial activity and release studies) and in vivo 101 
(macroscopic and histopathological analysis) activities reported in the literature, since 102 
such tests become extremely essential for directing the potential application and efficacy 103 
of the dressings.  104 

Thus, this study suggests the importance of the application of these chitosan-based 105 
dressings, as well as the tests that should be performed and investigated, so that can 106 
guarantee or direct the effectiveness of dressings as therapeutic agents for efficient wound 107 
healing. The development of new biodegradable, biocompatible dressings, capable of 108 
regulating all phases of healing, and the incorporation of biological properties, such as 109 
antimicrobial, as well as having excellent mechanical and adhesive properties to improve 110 
their performance in clinical applications, may be future scope for researchers working in 111 
this area. 112 

 113 
2. Method 114 

This work aimed to present a review on chitosan-based dressings, providing 115 
information described in the literature on in vitro and in vivo studies and the main 116 
characterization techniques. For this, articles were selected from databases such as Science 117 
Direct and PubMed, during the years 2015 to 2022, with the keywords wound healing; 118 
wound dressings; polymer; polymeric film; chitosan; characterization; antibacterial 119 
activity; in vivo.    120 

 121 
3. In vitro studies 122 

In this section some of the in vitro tests mentioned in the literature for chitosan-based 123 
polymeric dressings will be reported. The assays evaluated are related to biocompatibility 124 
studies, antimicrobial and release assays, and the main information is summarized in 125 
Table 1. 126 

 127 
3.1. Biocompatibility 128 

The in vitro biocompatibility of a dressing is tested by evaluating some aspects, 129 
including cell viability and hemocompatibility. These mechanisms can reduce the rate of 130 
wound healing [22].  131 

In a skin lesion, when blood (plasma, proteins and platelets) interacts with the surface 132 
of the dressing, it can be adsorbed and cause thrombotic events [23]. In this situation, since 133 
blood is the first tissue that comes into contact with the dressing material, the dressing 134 
must have hemocompatibility to favor healing and avoid adverse effects.  135 
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The well-being or destruction of red blood cells are indicators of hemocompatibility. 136 
Generally, the lower the hemolysis value, the better the compatibility of the dressing with 137 
blood. A value of up to 5% hemolysis is allowed for dressings to be considered 138 
hemocompatible [24]. Picone et al. evaluated the hemocompatibility of a hydrogel film 139 
and reported that the dressing did not activate coagulation or fibrinolysis, due to its 140 
partial adhesiveness and non-ionic molecular structure [22].  141 

Additionally, cytotoxicity is a standard method for evaluating the cytocompatibility of 142 
dressings, and a biomaterial can be considered cytotoxic when cell viability is less than 143 
70%, according to the biological parameters determined by ISO10993-5 standards [22]. In 144 
a review study on chitosan-based hydrogels and their applications for drug delivery, 145 
Hamedi et al. reported that the toxicity of chitosan was insignificant [25]. Also in this 146 
review, one of the studies reported by Ribeiro et al., where the in vitro cytotoxicity assay 147 
of hydrogels tested on dermal fibroblasts obtained from the skin of rats was carried out, 148 
showed that the hydrogel degradation by-products are not cytotoxic [26]. 149 

 150 
3.2. Antimicrobial 151 

During the process of development and evaluation of dressings, it is essential that 152 
studies are carried out to direct and prove the antimicrobial potential of these materials. 153 
Among these, there is the antimicrobial activity, since it is an essential property that helps 154 
in the healing process of a wound and prevents infections. These tests can be performed 155 
through Antibacterial Sensitivity Tests (AST) and/or determination of the Minimum 156 
Inhibitory Concentration (MIC), to verify whether or not the dressing inhibits microbial 157 
growth. [27–29].  158 

Researchers stated that the hydrophobic character of chitosan plays an important role 159 
in penetrating the cell wall of microorganisms [30]. In gram-positive bacteria, cell wall 160 
peptidoglycans are hydrolyzed, leading to leakage of intracellular components of the 161 
bacterium. In turn, in gram-negative bacterial species, chitosan can cause changes in the 162 
permeability of the outer envelope, causing bacterial cell death, due to the impediment of 163 
nutrient transport [31].  164 

In this context, among the gram-positive bacteria most frequently related to wound 165 
infections are Staphylococcus aureus, Staphylococcus epidermidis and Bacillus cereus. While for 166 
gram-negative strains, Pseudomonas aeruginosa and Escherichia coli are reported [29,32]. 167 

The development of dressings composed of biopolymers that have intrinsic 168 
antibacterial activity and/or the incorporation of antibacterial components to these 169 
biopolymers, such as metallic nanoparticles [33–36], antibiotics, synthetic actives or of 170 
natural origin such as oils [37], have been reported and presented relevant results, 171 
providing an increase in the therapeutic potential in patients. 172 

A major advantage of these dressings is their dual delivery, that is, the ability to load 173 
more than one active component or drug into their matrix [38]. Thus, the biofunctionality 174 
of chitosan can be enriched by combining it with antimicrobials and/or bioactives [5], for 175 
example, in studies conducted with guanidine [39], hesperidin [28], capsaicin [33], as 176 
mentioned in Table 1. 177 

