Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Beltrán, Carlos Antonio Ramírez"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Dissertação
    Portabilidade de modelos através de transferência de conhecimento para predição do rendimento de alunos de graduação
    (Universidade Federal do Rio Grande do Norte, 2021-03-24) Beltrán, Carlos Antonio Ramírez; Xavier Júnior, João Carlos; ; ; Araújo, Daniel Sabino Amorim de; ; Andrade, Adja Ferreira de; ; Melo, Marcelo Damasceno de;
    Um dos grandes desafios da educação, nos últimos anos, tem sido prever o desempenho dos alunos de forma certa e confiável, a fim de aplicar diversas estratégias para melhorar as suas deficiências acadêmicas. Desse modo, existem muitos trabalhos e pesquisas centrados em encontrar, de forma individual, modelos de Aprendizado de Máquina (AM), mas poucos utilizam-se do conhecimento adquirido de um curso ou disciplina para prever os resultados de outra. Dessa forma, o principal objetivo deste trabalho é buscar a portabilidade de modelos através da Transferência de Conhecimento, para poder prever o rendimento de alunos de graduação, o que será feito baseando-se nos registros do Moodle extraídos de 35 disciplinas. Através da metodologia experimental aplicada, serão avaliados cada um dos dois tipos de agrupamentos formados pelas disciplinas: os formados de acordo com o curso de graduação e os de acordo com as atividades usadas no Moodle. A extração dos dados de cada agrupamento será realizada a partir dos registros do Moodle, utilizando os seguintes métodos de avaliação: validação cruzada e hold-out. Com isso, será possível saber se essas avaliações, todas executadas sobre os modelos preditivos com o algoritmo J48, tendem a mostrar resultados diferentes em relação à portabilidade de modelos de predição. Para avaliação, foram desenvolvidos dois cenários para execução de experimentos, de modo que cada experimento é constituído por duas partes: a escolha dos modelos, utilizando o índice AUC ROC para o Experimento 1, e o F-Measure para o Experimento 2; e a validação dos modelos, utilizando o índice Precision, para o Experimento 1, e o Recall para Experimento 2. Os resultados, mesmo em fase avaliativa, permitem afirmar que é possível aplicar a transferência de conhecimento entre modelos de um mesmo grupo em alguns casos.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM