DISSERTAÇÃO DE MESTRADO

ESTIMATIVA DA PROFUNDIDADE DO EMBASAMENTO NA BACIA POTIGUAR USANDO INVERSÃO GRAVIMÉTRICA

MARINA BEATRIZ GAINO

Orientador:
Prof. Dr. Walter Eugênio de Medeiros

Dissertação n° 113 / PPGG

Natal/RN, Junho de 2012.
DISSERTAÇÃO DE MESTRADO

ESTIMATIVA DA PROFUNDIDADE DO EMBASAMENTO NA BACIA POTIGUAR USANDO INVERSÃO GRAVIMÉTRICA

MARINA BEATRIZ GAINO

Dissertação de Mestrado apresentada em 20 de Junho de 2012, para obtenção do título de Mestre em Geofísica pelo programa de Pós-Graduação em Geodinâmica e Geofísica da UFRN.

Comissão Examinadora:
Prof. Dr. Walter Eugênio de Medeiros (Orientador)
Prof. Dr. Francisco Hilário do Rego Bezerra
Dr. Júlio Cesar Soares de Oliveira Lyrio

Natal/RN, Junho de 2012.
<table>
<thead>
<tr>
<th>Índice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agradecimentos ... pág. i</td>
</tr>
<tr>
<td>Resumo .. pág. ii</td>
</tr>
<tr>
<td>Abstract .. pág. iv</td>
</tr>
<tr>
<td>Lista de Figuras ... pág. vi</td>
</tr>
<tr>
<td>Lista de Tabelas .. pág. xii</td>
</tr>
<tr>
<td>Capítulo I – Introdução</td>
</tr>
<tr>
<td>1.1 – Apresentação ... pág. 1</td>
</tr>
<tr>
<td>1.2 – Estruturação da dissertação .. pág. 2</td>
</tr>
<tr>
<td>Capítulo II – Caracterização do Problema Inverso</td>
</tr>
<tr>
<td>2.1 – Introdução ... pág. 4</td>
</tr>
<tr>
<td>2.2 – Relação entre anomalias gravimétricas e contraste de densidade pág. 4</td>
</tr>
<tr>
<td>2.3 – Inversão gravimétrica do relevo do embasamento de bacias sedimentares com incorporação de vínculos .. pág. 6</td>
</tr>
<tr>
<td>2.4 – Metodologia .. pág. 7</td>
</tr>
<tr>
<td>2.4.1 – Vínculo de suavidade .. pág. 7</td>
</tr>
<tr>
<td>2.4.2 – Vínculo de barreira logarítmica pág. 10</td>
</tr>
<tr>
<td>2.4.3 – Aplicação do método em dados sintéticos pág. 13</td>
</tr>
<tr>
<td>Capítulo III – Bacia Potiguar</td>
</tr>
<tr>
<td>3.1 – Introdução ... pág. 16</td>
</tr>
<tr>
<td>3.2 – Localização .. pág. 16</td>
</tr>
</tbody>
</table>
3.3 – Geologia Regional... pág. 16
3.4 – Evolução Tectônica... pág. 19
3.5 – Arcabouço Estrutural... pág. 25
3.6 – Estratigrafia.. pág. 31
3.7 – Magmatismo... pág. 36
3.8 – Revisão bibliográfica sobre estudos gravimétricos na Bacia Potiguar. pág. 37

Capítulo IV – Tratamento inicial dos dados disponíveis
4.1 – Introdução.. pág. 43
4.2 – Dados gravimétricos.. pág. 43
 4.2.1 – Georeferenciamento das coordenadas.............................. pág. 44
 4.2.2 – Junção dos dados gravimétricos terrestres e marítimos...... pág. 44
 4.2.3 – Definição da área de trabalho.. pág. 49
 4.2.4 – Correção gravimétrica do efeito da topografia................ pág. 49
 4.2.5 – Remoção de anomalias localizadas e não associadas com a bacia... pág. 52
 4.2.6 – Separação regional - residual.. pág. 52
4.3 – Descrição dos dados de poços.. pág. 53
 4.3.1 – Profundidades dos poços.. pág. 58
 4.3.2 – Densidades das rochas... pág. 59
4.4 – Modelo de referência resultante de dados sismicos................. pág. 62

Capítulo V – Aplicação do Método de inversão gravimétrica
5.1 – Introdução.. pág. 66
5.2 – Testes para ajustar as variáveis auxiliares.............................. pág. 67
 5.2.1 – Testes referentes aos parâmetros de inversão.................. pág. 67
 5.2.2 – Testes referentes ao contraste de densidade................ pág. 68
5.3 – Estimativas do relevo do embasamento obtidas da inversão gravimétrica... pág. 70
 5.3.1 – Cenário 1: Inversão Gravimétrica usando apenas os dados gravimétricos... pág. 70
Capítulo VI – Análise dos resultados
6.1 – Introdução.. pág. 92
6.2 – Cenário 1.. pág. 92
 6.2.1 – Comparação entre a estimativa do Cenário 1 e o modelo sismico........... pág. 92
6.3 – Cenário 2a... pág. 93
 6.3.1. – Comparação entre as estimativas do Cenário 2a e do Cenário 1......... pág. 96
6.4 – Cenário 2b... pág. 97
 6.4.1. – Comparação entre a estimativa do Cenário 2b e o modelo sismico........ pág. 97
 6.4.2. – Comparação entre as estimativas do Cenário 2b e do Cenário 1......... pág. 98
6.5 – Cenário 3.. pág. 101
 6.5.1 – Comparação entre a estimativa do Cenário 3 e o modelo sismico......... pág. 102
 6.5.2 – Comparação entre as estimativas do Cenário 3 e do Cenário 1........... pág. 104
 6.5.3 – Comparação entre as estimativas do Cenário 3 e do Cenário 2a.......... pág. 108
 6.5.4 – Comparação entre as estimativas do Cenário 3 e do Cenário 2b.......... pág. 110
6.6 – Conclusões... pág. 110

Capítulo VII – Conclusões e considerações... pág. 114

Capítulo VIII – Referências.. pág. 117

Anexo – Manuscrito submetido à Revista Brasileira de Geofísica................. pág. 127
Agradecimentos

Gostaria inicialmente de expressar minha gratidão ao meu orientador Dr. Walter Eugênio de Medeiros pelo suporte para a realização dessa dissertação e às seguintes instituições: PETROBRAS e à UFRN pelo apoio técnico que permitiram o desenvolvimento dos trabalhos.

Agradeço também a todos os colegas da PETROBRAS pelos incentivos, discussões e apoio que tanto me auxiliaram ao longo dessa jornada, em especial ao Dr. Julio Cesar Soares de Oliveira Lyrio quando do processo de aplicação do algoritmo de inversão.

Por fim, deixo aqui registrado meus agradecimentos a todas as pessoas que direta ou indiretamente, e das mais diversas maneiras, contribuíram para elaboração e aprimoramento dos trabalhos dessa dissertação de mestrado.
Resumo

Esta dissertação apresenta resultados de inversões gravimétricas realizadas com dados públicos na Bacia Potiguar Emera. A inversão gravimétrica é uma processo matemático que pode ser usado para estimar o relevo do embasamento de uma bacia sedimentar. Embora este seja um problema matematicamente mal-posto, devido à não unicidade e/ou instabilidade das soluções, ele pode ser estabilizado através do uso de funcional a ser minimizado de modo que, além do ajuste das observações geofísicas, alguns vínculos geologicamente significativos sejam incorporados. O processo de inversão gravimétrica aqui utilizado admite que o contraste de densidade entre o embasamento e as rochas sedimentares é constante e conhecido. A metodologia pressupõe ainda a discretização do pacote sedimentar num conjunto de prismas (3D), cujas espessuras correspondem às profundidades do embasamento e são os parâmetros a serem estimados. A estabilização do problema é feita com os vínculos de (1) suavidade na variação espacial da profundidade, (2) de proximidade a um modelo de referência, bem como (3) de honrar desigualdades conhecidas sobre a profundidade em locais específicos, a exemplo de poços. Esses vínculos de desigualdade foram incorporados na forma de barreiras logarítmicas, as quais permitem agregar informações não só de poços que atingiram o embasamento como também de poços concluídos na seção sedimentar.