There are several types of metal nanoparticles that have different mechanisms of action 178 
to eliminate or inhibit bacterial growth, preventing the development of a resistance. 179 
Nanoparticles of silver (Ag), copper (Cu), gold (Au), magnesium (Mg), zinc (Zn), and 180 
titanium (Ti) are examples that can assist in the treatment of lesions through antibacterial 181 
effects [40]. 182 

According to studies by Zaitun Hasibuan et al., chitosan and cellulose film with silver 183 
nanoparticles as active principle were developed and the in vitro antimicrobial activity 184 
was evaluated against the bacteria Pseudomonas aeruginosa, Bacillus subtilis and the fungus 185 
Candida albicans. As a result, the dressings showed a large zone of inhibition for the strains 186 
tested (>10 mm), confirming both bacterial and antifungal activity [41].  187 
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In another study, Lemraski et al. developed chitosan and polyvinyl alcohol (PVA) 188 
nanofibers associated with copper nanoparticles and reported that the antibacterial 189 
activity was effective for the tested bacteria (Escherichia coli, Pseudomonas aeruginosa, 190 
Staphylococcus aureus and Bacillus cereus) [34]. 191 

According to some studies in the literature, the antifungal activity of chitosan has been 192 
shown to be less efficient when compared to the antibacterial activity. It has been reported 193 
that the level of fungal inhibition is highly related to the concentration of chitosan. Thus, 194 
chitosan dressings can induce marked morphological changes, such as structural 195 
alterations and molecular disorganization of fungal cells [20]. Such antifungal potential 196 
results were reported in the studies by Kraisit et al., in which a film of chitosan and 197 
fluconazole was evaluated in vitro, resulting in the observation of significant inhibition 198 
zones for Candida albicans. [42].   199 

        200 
3.3. Release Tests  201 

Biopolymeric dressings that have a controlled drug delivery system are shown to be 202 
extremely relevant, as they improve therapeutic efficacy, reduce toxicity and increase 203 
patient adherence to treatment by releasing the active compound at a controlled rate over 204 
a certain period of time. time. During the fabrication of a dressing, the high crystallinity 205 
and large surface areas of polymer matrices potentially influence release properties [41]. 206 
In dressings that deliver a certain amount of drug over time, the rate of drug release must 207 
be controlled to avoid under and overdose [43].   208 

Chowdhury et al. evaluated the release profile of a chitosan film loaded with neomycin 209 
for the treatment of chronic skin wounds and concluded that there was a controlled 210 
release of the drug in a pH-dependent manner. Drug release showed an increase (24%, 211 
76% and 90%) with decreasing pH (7.5 – 4.0), respectively. Thus, the acidic medium 212 
showed greater drug release, demonstrating a potential for regular topical application for 213 
wound healing. While sustained release at higher pH was beneficial for chronic wound 214 
healing [44]. 215 

  216 
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Table 1. In vitro assays of polymeric dressings 217 

Polymeric matrix Active principle Dressing type In vitro studies Strains tested Outcomes Ref. 

Chitosan 

Collagen 
- Sponge Antibacterial – AST 

Escherichia coli 

Staphylococcus aureus 

 

The dressing showed antibacterial properties, 

effective in inhibiting the growth of gram-positive 

and gram-negative bacteria on the wound surface. 

 

[27] 

Chitosan 

Collagen 
Silver nanoparticles Scaffold 

Silver Release Test 

 

Escherichia coli 

Pseudomonas aeruginosa 

Staphylococcus aureus 

 

Gradual increase of the Ag ion release rate over the 

7-day period.  

The rate of antibacterial action was > 90% against 

the tested bacteria, reaching 100% at the 0.3 mg/cm3 

concentration range of active release. 

 

 

[35] 

Chiosan 

Gallic acid 
Copper nanoparticles Gel Antibacterial – Plate Count Test 

Escherichia coli 

Staphylococcus aureus 

As the concentration of the dressing increased (0, 

10, 20, 30 and 40 μg mL-¹), the number of bacteria 

decreased, revealing a strong antibacterial effect. 

 

[45] 

Chitosan 

Honey 

Gold nanoparticles 

Capsaicin 
Nanofiber Antibacterial – AST 

Pasteurella multocida, 

Klebsiella hinoscleromatis 

Staphylococcus pyogenes 

Vibrio vulnificus 

The dressings showed satisfactory inhibition 

zones, conferring antibacterial activity against the 

tested strains. 

 

 

[33] 

Chitosan 

Keratin 

Zinc Oxide 

nanoparticles 
Hydrogel 

Cell Viability Assay 

Antibacterial Activity Test 

Escherichia coli 

Staphylococcus aureus 

Cell viability improved to approximately 95% after 

3 and 7 days of incubation. There was proliferation 

of fibroblasts, confirming the increased viability. 

The dressings showed satisfactory action against 

the bacteria tested due to the bactericidal action of 

zinc oxide. 

 

 

[29] 

Chitosan 

Sodium alginate 

Calcium alginate 

Magnesium Film 
Cell Migration Assay 

Antibacterial - AST 

MRSA 

MRSE 

Significant increase in the migration of HDFs and 

HUVECs cells. 

The films were effective to eliminate the bacteria 

adhered to them with a concentration lower than 

6.0 x 104 for MRSA and 3.0 x 104 CFU/ml for MRSE. 

