Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/handle/123456789/28917
Título: Integração das técnicas tape casting e magnetron sputtering para o desenvolvimento de sistemas multifuncionais moldáveis
Título(s) alternativo(s): Integration of the tape casting and magnetron sputtering techniques for the development of moldable multifunctional systems
Autor(es): Souza, Arthur Lanne Ricardo de
Orientador: Correa, Márcio Assolin
Palavras-chave: Fitas cerâmicas flexíveis;Tape casting;Filmes finos;Magnetron sputtering
Data do documento: 17-Dez-2019
Referência: SOUZA, Arthur Lanne Ricardo de. Integração das técnicas tape casting e magnetron sputtering para o desenvolvimento de sistemas multifuncionais moldáveis. 2019. 87f. Dissertação (Mestrado em Física) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2019.
Resumo: A demanda crescente por sistemas eletrônicos de alto desempenho e baixo consumo de energia vêm impulsionando a descoberta de novos materiais e o estudo de suas propriedades físicas e químicas. Neste sentido, a integração de diferentes técnicas nos permite o desenvolvimento de materiais multifuncionais com propriedades e características específicas para determinadas aplicações tecnológicas. Neste cenário, esse trabalho apresenta uma proposta para produção de materiais híbridos por meio da integração entre as técnicas tape casting e magnetron sputtering. Para esta finalidade, o magnetron sputtering foi utilizado para depositar nanoestruturas na forma de filmes finos tricamadas Ni81Fe19/Cr/Ni81Fe19, utilizando como substrato fitas cerâmicas flexíveis de Al2O3 e ZrO2, produzidas via tape casting. Como padrão de comparação foram utilizados filmes semelhantes depositados sobre substrato rígido amorfo (vidro), que possuem propriedades bem exploradas na literatura. As lamas, suspensões dos materiais cerâmicos, apresentaram o comportamento pseudoplástico, que é o recomendado para o tape casting, constatado pelo ensaio de viscosidade. Os filmes foram produzidos com espessura total fixa em 300 nm, porém variando a espessura das camadas de Ni81Fe19 entre 75 e 142.5 nm e a espessura da camada de Cr entre 15 e 150 nm. A caracterização estrutural revelou que a mudança de substrato utilizado nos filmes não alterou as características estruturais do Ni81Fe19. A caracterização magnética revelou que os filmes sobre as fitas flexíveis apresentam a evolução da contribuição da anisotropia fora do plano com o crescimento da espessura das camadas Ni81Fe19, assim como a dependência das propriedades magnéticas com a espessura da camada de Ni81Fe19, resultados que refletem as propriedades magnéticas encontradas em filmes finos de Ni81Fe19 sobre vidro na literatura. Como base nestes resultados, identificamos que na deposição de filmes finos Ni81Fe19/Cr/Ni81Fe19, as fitas flexíveis conservam as características do Ni81Fe19, agregando propriedades magnéticas as fitas cerâmicas de Al2O3 e ZrO2, tornando assim estas fitas flexíveis excelentes candidatas para aplicações em dispositivos moldáveis como revestimento cerâmico-magnético
Abstract: The increasing demand for low-power and high-performance electronic systems have been driving the discovery of new materials and the study of their physical and chemical properties. In this sense, the integration of diferent techniques allows us to develop multifunctional materials with specific properties and characteristics for certain technological applications. Therefore, this work presents a proposal for the production of hybrid materials through the integration between the tape casting and magnetron sputtering techniques. The magnetron sputtering technique was used to deposit trilayered thin films nanostrutures of Ni81Fe19/Cr/Ni81Fe19, using as substrate Al2O3 and ZrO2 ceramic flexible sheet produced by tape casting technique. As a comparison standard, similar films were deposited on the amorphous rigid substrate (glass), which has properties well explored in the literature. The suspensions of ceramic materials presented a pseudoplastic behavior, which is recommended for tape casting technique, and then verified through the viscosity test. The produced films presents thickness of 300 nm, where varying the thickness of the Ni81Fe19 layers between 75 and 142.5 nm and the Cr layer thickness between 15 and 150 nm. The structural characterization revealed that the change of substrate used in the films did not alter the structural characteristics of Ni81Fe19. The magnetic characterization reveals an evolution of the contribution of out-of-plane anisotropy with the increase of Ni81Fe19 layer thickness, as well the dependence of magnetic properties with the Ni81Fe19 layer thickness on flexible substrates similar to that observed on films grown onto glass substrate. Our results show that the flexible sheets retain the characteristics of Ni81Fe19, adding magnetic properties to the Al2O3 and ZrO2 ceramic tapes, thus making these flexible sheets excellent candidates for moldable device applications as ceramic-magnetic coating. The increasing demand for low-power and high-performance electronic systems have been driving the discovery of new materials and the study of their physical and chemical properties. In this sense, the integration of diferent techniques allows us to develop multifunctional materials with specific properties and characteristics for certain technological applications. Therefore, this work presents a proposal for the production of hybrid materials through the integration between the tape casting and magnetron sputtering techniques. The magnetron sputtering technique was used to deposit trilayered thin films nanostrutures of Ni81Fe19/Cr/Ni81Fe19, using as substrate Al2O3 and ZrO2 ceramic flexible sheet produced by tape casting technique. As a comparison standard, similar films were deposited on the amorphous rigid substrate (glass), which has properties well explored in the literature. The suspensions of ceramic materials presented a pseudoplastic behavior, which is recommended for tape casting technique, and then verified through the viscosity test. The produced films presents thickness of 300 nm, where varying the thickness of the Ni81Fe19 layers between 75 and 142.5 nm and the Cr layer thickness between 15 and 150 nm. The structural characterization revealed that the change of substrate used in the films did not alter the structural characteristics of Ni81Fe19. The magnetic characterization reveals an evolution of the contribution of out-of-plane anisotropy with the increase of Ni81Fe19 layer thickness, as well the dependence of magnetic properties with the Ni81Fe19 layer thickness on flexible substrates similar to that observed on films grown onto glass substrate.Our results show that the flexible sheets retain the characteristics of Ni81Fe19, adding magnetic properties to the Al2O3 and ZrO2 ceramic tapes, thus making these flexible sheets excellent candidates for moldable device applications as ceramic-magnetic coating.
URI: https://repositorio.ufrn.br/jspui/handle/123456789/28917
Aparece nas coleções:PPGFIS - Mestrado em Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Integracaotecnicastape_Souza_2019.pdf32,86 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.