Os cenários de aplicação da metodologia de inversão foram escolhidos de modo a simular diferentes fases ou etapas de exploração de uma bacia ao longo do tempo. A inversão no primeiro cenário foi realizada utilizando somente dados gravimétricos e um plano como modelo de referência. A inversão no segundo cenário foi subdividida em dois casos: agregando aos dados gravimétricos os vínculos oriundos de poços ou de um modelo sísmico de referência. Por fim, na inversão no último cenário foram agregados dados de poços e um modelo de referência sísmico.

Para todos os cenários, as estimativas obtidas do relevo do embasamento revelaram nitidamente a forma interna do Rítfe Potiguar, evidenciando a presença de feições estruturais alinhadas com direção principal NE-SW e segmentadas por componentes de direção NW em alguns locais. Em relação aos valores absolutos de profundidade, a inclusão dos vínculos dos poços aprimorou os resultados. Por sua
vez, a introdução do modelo sísmico de referência aumentou a resolução global dos resultados.

A flexibilidade de incluir na inversão uma variedade de informações de fontes distintas gerou resultados mais robustos e que atendem simultaneamente aos dados gravimétricos, sísmicos e geológicos (poços). A consistência e confiabilidade dos resultados comprovaram a potencialidade da inversão gravimétrica como ferramenta de delineamento da geometria do embasamento.

É relevante destacar que a inversão realizada apenas com dados gravimétricos, e numa malha com espaçamento regional, Cenário 1, já forneceu uma estimativa de relevo do embasamento bastante coerente com o arcabouço conhecido da bacia. Essa é uma importante informação, se levarmos em conta as diferenças de custo financeiro e de impacto ambiental dos levantamentos gravimétricos em relação ao método sísmico, bem como à perfuração de poços.
Abstract

The gravity inversion method is a mathematic process that can be used to estimate the basement relief of a sedimentary basin. However, the inverse problem in potential-field methods has neither a unique nor a stable solution, so additional information (other than gravity measurements) must be supplied by the interpreter to transform this problem into a well-posed one. This dissertation presents the application of a gravity inversion method to estimate the basement relief of the onshore Potiguar Basin.

The density contrast between sediments and basement is assumed to be known and constant. The proposed methodology consists of discretizing the sedimentary layer into a grid of rectangular juxtaposed prisms whose thicknesses correspond to the depth to basement which is the parameter to be estimated. To stabilize the inversion I introduce constraints in accordance with the known geologic information. The method minimizes an objective function of the model that requires not only the model to be smooth and close to the seismic-derived model, which is used as a reference model, but also to honor well-log constraints. The latter are introduced through the use of logarithmic barrier terms in the objective function.

The inversion process was applied in order to simulate different phases during the exploration development of a basin. The methodology consisted in applying the gravity inversion in distinct scenarios: the first one used only gravity data and a plain reference model; the second scenario was divided in two cases, we incorporated either borehole logs information or seismic model into the process. Finally I incorporated the basement depth generated by seismic interpretation into the inversion as a reference model and imposed depth constraint from boreholes using the primal logarithmic barrier method.

As a result, the estimation of the basement relief in every scenario has satisfactorily reproduced the basin framework, and the incorporation of the constraints led to improve depth basement definition.

The joint use of surface gravity data, seismic imaging and borehole logging information makes the process more robust and allows an improvement in the estimate, providing a result closer to the actual basement relief.
In addition, I would like to remark that the result obtained in the first scenario already has provided a very coherent basement relief when compared to the known basin framework. This is significant information, when comparing the differences in the costs and environment impact related to gravimetric and seismic surveys and also the well drillings.
Lista de figuras

Figura 2.1 – Esquema de uma bacia sedimentar discretizada num arranjo de j prisms retangulares com dimensões horizontais dx e dy, cuja profundidade h é o parâmetro a ser obtido da inversão (Lyrio, 2009). ... pág. 8

Figura 2.2 – Perfil esquemático de uma bacia sedimentar (linha vermelha). Vínculos de suavidade global aplicados com $h_i \approx h_{i+1} \approx h_{i+2}$ e vínculo de igualdade absoluta aplicado entre h_i e h (poço); h = profundidade (espessura de cada prisma). Modificado de Silva et al. (2001). ... pág. 9

Figura 2.3 – Resposta gravimétrica de modelo de uma bacia sintética (Figura 2.4a) e localização dos poços (pontos pretos). $\Delta \rho = -0,30$ g/cm3. Intervalo de contorno de -0,5 mGal. ... pág. 14

Figura 2.4 – a) Modelo sintético de uma bacia com arcabouço estrutural com quatro blocos, b) Estimativa do relevo obtido da inversão gravimétrica. Eixos em metros.............. pág. 15

Figura 3.1 – Mapa de localização e arcabouço estrutural da Bacia Potiguar. Localização das seções geológicas (A-A', B-B', C-C', D-D' e E-E') e área selecionada para estudo. Cremonini et al. (1996).. pág. 17

Figura 3.2 – Contexto geológico da Província Borborema, com os principais elementos litoestruturais. Modificado de Moraes Neto (2007)... pág. 18

Figura 3.5 – Bloco diagrama com estágios: (A) passagem do centro de espalhamento em frente à bacia; (B) resfriamento e subsidência da crosta continental após a passagem do centro de espalhamento. Segundo Cremonini & Karner (1995) ilustrado em Caldas (1998). pág. 23

Figura 3.7 – Regime de esforços atuais no NE brasileiro, relação entre os campos de tensões locais (setas cor de laranja) e regionais (setas vermelhas). Segundo Assunção (1992), ilustrado em Menezes (1999) ... pág. 25

Figura 3.8 – Mapa estrutural sísmico do embasamento em profundidade da Bacia Potiguar Emeresa. Localização das seções geológicas A-A', B-B', C-C' e D-D'. Intervalo de contorno de 0,5 km (cotas). Modificado de Matos (1992) ... pág. 27

Figura 3.9 – Seções geológicas estruturais esquemáticas da Bacia Potiguar emersa: A-A' (NW-SE), B-B' (NW-SE), e C-C' (N-S). Localização nas Figuras 3.1 e 3.8. Modificado de Matos (1992) ... pág. 28

Figura 3.10 – Detalhamento do arcabouço estrutural da Bacia Potiguar emersa com os principais elementos tectônicos e direções preferenciais dos lineamentos estruturais. Modificado de Cremonini et al. (1996) ... pág. 29
Figura 3.11 – Seções Esquemáticas ilustrando a evolução dos meio grabens ‘conjugado’ e ‘padrão’. O controle estrutural é definido pelo ângulo das falhas normais principais. (Matos, 1992).. pág. 30

Figura 3.12 – Carta Estratigráfica da Bacia Potiguar. Pessoa Neto et al. (2007)................. pág. 32

Figura 3.13 – Seção geológica regional esquemática da Bacia Potiguar emersa exibindo as principais unidades estratigráficas (localização da seção nas Figuras 3.1 e 3.8) Modificado de Matos et al. (1987).. pág. 33

Figura 3.14 – Seção geológica regional esquemática da Bacia Potiguar exibindo as principais unidades estratigráficas – destaque para a porção submersa (localização da seção na Figura 3.1) Modificado de Moraes Neto (1999).. pág. 34

Figura 3.16 – Modelagens gravimétricas realizadas no Ripe Potiguar com perfis gravimétricos e com as curvas: lida (linha vermelha) e calculada (linha pontilhada azul), e as respectivas interpretações (corpos de intrusões básicas: cor rósea). Modificado de Milani & Latgé (1987)... pág. 38

Figura 3.18 – Mapa de Anomalias Bouger da Província Borborema (Oliveira 2008)…….. pág. 40

Figura 3.19 – a) Mapa de Anomalia Gravimétrica Regional; b) Mapa de Anomalia Gravimétrica Residual e os seis domínios geofísicos. Bacia Potiguar emersa. Pedrosa et al. (2010)... pág. 41

Figura 3.20 – Perfis com seções geológicas esquemáticas distribuídas ao longo do Ripe Potiguar interpretadas a partir de modelagens conjuntas de dados magnéticos e gravimétricos. Castro (2011)... pág. 42

Figura 4.1 – Mapa de localização dos pontos gravimétricos dos levantamentos terrestres e marítimos na região da Bacia Potiguar. Linha de costa: linha azul contínua. Destaque para a área selecionada para este estudo na porção emersa da bacia (polígono cor de rosa).. pág. 454

Figura 4.2 – Mapa da anomalia Bouger da porção marítima da Bacia Potiguar. Intervale de contorno de 20 mGal... pág. 46

Figura 4.3 – Mapa da anomalia Bouger da porção terrestre da Bacia Potiguar. Intervale de contorno de 5 mGal... pág. 47

Figura 4.4 – Mapa da anomalia Bouger Integrado das porções marítima e terrestre da Bacia Potiguar. Linha de costa: linha azul contínua. Intervalo de contorno de 10 mGal....... pág. 48

Figura 4.5 – Mapa da área da Bacia Potiguar emersa utilizada para as inversões gravimétricas com a distribuição dos pontos gravimétricos analisados (total de 2554 pontos). Localização dos poços utilizados nas inversões: poços que atingiram o embasamento (círculos de cor rosa) e poços concluídos na seção sedimentar (círculos verdes). Linha de costa: linha azul contínua. .. pág. 50

Figura 4.6 – Mapa Topográfico da Bacia Potiguar. Linha de costa: linha azul contínua. Intervalo de contorno de 20 m... pág. 51
Figura 4.7 – Mapa da anomalia Bouguer da Bacia Potiguar emersa corrigida do efeito topográfico e das variações de densidade no embasamento rasos. Linha de costa: linha azul contínua. Intervalo de contorno de 4 mGal.. pág. 54

Figura 4.8 – Mapa da anomalia gravimétrica regional da Bacia Potiguar emersa obtida com o ajuste polinomial de grau 4. Intervalo de contorno de 7 mGal... pág. 55

Figura 4.11 – Perfil composto de um POÇO X hipotético posicionado na porção mais profunda da bacia. Variação litológica teórica (coluna à esquerda) e informações de densidade perfil RHOB (linha vermelha) com a profundidade. Poço X concluído na seção sedimentar. Bacia Potiguar emersa.. pág. 60

Figura 4.12 – POÇO X hipotético: variação do contraste da densidade (perfil azul) com a profundidade. Δρ média = - 0,27 g/cm³. Poço concluído dentro da seção sedimentar. Bacia Potiguar emersa.. pág. 61

Figura 4.13 – Mapa estrutural sísmico do embasamento da Bacia Potiguar emersa em profundidade. Malha de 2,5 km. Intervalo de contorno de 300 m. Modificado de Matos (1992).. pág. 63

Figura 4.14 – Mapa estrutural sísmico do embasamento da Bacia Potiguar emersa em profundidade. Malha de 5 km. Intervalo de contorno de 300 m. Modificado de Matos (1992).. pág. 64

Figura 5.1 – Visualização esquemática da evolução dos trabalhos de exploração de uma bacia ao longo do tempo.. pág. 66

Figura 5.2 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica inicial realizada com contraste de densidade (Δρ) no valor de - 0,27 g/cm³. Localização dos perfis A-A’, B-B’, C-C’ e D-D’ exibidos na Figura 5.4. Intervalo de contorno de 400 m.. pág. 69

Figura 5.3 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 1 (malha de 5 km e Δρ = - 0,37 g/cm³). Localização dos perfis A-A’, B-B’, C-C’ e D-D’ exibidos na Figura 5.4. Intervalo de contorno de 400 m.. pág. 71

Figura 5.4 – Perfis das estimativas de relevo do embasamento da Bacia Potiguar emersa resultante de inversões gravimétricas elaboradas com contrastes de densidade igual a -0,27 g/cm³ (linha preta contínua) e - 0,37 g/cm³ (linha vermelha tracejada): a) Perfil A-A’ (NW-SE), b) Perfil B-B’ (NW-SE), d) Perfil C-C’ (SW-NE) e d) Perfil D-D’ (SW-NE). Estes perfis estão localizados nas Figuras 5.2 e 5.3. Notar que as escalas verticais são diferentes em cada perfil.. pág. 72
Figura 5.5 – Visualizações tridimensionais do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica do Cenário 1 (referência na Figura 5.3) nas seguintes direções: a) Norte, b) Nordeste e c) Noroeste. Exagero vertical 10X.................... pág. 73

Figura 5.6 – Resultado do campo gravimétrico calculado no Cenário 1. Intervalo de Contorno de 4 mGal. Bacia Potiguar emersa... pág. 74

Figura 5.7 – a) Mapa com os campos gravimétricos: medido (linha preta) e calculado resultante da inversão gravimétrica no Cenário 1 (linha tracejada azul); b) Perfis gravimétricos A-A’, B-B’, C-C’ e D-D’ com os respectivos campos. Bacia Potiguar emersa. pág. 75

Figura 5.8 – Mapa com as diferenças entre os campos gravimétricos: calculado (Cenário 1) e medido. Intervalo do contorno de 1 mGal. Bacia Potiguar emersa................................ pág. 75

Figura 5.9 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 2a (círculos pretos: 23 poços que atingiram o embasamento; círculos vermelhos: 5 poços concluídos na seção sedimentar). (malha de 5km, $\Delta \rho = -0.37 \text{ g/cm}^3$). Intervalo de Contorno de 400 m.. pág. 77

Figura 5.10 – Visualizações tridimensionais do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica do Cenário 2a (referência na Figura 5.9) nas seguintes direções: a) Norte, b) Nordeste e c) Noroeste. Exagero vertical 10X.................... pág. 78

Figura 5.11 – Resultado do campo gravimétrico calculado no Cenário 2a. Intervalo de Contorno de -4 mGal. Bacia Potiguar emersa... pág. 79

Figura 5.12 – a) Mapa com os campos gravimétricos: medido (linha preta) e calculado resultante da inversão no cenário 2a (linha tracejada laranja); b) Perfis gravimétricos A-A’, B-B’, C-C’ e D-D’ (poços: setas). Bacia Potiguar emersa................................. pág. 80

Figura 5.13 – Mapa das diferenças entre os campos gravimétricos: calculado (Cenário 2a) e medido. Círculos pretos: poços atingiram embasamento. Círculos vermelhos: poços concluídos na seção sedimentar. Intervalo Contorno de 1 mGal. Bacia Potiguar emersa.... pág. 80

Figura 5.14 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 2b (malha de 5 km, $\Delta \rho = -0.37 \text{ g/cm}^3$). Intervalo de Contorno de -400m.. pág. 82

Figura 5.16 – Resultado do campo gravimétrico calculado no Cenário 2b. Intervalo de Contorno de 4 mGal. Bacia Potiguar emersa.. pág. 84

Figura 5.17 – a) Mapa com os campos gravimétricos: medido (linha preta) e calculado resultante da inversão gravimétrica no cenário 2b (linha tracejada verde); b) Perfis gravimétricos A-A’, B-B’, C-C’ e D-D’ Bacia Potiguar emersa................................. pág. 85

Figura 5.18 – Mapa das diferenças entre os campos gravimétricos: calculado (Cenário 2b) e medido. Intervalo Contorno de 1 mGal. Bacia Potiguar emersa................................. pág. 85

Figura 5.19 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 3 (círculos pretos: 23 poços que atingiram o embasamento; círculos vermelhos: 5 poços concluídos na seção sedimentar, malha de 5 km, $\Delta \rho = -0.37 \text{ g/cm}^3$). Intervalo de Contorno de 400 m.. pág. 87

Figura 6.7 – Vistas em perspectiva das inversões gravimétricas: a) Estimativa do relevo do embasamento resultante no Cenário 1, b) Estimativa do relevo do embasamento resultante no Cenário 2b, c) Superposição das duas inversões, d) Superfície referente às diferenças entre as duas inversões. Exagero vertical 10X. Bacia Potiguar emersa.