[36] 

Chitosan 

Polyvinylpyrrolidone 
Titanium dioxide Gel 

Cytocompatibily Test 

Antibacterial – AST  

Hemocompatibility Test 

Escherichia coli 

Staphylococcus aureus 

Pseudomonas aeruginosa 

Bacillus subtilis 

 

The study indicated that NIH3T3 and L929 cells 

(mouse fibroblasts and embryonic cell line, 

respectively) grew very well after 7 days of 

dressing exposure, revealing biocompatibility. 

The dressings showed antibacterial activity, being 

higher against gram-positive bacteria when 

compared to gram-negative bacteria. 

 

 

 

 

 

[24] 
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 218 
HDFs – Human Dermal Fibroblasts; HUVECs - Human Umbilical Vein Endothelial Cells; MRSA – Methacillin-resistant Staphylococcus aureus; MRSE -Methacillin- 219 
resistant Staphylococcus epidermidis; CFU – Colony Forming Unit; MIC - Minimum Inhibitory Concentration; PVA – Polyvinyl Alcohol; 220 

The dressing showed a hemolysis rate of 1.14%, 

within the defined limit, considering the 

hemocompatible material. 

Chitosan 

Hyaluronic acid 
Gentamicin Film 

Drug Release Assay 

Antibacterial – AST  

Cytocompatibily Test 

      

 

Pseudomonas aeruginosa 

Staphylooccus aureus 

Decreased rate of gentamicin release and extension 

of release time. 

The film showed good bacteriostatic capacity, 

having an inhibitory effect against both strains. 

Cell viability suggested that the film was not only 

non-toxic to NIH3T3 cells, but also promoted the 

growth of NIH3T3 cells with the participation of 

gentamicin. 

 

 

 

 

 

 

[46] 

Chitosan 

Sodium alginate 
Mupirocin Film 

Drug Release Assay 

Antibacterial – AST 

Escherichia coli 

Enterococcus hirae 

Pseudomonas aeruginosa 

Staphylococcus aureus 

Bacillus cereus  

Klebsiella pneumoniae 

Mupirocin after being 2h in the middle of release, 

showed a complete release rate. 

Films with mupirocin showed antibacterial activity 

that can be used to prevent serious wound 

colonization or infection. 

 

 

 

[47] 

Chitosan 

Co-Glycolic Lactic 

Acid 

Halloysite 

Minocycline Film 
Drug Release Assay 

Antibacterial – AST 

Staphylococcus aureus 

Pseudomonas aeruginosa 

 

Slow and controlled release. 

The antibacterial effect was greater in 

Staphylococcus aureus bacteria when compared to 

Pseudomonas aeruginosa. 

 

[48] 

Chitosan 

Sodium alginate 
Hesperidin Hydrogel 

Drug Release Assay  

Cell Viability Assay 

Antibacterial Activity Test 

Staphylococcus aureus 

Pseudomonas aeruginosa 

Sustained release of hesperidin for 14 days 

The hydrogels showed cytocompatibility and 

proliferative effect on cell growth. 

Dressings containing the polymers and hesperidin 

significantly decreased the number of colonies of 

the bacteria tested. 

 

 

[28] 

Chitosan 

PVA 

 

Polyhexamethylene 

guanidine 

hydrochloride 

(PHMG) 

Sponge 

Teste de atividade 

antibacteriana da solução de 

PHMG 

Escherichia coli 

Pseudomonas aeruginosa 

Staphylococcus aureus 

All strains tested showed inhibition by PHMG with 

MIC of 0.1%. 

The number of colonies counted on Müller-Hinton 

agar plates was less than 5. 

 

 

[39] 

Chitosan 
Buriti oil (Mauritia 

flexuosa L.) 
Gel Antibacterial Activity (MIC)  

Staphylococcus aureus 

Klebsiella pneumoniae 

All strains tested showed inhibition by PHMG with 

MIC of 0.1%. 

The number of colonies counted on Müller-Hinton 

agar plates was less than 5. 

[37] 
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  221 
4. In vivo Studies 222 

Once there is satisfactory evidence of in vitro tests, one can move on to in vivo studies, 223 
which are extremely important in the development of dressings, as they identify safe 224 
levels of efficacy in wound healing, both macroscopically and histologically. The 225 
anatomical/functional similarity to humans is considered when choosing an animal 226 
model. The rodent excisional wound model makes it possible to study wound healing in 227 
terms of chronology (closure) and physiology (granulation, vasculature, formation, etc.) 228 
[38].  229 
    230 
4.1. Wound Healing 231 

Many researchers reported obtaining chitosan-based dressings and evaluated their 232 
applications in wound healing. In most studies, the investigation was carried out through 233 
macroscopic and histopathological analyses. 234 

Therefore, in these studies, the healing capacity of an injury in vivo is tested in animal 235 
models, using rats, mice or rabbits. To carry out the methodology, generally, a hairless 236 
part of the animal's skin is selected, and then excisional cuts are performed, with the aid 237 
of surgical instruments, such as a scalpel or biopsy punch, to promote the formation of a 238 
wound. Figure 2 illustrates the wound induction methodology in an animal model.  239 
 The parameter determined for the specification of wound healing in relation to 240 
macroscopic analysis is called contraction rate or also known as wound healing rate, as 241 
mentioned in some studies. For this, the size of the wound is measured and photographed 242 
on the day of the wound and on alternate days or not, until the last day of wound healing 243 
[32,33,39,49,50]. The rate of wound contraction is measured according to the following 244 
formula: 245 
 246 