Figura 6.9 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão no Cenário 3 (referência na Figura 5.22) e os principais alinhamentos (linhas pretas) do arcabouço estrutural da bacia (referência na Figura 3.10).

diferenças entre o modelo sísmico e a inversão no Cenário 3. Exagero vertical 10X. Bacia Potiguar emersa.. pag. 103

Figura 6.11 – Visualização tridimensional da estimativa do relevo do embasamento resultante da inversão gravimétrica no Cenário 1, nas seguintes direções: a) Norte, b) Nordeste, c) Noroeste. Exagero vertical 10X Bacia Potiguar emersa... pag. 105

Figura 6.13 – Vistas em perspectiva das estimativas do relevo do embasamento resultantes das inversões: a) Cenário 1, b) Cenário 3, c) Superposição das estimativas das duas inversões, d) Superfície referente às diferenças entre as duas inversões. Exagero vertical 10X. Bacia Potiguar emersa.. pag. 106

Figura 6.14 – Perfis com estimativas de relevo do embasamento resultante de inversões gravimétricas na Bacia Potiguar emersa: Cenário 1 (linha pontilhada azul) e Cenário 3 (linha vermelha contínua): a) Perfil A-A’ (NW-SE), b) Perfil B-B’ (NW-SE); d) Perfil C-C’ (SW-NE), d) Perfil D-D’ (SW-NE). Estes perfis estão localizados nas Figuras 5.2 e 5.3. Notar que as escalas verticais são diferentes em cada perfil.. pag. 107

Figura 6.15 – Vistas em perspectiva das estimativas do relevo do embasamento resultantes das inversões: a) Cenário 2a, b) Cenário 3, c) Superposição das estimativas das duas inversões do Cenário 2a e Cenário 3, d) Superfície referente às diferenças entre as duas inversões do Cenário 2a e Cenário 3 (Poços em bordas de falhas: setas amarelas). Exagero vertical 10X. Bacia Potiguar emersa.. pag. 109

Lista de tabelas

Tabela 2.1 – Variações das densidades \((\rho) \) dos principais tipos de rochas sedimentares, ígneas e metamórficas (Telford et al., 1990).. pág. 5

Tabela 2.2 – Ambiente Geológico e os respectivos métodos apropriados de inversão sintetizados por Silva et al. (2001). Legenda: CP = compactação da fonte, OS = Suavidade Global, WS = Suavidade Balanceada, e MMI = Momento Mínimo de Inércia.... pág. 8

Tabela 2.3 – Vínculos utilizados no teste com dados sintéticos, simulando informações de poços. Localização dos poços na Figura 2.3... pág. 15

Tabela 4.1 – Informações dos 23 poços concluídos no embasamento (usados como vínculo da inversão), coordenadas, profundidades constatadas, e limites mínimos e máximos das respectivas profundidades. Bacia Potiguar emersa.. pág. 58

Tabela 4.2 – Informações dos 5 poços concluídos na seção sedimentar (usados como vínculo da inversão), coordenadas, profundidades finais, e limites da barreira logarítmica. Bacia Potiguar emersa.. pág. 59
Capítulo I – Introdução

1.1– Apresentação

Esta dissertação de mestrado apresenta inversões gravimétricas realizadas com o objetivo de se obter estimativas do relevo do embasamento na porção emersa da Bacia Potiguar.

A prospecção gravimétrica se baseia nas variações do campo de gravidade terrestre, sendo uma das técnicas consagradas de exploração geofísica. De modo geral, na interpretação de dados gravimétricos, a expectativa é inferir – de modo quantitativo ou qualitativo – informações sobre geometria e/ou variações de densidade dos corpos anômalos em sub superfície, a exemplo da delimitação do relevo do embasamento de bacias sedimentares. A dificuldade básica na interpretação reside no fato de que geralmente não é possível determinar uma única fonte para uma dada anomalia observada (Telford et al., 1990). Outra dificuldade inerente a essa técnica é o fato do campo gravitacional ser a resultante do somatório dos efeitos gravitacionais de todas as fontes presentes na região. Desse modo é necessário o uso prévio de métodos de separação regional-residual para isolar o efeito de uma determinada fonte, processo que na prática é sempre de natureza interpretativa (Beltrão et al., 1991).

A análise gravimétrica quantitativa pode ser realizada através de métodos de modelagem sucessiva – por tentativa e erro – conduzida pelo intérprete ou por procedimentos computacionais automáticos de inversão, o que geralmente é denominado de inversão. Nesse último caso, o objetivo é encontrar modelos que, ao mesmo tempo, expliquem as medidas gravimétricas e sejam consistentes com outras informações de sub superfície disponíveis. É nessa abordagem de interpretação que se contextualiza a presente dissertação.

Matematicamente o problema gravimétrico inverso é mal posto porque, como dissemos anteriormente, diferentes corpos em sub superfície podem ajustar corretamente as informações gravimétricas. Além disso, mesmo estabelecido um modelo de corpo, a solução pode ser instável a depender da complexidade do modelo. Para reduzir a ambigüidade da solução uma das abordagens mais utilizadas
consiste em compor um funcional que, além do termo de ajuste das observações geofísicas, incorpore também vínculos sobre os parâmetros do modelo (Thikhonov & Arsenin, 1977). Esse vínculos devem incorporar informações que sejam conhecidas ou admitidas válidas para o modelo (Silva et al., 2001).

A presente dissertação faz uma aplicação dos vínculos de suavidade (Barbosa et al., 1997) e de barreira logarítmica (Lyrio, 2002; 2009), sobre as profundidades visando estimar o relevo do embasamento da Bacia Potiguar. O processo de inversão foi elaborado em diferentes situações de forma a se obter diferentes resultados para ilustrar a aplicabilidade do método de inversão gravimétrica simulando cenários distintos, os quais representariam aproximadamente as fases de exploração de uma determinada bacia ao longo do tempo.

No primeiro deles (Cenário 1), admitiu-se conhecer apenas o campo gravimétrico e uma estimativa de contraste de densidade, o segundo (Cenário 2) simulou um estágio mais avançado de conhecimento, ou seja, nesse cenário teve-se a disponibilidade de dados de poços ou de um levantamento sísmico o qual forneceu um modelo de entrada, e por fim na última etapa (Cenário 3) além do campo gravimétrico e do contraste de densidade agregou-se ao processo um modelo sísmico aliado à informações de poços exploratórios. Pretende-se assim investigar as mudanças dos relevos estimados por inversão com o avanço das etapas exploratórias, tornando evidente o benefício da aplicação do método de inversão gravimétrica.

1.2 – Estrutura da dissertação

Com o objetivo de facilitar a leitura dessa dissertação, descrevemos a seguir o conteúdo de cada capítulo subsequente da mesma.

O Capítulo II apresenta a síntese da uma pesquisa bibliográfica visando caracterizar matematicamente o problema gravimétrico inverso utilizando os vínculos de suavidade (Barbosa et al., 1997) e de barreira logarítmica (Lyrio, 2002; 2009).

O Capítulo III apresenta um resumo sobre a geologia da Bacia Potiguar, englobando geologia regional, evolução tectônica, arcabouço estrutural, estratigrafia
e magmatismo, como também uma breve revisão sobre os estudos gravimétricos realizados previamente nessa bacia.

O Capítulo IV apresenta o tratamento preliminar dos dados gravimétricos, incluindo correção dos dados e separação regional – residual, e também informações sobre profundidade de embasamento oriundas da sísmica e dos poços disponíveis para esse estudo.

O Capítulo V apresenta os testes dos parâmetros relevantes do processo de inversão, bem como as estimativas de relevo de embasamento obtidas em diferentes cenários de inversão. Os cenários tiveram como objetivo simular diferentes estágios do conhecimento exploratório da bacia.

O Capítulo VI é feita uma análise comparativa das diferentes estimativas, tendo como objetivo demonstrar a efetividade da inversão gravimétrica, mesmo em estágios bastante iniciais do conhecimento exploratório da bacia.

No Capítulo VII apresentamos nossas principais conclusões e recomendações, e no Capítulo VIII apontamos as referências bibliográficas.