Wound contraction (%) = [(initial area – final area) / initial area] x 100                   (1)  247 
 248 

Another way to evaluate macroscopic healing is by measuring the decrease in diameter 249 
during days of skin lesion observation [51]. After the period of macroscopic observation 250 
of the wounds, histopathological analysis is performed by taking skin samples from the 251 
animals in order to determine changes in tissue structure and response. 252 

Table 2 summarizes in vivo studies that contain results from tests evaluating the wound 253 
contraction rate as well as the main findings from histopathological analyses.  254 

In several studies, it was observed that between 12th and 15th days, wound healing in 255 
animals without the influence of dressings still remained incomplete, in contrast the rate 256 
of wound healing is reduced with the presence of the dressings [45,52–54].  257 

 258 
4.1.1. Macroscopic Analysis 259 

Pereira et al. developed chitosan-based films loaded with the fraction of Mansoa hirsuta, 260 
which is a Bignoniaceae plant endemic to the Brazilian semiarid region, which represents 261 
a source of phytochemicals against inflammatory processes. Excisional skin wounds 262 
measuring 5 mm in diameter were performed in the dorsal region of each mouse model. 263 
The group treated with these films achieved 40, 62 and 100% wound contraction after 5, 7 264 
and 10 days of treatment, respectively, indicating that the Mansoa hirsuta fraction 265 
improved the wound healing effect of the chitosan films due to the presence of 266 
compounds present in the fraction, such as oleanoic acid and ursolic acid (terpenoids) 267 
[55]. 268 

Labib et al. investigated the wound healing potential with the use of chitosan-based 269 
dressings with the incorporation of Melaleuca alternifolia and Rosmarinus officinalis L. 270 
essential oils separately or in combination. The excision type wound was performed, with 271 
a total thickness of 2 cm and it was observed that the mixture of essential oils in the 272 
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chitosan film allowed a wound contraction rate above 80%, and the topical application 273 
resulted in a significant increase in the wound contraction percentage 2 times higher when 274 
compared to the negative control on the 14th day [49]. 275 

Ferreira et al. conducted a study aiming to evaluate the effect of a chitosan gel 276 
associated with buriti oil (Mauritia flexuosa L.) as a healing agent. A circular excision of the 277 
wound was performed using a 0.6 cm diameter biopsy punch in the dorsal region of rats. 278 
The animals treated daily with the formulation showed higher rates of wound retraction 279 
from the 7th day. And on day 21 there was complete healing of the lesion. Thus, inferring 280 
that the association of chitosan with buriti oil accelerated the healing process due to the 281 
high antioxidant action [37].  282 

In another study, Lemraski and co-workers, prepared an antimicrobial dressing based 283 
on chitosan and PVA loaded with copper nanoparticles. An excision-type wound was 284 
performed on healthy, male, albino Wistar rat models. The Chitosan/PVA/Copper 285 
dressings showed a rapid wound shrinkage rate on day 3, around 35.92%. And on day 16, 286 
the group treated with these dressings showed complete healing, while the wound 287 
contraction rate in the negative control group was still at 90% [34].  288 

Additionally, Al-Musawi et al. developed chitosan and honey-based dressings loaded 289 
with capsaicin and gold nanoparticles. To analyze the wound healing process, the 290 
dressings were used on a sectional wound on the dorsal side of rabbits. The chitosan/ 291 
honey dressings associated with capsaicin and nanoparticles performed the best among 292 
the dressings tested, with a 100 percent decrease in wound size within 10 days. The 293 
researchers also noted that the prepared dressings adhered easily to the wounds without 294 
the need for a biological adhesive [33]. 295 

Li et al. developed a chitosan and collagen dressing loaded with silver nanoparticles. 296 
In this study, deep second-degree burns were induced in rats and the dressings were 297 
replaced every 2 days. Until day 7 there was no significant difference between the groups. 298 
However, the groups treated with chitosan/collagen and chitosan/collagen/silver showed 299 
a higher healing rate when compared to the natural healing group (saline) between days 300 
10 and 14. These two groups, at day 21 showed healing rates greater than 90% [35]. 301 

In a recent study, Yue et al. prepared and evaluated an antibacterial dressing based on 302 
chitosan-PVA and polyhexamethylene guanidine hydrochloride to accelerate wound 303 
healing in infectious skin repair. A full-thickness wound model of 10 mm diameter was 304 
performed on the dorsal region of rats. After surgery, the sponges were changed every 3 305 
days. On day 14, the wounds treated with this dressing had a wound healing rate of more 306 
than 80%, faster than the groups treated with the other dressings tested [39]. 307 

  308 
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Table 2. Evalutation of healing rate and histopathological analysis of in vivo studies 309 

Polymeric matrix Active principle Dressing type In vivo studies Method 
Oberservation 

period 
Animal model Results Ref. 

Chitosan 

Poly (lactic acid) 
- Film 

Wound contraction 

rate 
Excisional wound 15 days 

Rat 

The animals treated with the films showed a 

contraction rate greater than 95% in 10 days. 