Por fim, como parte de um dos requisitos para a defesa da Dissertação, registramos no Anexo o Manuscrito submetido à Revista Brasileira de Geofísica.
Capítulo II – Caracterização do Problema Inverso

2.1 – Introdução

Neste capítulo será apresentada a formulação matemática do problema inverso de estimar o relevo do embasamento de uma bacia sedimentar com base na inversão de dados gravimétricos, com a inclusão dos vínculos de suavidade e de barreira logarítmica sobre as profundidades. No início, discutimos a interrelação entre anomalia gravimétrica e contraste de densidade, e em seguida descrevemos sumariamente uma revisão bibliográfica de alguns métodos de interpretação do relevo de bacias através de anomalias gravimétricas que estão disponíveis, tendo como base os artigos de Medeiros & Silva (1996), Barbosa et al. (1997, 1999b e 1999c), Silva et al. (2001) e Lyrio (2002 e 2009). No tópico seguinte detalhamos a metodologia de Barbosa et al. (1997, 1999b e 1999c) e de Lyrio (2002 e 2009) com destaque para a utilização combinada de vínculos de suavidade e de barreira logarítmica. Por fim, exemplificamos a aplicação do método proposto em dados sintéticos.

2.2 – Relação entre anomalia gravimétrica e contraste de densidade

As anomalias gravimétricas resultam do(s) contraste(s) de densidade existente(s) entre um corpo anômalo e sua rocha encaixante. Para um corpo de densidade \(\rho_1 \) encaixado em um meio de densidade \(\rho_2 \), o contraste de densidade \(\Delta \rho \) será igual a:

\[
\Delta \rho = \rho_1 - \rho_2
\]

O sinal do contraste de densidade \(\Delta \rho \) determina o sinal da anomalia gravimétrica. A maioria das rochas sedimentares tem densidade entre 1,6 e 2,90 g/cm\(^3\), enquanto as densidades das rochas ígneas e metamórficas – que comumente constituem o embasamento das bacias – ficam entre 2,5 e 3,20 g/cm\(^3\).
(Tabela 2.1). Por isso, geralmente uma bacia sedimentar produz uma anomalia Bouguer negativa em relação ao embasamento enquanto que, uma intrusão de rocha básica, mais densa, nessa mesma bacia sedimentar produz uma anomalia positiva.

<table>
<thead>
<tr>
<th>Tipo de rocha</th>
<th>(\rho) - Intervalo (g/cm(^3))</th>
<th>(\rho) - Médio (g/cm(^3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluvião</td>
<td>1,96 -2,00</td>
<td>1,92</td>
</tr>
<tr>
<td>Arenitos</td>
<td>1,61 - 2,76</td>
<td>2,35</td>
</tr>
<tr>
<td>Folhelhos</td>
<td>1,77 – 3,20</td>
<td>2,40</td>
</tr>
<tr>
<td>Calcário</td>
<td>1,93 – 2,90</td>
<td>2,55</td>
</tr>
<tr>
<td>Dolomita</td>
<td>2,28 - 2,90</td>
<td>2,70</td>
</tr>
<tr>
<td>Igneas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granito</td>
<td>2,50 – 2,81</td>
<td>2,64</td>
</tr>
<tr>
<td>Granodiorito</td>
<td>2,67 – 2,79</td>
<td>2,73</td>
</tr>
<tr>
<td>Basalto</td>
<td>2,70 – 3,30</td>
<td>2,99</td>
</tr>
<tr>
<td>Diabásio</td>
<td>2,50 – 3,20</td>
<td>2,91</td>
</tr>
<tr>
<td>Gabro</td>
<td>2,70 – 3,50</td>
<td>3,03</td>
</tr>
<tr>
<td>Metamórficas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnaisse</td>
<td>2,59 – 3,00</td>
<td>2,80</td>
</tr>
<tr>
<td>Quartzito</td>
<td>2,50 – 2,70</td>
<td>2,60</td>
</tr>
<tr>
<td>Xisto</td>
<td>2,39 – 2,90</td>
<td>2,64</td>
</tr>
<tr>
<td>Anfibolito</td>
<td>2,90 – 3,04</td>
<td>2,96</td>
</tr>
</tbody>
</table>

Tabela 2.1 – Variação da densidade (\(\rho \)) dos principais tipos de rochas sedimentares, ígneas e metamórficas (Telford et al. 1990).

A densidade de uma rocha depende da sua composição mineralógica, porosidade, compactação e tipo de fluido presente nos poros. As variações de densidade nas rochas sedimentares são causadas principalmente por variações na porosidade produzidas por compactação. Já nas rochas ígneas e metamórficas a composição mineral é o principal fator nessas variações. Desse modo, o gradiente do contraste de densidade entre as rochas sedimentares e a encaixante geralmente diminui com a profundidade, principalmente devido ao efeito da compactação dos sedimentos. Entretanto, existe a possibilidade de se ajustar uma densidade média ou contraste efetivo de densidade, de modo que estimativas plausíveis de profundidade possam ser obtidas da profundidade do embasamento, mesmo utilizando um modelo de densidade constante (Litinsky, 1989). Na presente dissertação, aplicamos métodos que usam um contraste de densidade uniforme.
2.3 – Inversão gravimétrica do relevo de embasamento de bacias sedimentares com incorporação de vínculos

A inversão gravimétrica geralmente é implementada na forma de encontrar o mínimo de um funcional estabilizante, fornecendo assim uma solução que – ao mesmo tempo – honre as observações geofísicas e seja compatível com vínculos conhecidos ou admitidos válidos para o caso em estudo (Tikhonov & Arsenin, 1977; Silva et al. 2001). Como exemplos de situações geológicas de bacias sedimentares e de vínculos adequados, apresentamos a Tabela 2.2, reproduzida de Silva et al. (2001).

<table>
<thead>
<tr>
<th>Ambiente geológico</th>
<th>Objetivo</th>
<th>Método</th>
<th>Vínculos</th>
<th>Modo</th>
<th>Artigos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusões homogêneas</td>
<td>Delineamento da forma das intrusões</td>
<td>CP</td>
<td>Compactação e Proximidade Absoluta</td>
<td>Propriedade física</td>
<td>Last & Kubik (1983)</td>
</tr>
<tr>
<td>Intrusões homogêneas com formas complexas</td>
<td>Delineamento da forma das intrusões</td>
<td>MMI</td>
<td>Compactação, MMI e Proximidade Absoluta</td>
<td>Propriedade física</td>
<td>Barbosa & Silva (1994)</td>
</tr>
<tr>
<td>Bacia Intracratônica homogênea com relevo suave do embasamento</td>
<td>Mapa do relevo do embasamento</td>
<td>OS</td>
<td>Proximidade relativa e absoluta</td>
<td>Geométrica</td>
<td>Barbosa et al. (1997)</td>
</tr>
<tr>
<td>Bacia extensional homogênea com relevo abrupto do embasamento</td>
<td>Mapa do relevo do embasamento</td>
<td>WS</td>
<td>Proximidade relativa e absoluta Desigualdade</td>
<td>Geométrica</td>
<td>Barbosa et al. (1999)b</td>
</tr>
<tr>
<td>Bacia intracratônica ou extensional heterogênea com relevo suave ou abrupto do embasamento</td>
<td>Mapa do relevo do embasamento</td>
<td>MMI</td>
<td>Proximidade absoluta momento mínimo de inércia</td>
<td>Propriedade física</td>
<td>Barbosa et al. (1999)a</td>
</tr>
<tr>
<td>Bacia intracratônica heterogênea com relevo suave do embasamento ou delineamento de intrusões</td>
<td>Mapa do relevo do embasamento ou intrusões (Δρ variável)</td>
<td>OS</td>
<td>Proximidade relativa e absoluta</td>
<td>Propriedade física</td>
<td>Medeiros & Silva (1996)</td>
</tr>
</tbody>
</table>

Tabela 2.2 – Ambiente geológico e os respectivos métodos apropriados de inversão sintetizados por Silva et al. (2001). Legenda: CP = compactação da fonte, OS = Suavidade Global, WS = Suavidade Balanceada, e MMI = Momento Mínimo de Inércia.