[54] 
Histopathological 

analisys 

Hematoxylin and 

Eosin (H&E) and 

Masson’s trichome 

staining  

After the 15th day 
The dressings allowed more blood vessels 

and hair follicles to form. 

Chitosan 

Co-glycolic lactic 

acid 

Halloysite 

Minocycline Film 
Wound contraction 

rate 
Burn wound 12  days Rat  

Wound size reduction by 70% after 12 days 

without infection. 
[48] 

Chitosan Chloramine Film 

Wound contraction 

rate 
Excisional wound 10  days 

Mouse 

The wound healing rate reached 90% in 10 

days. 

[56] 
Histopathological 

analisys 

H&E and Masson’s  

trichrome staining 
1st and 10th day 

On the 1st day, tissue with a large amount of 

fibroblasts, while on the 10th day, the wound 

treated with the film showed a reorganized 

epithelial layer with evident stratification. 

Chitosan 

Sodium alginate 
Pirfenidone Film 

Histopathological 

analisys 
Excisional wound 12  days Mouse 

After 9 days, wound contraction was faster 

when compared to the other groups (>90%). 
[53] 

Chitosan 

 
Mansoa hirsuta Film 

Wound contraction 

rate 
Excisional wound 14  days 

Rat 

The wound contraction rate using the films 

was 40, 62 and 100% after 5, 7 and 10 days of 

treatment, respectively. 

[55] 

 
Histopathological 

analisys 

H&E and Masson’s  

trichrome staining 

2nd, 7th and 14th  

dia 

The wounds treated with the dressing on the 

7th day showed advanced healing and re-

epithelialization with numerous vascular 

sprouts and keratin formation. On the 14th 

day, the wound presented a completely re-

epithelialized area. 

Chitosan 

 

Melaleuca 

alternifolia 

Rosmarinus 

officinalis L. 

Film 

Wound contraction 

rate 
Excisional wound 14  days 

Rat 

The wound contraction rate was greater than 

80%, when compared to the negative control, 

which was approximately 40%. 

[49] 

Histopathological 

analisys 
H&E staining 7th day 

The samples demonstrated complete re-

epithelialization on the 7th day occupied by 

highly cellular granulation tissue, 

inflammatory cells and neovessels. 
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Chitosan 

Alginate 
Hesperidin Hydrogel 

Wound contraction 

rate 
Excisional wound 14  days 

Rat 

 The dressings showed a healing rate of 82% 

and 98%, on the 7th and 14th days, 

respectively. 

[28] 

Histopathological 

analisys 

H&E and Masson’s  

trichrome staining 
14th day 

The hydrogel showed wound contraction 

with epidermal formation and remodeling, 

in addition to better collagen deposition 

synthesis. 

Chitosan 

PVA 

Silver 

nanoparticles 
Hydrogel 

Wound contraction 

rate 
Excisional wound 12  days 

Mouse 

Between days 9 and 12, the animals treated 

with the hydrogels had a contraction rate of 

99%. 

[52] 

Histopathological 

analisys 
H&E staining 12th day 

On the 12th day, there was complete 

epidermal coverage over the surface of the 

wound, in addition to presenting a 

granulation tissue and infiltrate of 

inflammatory cells. 

Chitosan 

Oxidized dextran 
- Hidrogel 

Wound contraction 

rate 
Excisional wound 15  days 

Rat 

On day 10, the hydrogel wound contraction 

rate was 95%, on day 15, the hydrogel 

wounds were almost healed. 

[57] 

Histopathological 

analisys 

H&E and Masson’s  

trichrome staining 
5th, 10th e 15th day 

In the 10th day, the wounds showed complete 

re-epithelialization, forming thicker, more 

organized granulation tissue, and collagen 

production was increased. 

Chitosan 

 
Vitexin Gel  

Evaluation of wound 

diameter 
Excisional wound 

21 days Rat 

In the day 21, the wound diameter had 

decreased to approximately 2 mm. 

[51] 
Histopathological 

analisys 
H&E staining 

The chitosan and vitexin gel provided re-

epithelialization and wound healing in a 

shorter time. 

Chitosan 

Polyvinylpyrrolid

one 

Titanium dioxide 
 

Gel 
Healing rate Excisional wound 16  days Rat The healing rate on the 16th day was 99.09%. [24] 

Chitosan 

Lactobacillus 

fermentum 

Lactobacillus reuteri 

Nanogel 

Wound contraction 

rate 
Excisional wound 14 days 

Rat 

The wounds treated with the dressings 

showed a contraction rate of approximately 

85% on the 8th day and on the 10th day 

healing had been completed. [58] 

Histopathological 

analisys 
H&E staining 14th day 

Epithelialization results were complete on 

day 14. 

Chitosan  

PVA 

Coper 

nanoparticles 
Nanofiber Healing rate Excisional wound 16  days Rat 

The group treated with 

Chitosan/PVA/Copper Nanoparticles 
[34] 



Mar. Drugs 2022, 20, x FOR PEER REVIEW                                            

22 

 

12 of 23 

 310 

dressings showed complete healing on the 

16th day. 

Chitosan  

Honey 

Capsaicin 

Gold 

nanoparticles 

Nanofiber 
Wound contraction 

rate 
Excisional wound 14  days Rabbit 

The wound reached 100% contraction in 10 

days. 
[33] 

Chitosan 

Collagen 

Silves 

nanoparticles 
Scaffold 

Wound contraction 

rate 

2nd degree burn 

wound 
21 days 

Rat 

The chitosan/collagen and 

chitosan/collagen/silver nanoparticles 

dressings had a rate > 90% (21st day), while 

the saline group had a rate of 60%. 
[35] 

Histopathological 

analisys 
H&E staining 21st day 

On the 7th day there was infiltration of 

inflammatory cells and formation of 

granulation tissue, as well as granulation at 

the edge of the wound. 

Chitosan 

Polyethylene 

oxide 

Genipin extract Mat 

Healing rate Excisional wound 14  days 

Rat 

The dressings showed a healing capacity of 

94% after 14 days. 

[59] 
Histopathological 

analisys 
H&E staining 

3th, 7th and 14th 

day 

On the 7th day there was deposition of 

collagen fibers in the dermis and re-

epithelialization. 
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 311 
Bektas et al. investigated the healing effect of a chitosan-based gel with vitexin, a 10 - 312 

12 mm circular wound excision was performed in the dorsal interscapular region of each 313 
rat and wound assessment was conducted for 21 days. Progressive healing was noted with 314 
the chitosan gel associated with vitexin, where by day 21, the wound diameter had 315 
decreased by approximately 2 mm [51]. 316 

Ashoori et al. developed a chitosan-based nanogel containing a probiotic supernatant 317 
complex for application to the skin to promote wound healing. Wound excision was 318 
performed in rats and the topical formulation was administered on the wounds every day. 319 
The wounds treated with the chitosan dressing loaded with Lactobacillus fermentum or 320 
Lactobacillus reuteri resulted a completed healing process on day 10, while only the 321 
chitosan dressing showed complete healing on day 14 [58]. 322 

.   323 

  324 

   325 

 326 
 327 
 328 
 329 
 330 
 331 
 332 

 333 
 334 

Figure 2. Methodology of wound induction in an animal model. Created with 335 

BioRender.com 336 

 337 

Wang et al. evaluated the potential of a dressing comprising quaternized chitosan 338 
(hydroxypropyltrimethylammonium chloride chitosan), magnesium and sodium alginate 339 
for the treatment of diabetic wounds in rat models, in which the films were changed every 340 
two days. These membranes significantly promoted diabetic wound healing on day 14, 341 
with a 85% healing rate, whereas in the control group, the wounds were still large and 342 
with yellow exudate present, indicating wound infection [36]. 343 

Thangavel et al. developed a chitosan hydrogel loaded with L-Glutamic acid to treat 344 
diabetic wounds in rats. Wound excision was performed on the dorsal region of the 345 
animal and the dressing was changed every four days until complete healing. In this 346 
study, the wounds treated with the hydrogel achieved a wound shrinkage percentage of 347 
97% in 16 days [60].  348 

Zhai et al. obtained a hydrogel dressing, composed of chitosan and keratin loaded with 349 
zinc oxide nanoparticles to evaluate antibacterial and healing activity. The wound healing 350 
rate after the 7th and 14th day reached approximately 95%. The presence of zinc oxide 351 
nanoparticles was effective in the healing speed [29]. 352 

Bagher et al. performed a study to evaluate the effect of a hydrogel based on chitosan 353 
and alginate loaded with hesperidin for the treatment of wound healing in a mouse model 354 
and observed that dressings containing these polymers together with hesperidin had a 355 
healing rate of 82 % and 98% on the 7th and 14th day, respectively [28]. 356 

 In addition, Yoon et al. prepared a photopolymerizable glycolchitosan-based hydrogel 357 
containing an inclusion complex formed between β-cyclodextrin and curcumin to 358 
evaluate the effect of accelerating wound healing. The in vivo healing test was performed 359 
using a mouse model, and the effectiveness was confirmed by measuring the remaining 360 
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area of the wound. These dressings exhibited rapidly accelerating effects on healing, and 361 
within 15 days the wound contraction rate had reduced by more than 98%. [50]. 362 

 363 

4.1.2.   Histopathological Analysis  364 
Histopathological studies are intended to provide detailed histological data on the state 365 

of a wound. To perform these tests, the tissues removed from the lesion site are fixed in 366 
10% buffered formaldehyde aqueous solution and embedded in paraffin to perform the 367 
standard H&E and Masson's trichrome stain, which can demonstrate collagen remodeling 368 
and maturation [61].  369 

After conducting a methodology for tissue removal and treatment, studies in the 370 
literature report the main results regarding epidermal or dermal remodeling, re- 371 
epithelialization, fibroblast proliferation, mononuclear and/or polymorphonuclear cells, 372 
neovascularization and collagen deposition in the dermis [62], which may indicate the 373 
wound healing process. Such studies are reported in Table 2. 374 

According to Li et al. reports, for the dressings obtained with 375 
chitosan/collagen/nanoparticle, they observed that on the first day, in each group, there 376 
was necrosis of the epidermal and dermal tissue, as well as the presence of a small 377 
quantity of inflammatory cells. On day 7 there was an infiltrate of inflammatory cells and 378 
granulation tissue formation in the groups treated with chitosan/collagen and 379 
chitosan/collagen/nanoparticle dressings. On day 14, the results for these two groups 380 
indicated epithelialization with a clear tissue structure, while in the animals treated with 381 
saline alone there was still the process of inflammatory responses and excessive 382 
granulation, without evident epithelialization [35].  383 