Em particular, destacamos a abordagem de Barbosa et al. (1997), que propõem o uso conjunto dos vínculos de “igualdade relativa” e “igualdade absoluta” visando estimar a profundidade do relevo do embasamento separando dois meios homogêneos. O primeiro tipo de vínculo exige variação suave do relevo do
embasamento, enquanto o segundo exige a reprodução, nessa estimativa de relevo, das profundidades que sejam conhecidas (de poços ou afloramentos, por exemplo). Por sua vez, Barbosa et al. (1999b) aperfeiçoam o método acrescentando vínculos de “igualdade ponderada”, através de pesos não uniformes, que quando usados combinadamente fornecem uma suavidade balanceada capaz de reproduzir variações abruptas e localizadas da interface do embasamento (ou seja, falhas).

A técnica de inversão gravimétrica apresentada por Lyrio (2002; 2009), a despeito de considerar constante o contraste de densidade entre o embasamento e as rochas da bacia, aprofunda as abordagens anteriormente descritas na medida em que permite incorporar informações não só de poços que atingiram o embasamento, mas também de poços concluídos ainda na seção sedimentar, através da substituição do vínculo de igualdade absoluta pelo vínculo de barreira logarítmica, nesse caso segundo a proposta de Li & Oldenburg (2000). Nessa dissertação, aplicaremos especificamente o método proposto por Lyrio (2002; 2009), o qual permite ainda a inclusão do vínculo de proximidade a um modelo de referenciado o que, aliado às barreiras logarítmicas, compõe uma abordagem bastante robusta de inversão.

2.4 – Metodologia

2.4.1 – Vínculo de suavidade

A solução do problema inverso proposta por Barbosa et al. (1997, 1999b e 1999c) fornece um mapeamento de uma interface separando dois meios homogêneos, na qual são incorporados vínculos de proximidade. A seção sedimentar é discretizada em \(M \) prismas regulares e justapostos preenchendo um espaço \(x-y-z \) (Figuras 2.1 e 2.2), cuja espessura \(h \) refere-se à profundidade a ser estimada. A anomalia gravimétrica \(g^0 \) é observada numa malha regular com espaçamento \(dx \) e \(dy \) (direções \(x \) e \(y \)) num total de \(N \) observações, onde \(M \) é assumido ser igual a \(N \). O parâmetro a ser ajustado \(h \) (espessura do prisma) é relacionado ao campo gravitacional pela seguinte relação não linear:

\[
g_i = \sum_{j=1}^{M} F (h_j, r) \quad i = 1, 2, \ldots, M
\]
onde $F(\mathbf{h}, \mathbf{r})$ é a função não linear que gera a i-ésima observação gravimétrica devido ao efeito conjunto de cada j-ésimo parâmetro h_j (espessura do j-ésimo prisma), sendo \mathbf{r} é o vetor posição da i-ésima observação no espaço x-y-z. O termo g_i define o i-ésimo elemento do vetor $\mathbf{g} \equiv g(\mathbf{h}) \equiv \{g_1, g_2, \ldots g_N\}^T$ que contém a anomalia gravimétrica computada, e $\mathbf{h} \equiv \{h_1, h_2, \ldots h_M\}^T$ é o vetor dos parâmetros.

Figura 2.1 – Esquema de uma bacia sedimentar discretizada num arranjo de j prismas retangulares com dimensões horizontais dx e dy, cuja profundidade h_j é o parâmetro a ser obtido da inversão (Lyrrio, 2009).

O ajuste dos dados gravimétricos pode ser imposto através da minimização da função de quadrados mínimos:

$$\Theta^f (g, g^0) = \frac{1}{M} \| g(\mathbf{h}) - g^0 \|^2 \quad (2.3)$$

onde $\| \|$ é a norma euclidiana.

Este problema é mal-posto devido a sua solução ser instável. Ou seja, existe um número infinito de distribuições de fontes em sub superfície que ajustam os dados. Para estabilizar a solução, faz-se necessária a introdução vínculos (Barbosa et al. 1997, 1999b e 1999c).

O vínculo de suavidade – denominado de global – é incorporado minimizando-se o funcional:

$$\Theta^f (\mathbf{h}) = f^f / M \| \mathbf{R} \mathbf{h} \|^2 \quad (2.4)$$

onde f^f é um fator de normalização, \mathbf{R} é uma matriz de dimensões $K \times M$, cujas linhas contêm apenas dois elementos não nulos: 1 e -1, os quais estão relacionados
a cada par de espessura de prisms espacialmente adjacentes; K é o número total de pares de prisms adjacentes.

Já o vínculo de igualdade absoluta exige a reprodução aproximada da profundidade conhecida de poços, buscando minimizar o funcional:

$$\Phi^a(h) = \frac{f^a}{M} \parallel A h - h^a \parallel^2$$

onde f^a é um fator de normalização, A é uma matriz de dimensões $H \times M$ ($H \leq M$) cujas linhas contêm apenas um elemento não nulo: 1, sendo h^a um vetor que contem os valores de profundidade conhecidos nos poços. A minimização de $\Phi^a(h)$, força, no sentido dos mínimos quadrados, H parâmetros a serem próximos a H valores de referência especificados a priori (Figura 2.2).

A estabilização do problema inverso é definida minimizando-se conjuntamente os funcionais $\Phi^r(h)$ e $\Phi^q(h)$, sujeito a que $\Phi^d(g, g^0)$ seja igual a δ, sendo δ um valor aceitável para o desajuste das observações geofísicas. Para resolver este problema, Barbosa et al. (1997) propuseram o emprego do método dos multiplicadores de Lagrange, de forma a buscar um mínimo para o funcional:

$$\Phi(h) = \mu^r(\delta) \Phi^r(h) + \mu^q(\delta) \Phi^q(h) + \Phi^d(g, g^0)$$

onde $\mu^r(\delta)$ e $\mu^q(\delta)$ são os multiplicadores de Lagrange (números reais e não negativos).
A minimização da função $\mathcal{O}(h)$ da equação (2.6), com respeito à h, é um problema não linear. Assim sendo sua resolução pode ser alcançada por métodos iterativos. Em particular, foi usado o método de Gauss-Newton, o que implica expandir $\mathcal{O}(h)$ numa série de Taylor – mantendo os termos somente até a 2° ordem – em torno de h_k na $k_{\text{ésima}}$ interação.

Os valores de μ^a e μ^r devem ser selecionados de modo a produzir uma solução estável que honre os vínculos e as observações geofísicas.

2.4.2 – Vínculo de barreira logarítmica

Lyrio (2002 e 2009) fez um desenvolvimento dos métodos de Barbosa et al. (1997, 1999b e 1999c) e Li and Oldenburg (1998), introduzindo vínculos adicionais no processo de inversão gravimétrica. Ou seja, o autor propôs o uso combinado de vínculo de suavidade, de proximidade a um modelo de referência (procedente por exemplo, da interpretação sísmica), e informações de poços, mantendo constante o contraste de densidade entre os sedimentos e as rochas encaixantes.

A abordagem é basicamente a mesma descrita no item anterior, ou seja, consiste na minimização de uma função objetivo que é a soma ponderada de um funcional associado aos vínculos com um outro que mede o grau de ajuste da solução. A distinção da proposta de Lyrio (2009) refere-se a utilizar barreiras logarítmicas para as profundidades, seguindo a proposta de Li e Oldenburg (2000).

A barreira logarítmica é adicionada ao problema na forma de um termo logarítmico associado com as profundidades, permitindo assim não só a adição de informações de poços que atingiram o embasamento, mas também de relações de desigualdades associadas a poços concluídos ainda dentro da seção sedimentar.

Passaremos agora a descrever com mais detalhes a abordagem de Lyrio (2009). O método consiste na minimização do funcional \mathcal{O} dado por:

$$
\mathcal{O} = \mathcal{O}_{d} + \mu \mathcal{O}_{m} - 2\lambda \left[\sum_{j=1}^{n} \ln \left(\frac{h - a}{b - a} \right) + \sum_{i=1}^{m} \ln \left(\frac{b - h}{b - a} \right) \right] \tag{2.7}
$$

onde μ é o parâmetro de regularização que proporciona o balanço entre os dois funcionais \mathcal{O}_d e \mathcal{O}_m, estando o primeiro associado ao ajuste das observações geofísicas e o segundo ao vínculo nas espessuras.