In the studies by Yue et al. the chitosan-PVA and Polyhexamethylene guanidine 384 
dressing were able to significantly reduce wound inflammation. After absorbing wound 385 
exudate, the moist environment provided by the sponge was also more conducive to 386 
wound skin formation without epithelial extraction and destruction of granulation tissue 387 
during dressing changes, thereby increasing the speed of epithelialization and promoting 388 
healing. On day 14, the wounds showed basic repair and reconstruction of the skin [39]. 389 

In the histological analysis conducted by Zhang et. al, the chitosan-collagen dressings 390 
showed proliferation of fibroblasts as well as inflammatory cells and neovessels on day 3. 391 
However, on day 7, the number of new capillaries and fibroblasts increased more rapidly 392 
and orderly in the chitosan-collagen sponges. And on the 14th day of healing, there was a 393 
greater proliferation of neovessels and fibroblasts. In addition, epithelialization was 394 
observed in the boundary area around the wounds [27]. 395 

In turn, the studies of chitosan films in combination with essential oils, demonstrated 396 
on day 7, complete re-epithelialization with a large underlying area of the dermal layer, 397 
occupied by highly cellular granulation tissue together with an infiltrate of inflammatory 398 
cells and neovessels. By day 14, the wound healing process was advanced with complete 399 
re-epithelialization of the epidermal area. In addition, the dermal layer showed less 400 
granulation tissue area rich in fibroblasts [49].  401 

 Ferreira et al. observed that in the initial days of injury, the animals treated with 402 
chitosan gel associated with buriti oil showed the presence of fibrin and fewer neutrophils 403 
concentrated in the wound region and more diffuse in the dermis. However, we observed 404 
the presence of macrophages infiltrate with light intensity in the dermis, besides some 405 
eosinophils and neoformed capillaries, indicating that the granulation tissue 406 
progressively invades the space of the incision. On day 14, it was reported the decrease of 407 
inflammation with the gradual increase of collagen deposition in the incisional scar, 408 
besides the observation of some macrophages and fibroblasts. Still on day 14, complete 409 
re-epithelialization was observed in the epidermis, and on day 21 the animals were 410 
completely healed, with total re-epithelialization [37].  411 
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Thangavel et al. reported in their study that dermal reconstruction could be assessed 412 
by proliferation, remodeling and maturation at the site of injury. Diabetic wounds treated 413 
with chitosan hydrogel and L-glutamic acid showed an increase in fibroblasts, collagen 414 
synthesis and deposition [60]. 415 

In the study by Pereira et al. it was possible to see that the wound treated with chitosan 416 
films and Mansoa hirsuta fraction presented, on day 2, an area of ulceration with the 417 
presence of crust, purulent fibrin exudate and inflammatory infiltrate in the underlying 418 
connective tissue area. On day 7, these wounds showed a characteristic area of advanced 419 
healing and re-epithelialization, and the presence of numerous vascular sprouts with few 420 
cell layers, as well as the formation of a thin keratin layer. After 14 days, the group treated 421 
with this film showed a completely re-epithelialized area [55].    422 

Bagher et al. also decided to deepen their studies through histopathological analysis, 423 
and with this they noted that the groups treated with chitosan and alginate hydrogels 424 
loaded with hesperidin exhibited granulation tissue formation and epidermal 425 
proliferation, as well as remodeling. Several mechanisms have been suggested to explain 426 
the effect of hesperidin on wound healing, such as eliminating free radicals, suppressing 427 
the activation of proinflammatory cytokines such as IL-1β, IL-8 and TNF-α, increasing the 428 
capacity of fibroblasts, and endothelial cell division which are essential for the 429 
regeneration of injured tissues [28]. 430 

 431 
5. Dressing Characterization Techniques   432 

One of the relevant ways that researchers use to assess the safety and efficacy of a 433 
dressing in relation to its characteristics and physicochemical properties is the use of 434 
physicochemical and mechanical characterization techniques. However, to date, there is 435 
no official standard to characterize dressings. Characterization consists of methods related 436 
to the use and applicability of these products, such as physical, microscopic appearance, 437 
identification of components of a sample, fluid absorption capacity, etc. [32]. Table 3 438 
presents the main methods frequently reported for the physicochemical characterization 439 
of dressings. 440 

 441 
5.1. Scanning Electron Microscopy (SEM)  442 

Scanning electron microscopy (SEM) magnifies the image from 10 to 500,000 times 443 
enabling the analysis and characterization of the size and shape of materials at the 444 
nanoscale. A beam of electrons is emitted along a sample and the signals emitted by the 445 
sample are detected and transformed into images. At higher resolutions it is also possible 446 
to determine the atomic arrangement of crystal structures [63]. In the analysis of dressings, 447 
the SEM can be applied to films, hydrogels, sponges, membranes and other materials, to 448 
evaluate parameters such as porosity and thickness of the material and, from this analysis, 449 
improve the development of the formulation [64]. 450 