O funcional \mathcal{O}_d é dado por:
onde \(g \) e \(g^o \) são os dados previstos e observados, respectivamente, e \(W_d \) é uma e uma matriz diagonal associada ao desvio padrão das observações, na falta desse desvio, usa-se a matriz identidade. Por sua vez, \(\Phi_m \) é dado por:

\[
\Phi_m = \| W_m (h - h_o) \|^2
\]

em que \(W_m \) é uma matriz de pesos. Por fim, \(\lambda \) é o parâmetro de barreira, cujas profundidades máximas e mínimas são \(a \) e \(b \), respectivamente.

A barreira logarítmica é assim uma ferramenta que incorpora limite mínimo e máximo para as soluções aceitáveis. A vantagem desse método é permitir ajustar um grupo de diferentes vínculos a serem impostos para cada prisma. Além disso, pode-se introduzir graus de confiança específicos para cada prisma, alargando ou comprimindo os limites da barreira. Em outras palavras, nas posições onde há dados da profundidade real (poços) é possível estreitar os limites da barreira logarítmica, enquanto que nas demais regiões onde os poços não atingiram o embasamento pode-se relaxar o vínculo restringindo-o apenas para as profundidades mínimas, evitando assim subestimar a solução com profundidade muito rasas nesses locais.

Computacionalmente o problema de encontrar o mínimo do funcional \(\Phi \) da equação (2.7) é caro pois demanda muito tempo de processamento. Assim sendo, para tornar a solução mais eficiente Lyrio (2009) optou pela minimização iterativa do funcional, como se explica a seguir. Na iteração seguinte à iteração vigente \(n \), a expansão da série de Taylor da anomalia prevista \(g \) pode ser descrita na forma:

\[
g^{(n+1)} = g^{(n)} + J\Delta h
\]

onde \(\Delta h \) é vetor das perturbações no modelo e \(J \) é a matriz Jacobiana associada com essas perturbações. Assim, substitui-se \(h_j^{n+1} = h_j^n + \Delta h \) na equação (2.7), fazendo a derivada com respeito a \(\Delta h \) igual à zero, produzindo-se a seguinte equação para a perturbação do modelo:

\[
(J^T W_d J + \mu W_m^T W_m + \lambda X^2 + \lambda Y^2) \Delta h =
\]

\[
J^T W_d (g^o - g) + \mu W_m^T W_m (h_o - h) + \lambda (X^2 - Y^2) e
\]

onde \(e = (1,...,1)^T \), \(X = \text{diag} \{ h_1 - a_1,...,h_m - a_M \} \), e \(Y = \text{diag} \{ b_j - h_1,...,b_m - h_M \} \).
O sistema da equação (2.11) é resolvido para Δh na variação da espessura do prisma, sendo o passo atualizado da seguinte forma:

$$h^{(n)} = h^{(n-1)} + \eta \gamma \Delta h$$

onde η é um parâmetro que limita o comprimento do passo efetivamente dado, e γ é o comprimento do máximo passo possível, e é obtido por:

$$\gamma = \min \left(\min_{\Delta h > 0} \frac{b - h_j^{(n-1)}}{\Delta h_j}, \min_{\Delta h > 0} \frac{h_j^{(n-1)} - a}{|\Delta h_j|} \right)$$

O tamanho do passo máximo é um valor que será empregado na atualização dos limites, e é limitado pelo parâmetro η prescrito dentro do intervalo $(0, 1)$, o qual assegura que o modelo atualizado permaneça dentro dos limites. A cada iteração o valor de λ é reduzido pela seguinte expressão:

$$\lambda^{n+1} = \left[1 - \min(\eta, \gamma) \right] \lambda^n$$

A expressão anterior, equação (2.14), é aplicada de modo que o termo da barreira torne-se insignificante à medida que a solução é aproximada. Dessa forma, o processo iterativo termina quando o termo da barreira seja pequeno o suficiente para que a função objetivo original alcance um patamar. Esse procedimento produz uma solução para um dado parâmetro de regularização (μ), sendo que diversas soluções para μ são necessárias para otimizar o resultado da função de melhor ajuste (Ω_d). O modelo final é alcançado quando a melhora na medida de ajuste (Ω_d) entre duas iterações consecutivas for menor que 1%.

No processo de inversão gravimétrica a correta escolha dos parâmetros envolvidos é geralmente dependente do problema e não existe uma formula simples para esse processo de escolha. Assim sendo, o autor apresenta alguns efeitos das mudanças não só dos parâmetros das barreiras logarítmicas, mas também dos parâmetros de regularização, em diferentes procedimentos de modo a se obter os melhores valores para ajustar dos dados.

Testes variando o valor de η mostram que a influência desse parâmetro no aprimoramento da solução é secundária e principalmente restrita à velocidade da convergência. Dentro da abrangência dos valores teoricamente válidos $(0, 1)$ o número de iterações aumenta enquanto η aproxima-se de zero, visto que o passo...
dado a cada iteração é menor, da mesma forma com a aproximação de γ a solução equação (2.7) torna-se muito mais difícil. Testes indicam que a abrangência de η de 0.9 até aproximadamente 1.0 permite um grau de convergência similar em relação aos custos operacionais, assim o valor 0.99 é sugerido para o parâmetro η.

Em relação ao parâmetro de barreira logaritmática λ, o autor sugere que o processo inicie com valores altos e que sejam reduzidos a cada iteração. Como esperado, testes usando diferentes valores de λ mostram que a escolha de seu valor inicial não produz mudanças significativas no resultado final da solução, não chegando a mudar efetivamente o valor dos vínculos de profundidade. Dessa forma é sugerida a utilização da abordagem de Li and Oldenburg (2000) para calcular o valor inicial de λ como sendo:

$$\lambda = \frac{\varnothing_d + \mu \varnothing_m}{-2\lambda \sum_{i=1}^{\varnothing} \left[\ln \left(\frac{h-a}{b-a} \right) + \ln \left(\frac{b-h}{b-a} \right) \right]} \quad (2.15)$$

A escolha de μ, parâmetro de regularização, é o mais importante passo para se obter um bom resultado na inversão, já que μ é o parâmetro que determina o balanço entre a complexidade do modelo e a função de ajuste. Assim sua escolha é condicionada ao termo de ajuste, o qual deve alcançar o ‘ajuste alvo’ na última iteração. Contudo, um bom resultado dessa escolha apresenta um condicionamento ao nível de ruídos presente no processo. Lyrio (2009) por fim, acredita que a técnica desenvolvida por Farquharson & Oldenburg (2000), critério da curva-L, produz as melhores estimativas para os valores de μ.

2.4.3 – Aplicação do método em dados sintéticos

Com o objetivo de evidenciar a efetividade da abordagem de inversão utilizada, apresentamos a seguir um teste sintético que simula a resposta gravimétrica (Figura 2.3) de um modelo sintético de uma bacia sedimentar numa área de 15 km por 15 km (Figura 2.4a). Foi utilizado um modelo plano de entrada com profundidade constante igual a 1,5 km (exceto nas posições dos poços).
Figura 2.3– Resposta gravimétrica de modelo de uma bacia sintética (Figura 2.4a) e localização dos poços (pontos pretos). Δρ = - 0,30 g/cm³. Intervalo de contorno de - 0,5 mGal.

O arcabouço estrutural da bacia simulada foi composto por quatro blocos retangulares discriminados na Figura 2.4a, cujos topos estão às profundidades de 0,5 km (bloco azul escuro), 1 km (bloco azul claro), 1,5 km (bloco verde) e 2 km (bloco amarelo), sendo a profundidade máxima do modelo igual a 3 km. O contraste de densidade entre os sedimentos e o embaçamento é constante e igual a - 0,30 g/cm³. O modelo foi discretizado com 441 prismas com largura de 0,75 km nas direções x e y. Os prismas simulam altos estruturais numa seção sedimentar, e a distância entre os topos e a medida zero do bloco diagrama da Figura 2.4b representaria as profundidades a serem determinadas através da inversão.

Foram acrescidos vínculos de poços no problema assumindo informações sobre cinco poços ilustrados na Figura 2.3, cujas profundidades são conhecidas e estão listadas na Tabela 2.3.
Figura 2.4 – a) Modelo sintético de uma bacia com arcabouço estrutural com quatro blocos, b) Estimativa do relevo obtido da inversão gravimétrica. Eixos em metros.