Morgado et al. produced a membrane composed of chitosan and containing ibuprofen- 451 
cyclodextrin. The SEM analysis showed that the membranes showed a higher porosity 452 
than the CS/PVA membranes developed previously. This feature is very important, as it 453 
allows the absorption of wound exudate, keeping the environment moist and aiding in 454 
the penetration of cells and the diffusion of nutrients [65].  455 

 456 
5.2. Fourier Transform Infrared Spectroscopy (FTIR) 457 
FTIR analysis uses the atomic vibrations of a sample subjected to infrared radiation to 458 

determine functional groups, bond types and molecular conformations about it. The 459 
peaks produced in the spectrum are specific for each type of interaction and, from them, 460 
the interpretation is made. In dressings, FTIR is applied to assess the interaction between 461 
the active ingredient and the matrix [66,67].  462 

Kenawy et al. [68], for example, developed a membrane with healing properties using 463 
a matrix of chitosan and gelatin and incorporating cinnamaldehyde as an antibacterial 464 
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agent. The free NH2 groups of chitosan and gelatin were bound to the free aldehyde 465 
groups of the active. These bonds were confirmed by FTIR, where a band was observed 466 
at 1431-1444 cm-1 (which corresponds to the interaction of the active aldehyde with NH2 467 
from gelatin and chitosan). The peaks at 1665 cm-1 did not indicate the presence of free 468 
aldehydes, showing that there was a satisfactory interaction between the polymers and 469 
the cimaldehyde. 470 

 471 
5.3. Thermal analysis 472 
Differential Scanning Calorimetry (DSC) and Thermogravimetry Analysis (TGA) are 473 

thermal analysis techniques used to identify a compound according to its degradation 474 
products. In TG, the mass loss as the temperature changes is evaluated. In DSC, 475 
endothermic and exothermic events that occur according to temperature variation are 476 
analyzed [69]. The techniques can be used separately or together, for better analysis of the 477 
results. In the characterization of dressings these methods can be used to evaluate the 478 
thermal stability of the preparations and their degradation products match that of the 479 
materials used, as in Moghadas et al. where the TG assay showed that at the temperature 480 
of 200 to 400 ºC there was weight loss associated with deacetylation of chitosan, which is 481 
consistent with what was observed in other studies. In addition, higher thermal stability 482 
was observed for the films obtained with the chitosan and montmorillonite 483 
biofunctionalized with chitosan sulfate chains, due to the cross-linking of the chitosan 484 
networks [70]. 485 

 486 
5.4 Swelling 487 
Swelling capacity is a parameter related to wound infection control, because a dressing 488 

that can absorb water and wound exudates helps keep the wound environment moist, 489 
prevents airborne infections, and allows nutrients to enter. The optimal swelling rate is 490 
100-900% and varies according to the degree of cross-linking of the matrix [71,72].  491 

 492 
5.5 Mechanical Properties 493 
When a dressing stretches, it should not break easily without restricting or completely 494 

nullifying the desired application. The strength and durability of a dressing are very 495 
important properties to preserve the wound from further injury, so considerable 496 
improvements in the mechanical properties of polymeric dressings are sorely needed [73]. 497 
The mechanical properties of dressing materials, such as tensile, compression, and 498 
elasticity, can be analyzed by the universal testing machine [74].  499 

 500 

Table 3. Main techniques for physicochemical characterization and mechanical properties 501 

Physicochemical attributes Analysis objective Determination/Instruments Ref. 

Surface morphology and drug 

distribution in dressings 

A smooth structure is expected, with no 

voids and no disruption 

 

SEM 

 

[75] 

Interactions between polymer 

and active component 

Confirm the purity of the raw materials and 

investigate active component and polymer 

compatibility 

 

FTIR 
[55,75] 

Thermal behavior 

Evaluate the thermal stability of the 

prepared dressings and check the 

compatibility of the dressing components 

and the state of the drug molecules within 

the dressing 

 

DSC, TGA 

 

[75,76] 

Thickness 

 

A film-type dressing is expected to be thin, 

with uniform mechanical properties and 

SEM; 

The thickness is measured by 

taking the image on the cross 

section; Digital micrometer. 

[53,55,76] 
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 502 
 503 

6. Conclusion 504 
A dressing that possesses multifunctional features of hemostasis, controlled release, 505 

antibacterial property, biocompatibility, biodegradability, and fluid absorption are 506 
desirable candidates for improving wound healing that will benefit patients in wound 507 
care. 508 

Chitosan-based dressings can come in different forms such as hydrogels, gels, films, 509 
foams and nanofibers. The use of biopolymeric dressings associated with other bioactive 510 
agents has shown relevance in the results of in vitro and in vivo studies, due to the 511 
improvement of antibacterial and anti-inflammatory activities, biocompatibility, and 512 
sustained drug release. The addition of metallic nanoparticles, natural agents, or synthetic 513 
antibiotics in biopolymeric dressings enhances antibacterial activity, showing that the 514 
dressings can protect from bacterial infections. These properties assist in rapid wound 515 
contraction rate, tissue remodeling, granular tissue formation, and collagen deposition.  516 

Although chitosan dressings show interesting results in reported in vitro and in vivo 517 
studies for wound treatment, few studies on dressing development have reached clinical 518 
trials. Therefore, investment in the continuation of these innovative studies and the entry 519 
of the products into the pharmaceutical market is necessary, highlighting the importance 520 
of the application of these dressings for efficient wound healing.    521 
 522 
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