O resultado da inversão (Figura 2.4b) reproduz satisfatoriamente a bacia simulada (Figura 2.4a), não só as formas dos blocos mostram-se individualizadas como também as médias das profundidades aproximam-se das do modelo inicial, comprovando assim a efetividade do método.
Capítulo III – Bacia Potiguar

3.1 – Introdução

Neste capítulo apresentaremos uma revisão sucinta do conhecimento geológico sobre a Bacia Potiguar. Iniciaremos com uma descrição sobre sua localização, área de ocorrência e arquitetura principal. Na seqüência, será descrita a geologia regional, a evolução tectônica, o arcabouço estrutural, a estratigrafia e a ocorrência de magmatismo. Por fim, apresentaremos uma revisão bibliográfica sobre os estudos gravimétricos realizados na Bacia Potiguar emersa.

3.2 – Localização

A Bacia Potiguar está localizada no Nordeste Brasileiro, no extremo leste da margem equatorial, abrangendo parte dos estados do Rio Grande do Norte e Ceará. A área emersa da bacia compreende cerca de 22.500 km² e a parte submersa, cerca de 26.500 km². A bacia está limitada a leste, oeste e sul pelo embasamento cristalino, a noroeste pela Bacia do Ceará, e a norte pelo limite operacional da cota batimétrica de 2.000 metros (Figura 3.1).

A arquitetura da Bacia Potiguar emersa é definida por grabens e altos internos de direção NE-SW, encaixados entre plataformas rasas do embasamento, feições que são estruturalmente típicas de um regime extensional (Matos, 1992). Na porção submersa da bacia, entretanto, predominam as feições de direção NW-SE, paralelas à costa e associadas a um regime transtensional dextral (Cremonini et al., 1996).

3.3 – Geologia Regional

O embasamento cristalino no qual a Bacia Potiguar está inserida faz parte da Província Borborema e se subdivide em unidades tectônicas, constituídas por faixas de rochas de natureza variada, separadas entre si por zonas de cisalhamentos e lineamentos estruturais.

A Província Borborema (Almeida et al., 1977) ocupa uma área da ordem de 380.000 km², limita-se com as províncias São Francisco, Paraíba e as bacias costeiras e a margem continental, coincidindo com a Região de Dobramentos Nordeste, que foi desenvolvida no decorrer do ciclo brasiliano. A província apresenta uma organização tectônica-estratigráfica complexa (Figura 3.2), sendo constituída de diversas faixas de supracrustais dispersas num terreno gnáissico-migmatíticos-graníticos e intrusiones plutônicas, sendo controlada por vários alinhamentos estruturais e limitada por grandes zonas de cisalhamentos.

na orogenia brasileira do Proterozóico Superior. Tanto os maciços quanto os metassedimentos encontram-se intrudidos por complexos batolíticos graníticos relacionados às orogenias Transamazônica e Brasiliana.

O arcabouço estrutural da Provincia Borborema é definido por um complexo sistema de falhas orientadas preferencialmente na direção E-W. Esses falhamentos apresentam um polimorfismo em seus rejeitos, variando de movimentos verticais a transcorrentes horizontais ao longo do tempo geológico. Subordinados a esta orientação principal tem-se ainda uma faixa de cisalhamento transcorrente sinistral de direção NW-SE.

As zonas transcorrentes dextrais exibem alinhamento geral orientado nas direções E-W (Patos e Pernambuco), se abrindo para NE diagonalmente à costa, apresentam forma sigmoidal e possuem dezenas de quilômetros de comprimento por 1 a 5 km de largura, definindo zonas cataclásticas e miloníticas (Figura 3.2).

O Lineamento de Pernambuco representa uma grande zona de transferência entre os terrenos estabilizados no proterozóico inferior, a sul, e aqueles retrabalhados durante o proterozóico médio e superior a norte (Matos, 1987a). Acima do lineamento de Patos (E-W) a província é dominada por um padrão NNE-SSW dextral, destacando-se a zona de cisalhamento Portalegre – Carnaubais (Hackspacher & Oliveira, 1984). A forma sigmoidal desta feição, sob condições de estiramento crustal, de direção WNW atuante no Neocomiano, possibilitou a implantação das bacias cretáceas do nordeste brasileiro, entre elas a Bacia Potiguar, em um regime transtracinal, sempre associados a pontos de inflexão das estruturas pré cambrianas, Cremonini (1993; 1995).

3.4 – Evolução Tectônica

Toda a região da Província Borborema experimentou durante o Neocomiano (Cretáceo Inferior) um grande estiramento crustal de direção WNW, resultante do processo de separação da América do Sul e África (Matos, 1987b). Além da reativação das estruturas, as zonas de cisalhamento foram decisivas na reorientação dos esforços durante essa tectônica cretácea, servindo ora como barreiras ora como dutos nas propagações das tensões (Lima Neto, 1999).

A origem das bacias intracontinentais que compõe o sistema de riftes do Nordeste Brasileiro está diretamente ligada a esse evento. Ou seja, os esforços extensionais atuantes durante o Cretáceo Inferior (Neocomiano), associados aos riftamentos, culminaram com a completa separação das placas sul-americana e africana. Posteriormente, durante o Cretáceo Superior, uma cinemática transformante atuou efetivamente na evolução da margem equatorial.

Diversos modelos tectônicos têm sido propostos enfocando a evolução da Bacia Potiguar. É consenso entre todos eles a ligação genética entre a bacia e a evolução da margem atlântica; entretanto os autores sugerem distintos mecanismos e regimes de esforços atuantes durante o processo.
O modelo proposto por Bertani (1985) admite que a fase rifte foi originada durante o Neocomiano, através de esforços distensivos de direção E-W que causaram um estiramento e afinamento crustal. Mello (1987; 1989) concorda com a idéia anterior de extensão E-W na formação do rifte associada à abertura da margem leste brasileira.

Para Françolin & Szatmari (1987) e Szatmari et al. (1987), a origem da Bacia Potiguar esteve condicionada a movimentações divergentes de direção E-W durante a separação dos continentes, iniciada ao final do Jurássico Superior (Figura 3.3a). Esses autores admitem que no final do Neocomiano, uma rotação rígida no sentido horário entre a placa sul-americana em relação a africana a partir de um pólo situado próximo a Fortaleza (CE), esse processo submeteria à compressão zonas posicionadas a oeste do pólo e à distensão aquelas a leste (Figura 3.3b). Ao final do Aptiano o pólo de rotação teria migrado para noroeste, definindo uma etapa de estiramento litosférico (NNE-SSW) (Figura 3.3c). Na transição entre o Albiano e Cenomaniano a crosta continental já estaria rompida ao longo da margem continental atlântica indicando uma movimentação divergente (E-W) através de uma transcorrência dextral (Figura 3.3d). A partir do Coniaciano até Maestrichtiano, a região do Ceará, a oeste da Bacia Potiguar, esteve submetida a esforços de direção N-S associados a reativações de falhas (Figura 3.3e).

Resumidamente, Françolin & Szatmari (1987) e Szatmari et al. (1987) acreditam que todo esse processo gerou na Província Borborema esforços que proporcionaram o desenvolvimento das bacias riftes sob o regime transtensional (Bacia Potiguar) e transpressional (Bacias Rio do Peixe e Souza), acrescentam ainda que o eixo maior de compressão da província teria condicionado a ocorrência dos diques de diabásio denominados de Rio Ceará Mirim (Figura 3.1).

Por sua vez, Bertani et al. (1990) subdividiram a evolução da bacia em três estágios tectônicos principais: rifte, transicional e drifte. Durante a fase rifte desenvolveram-se grandes falhas normais (NE-SW) e de transferência (E-W), ativas no Neocomiano na parte emersa no Neocomiano e até o Eoaptiano na porção emersa. O final desse estágio foi marcado por um soerguimento, principalmente na porção emersa, acompanhado do basculamento de blocos e desenvolvimento de altos internos os quais culminaram com uma extensa discordância angular regional.
Na fase transicional houve baixa atividade tectônica devido a uma subsidência contínua decorrente de um resfriamento da crosta, previamente aquecida no estágio anterior. Já na fase drifte a subsidência foi controlada principalmente por mecanismos termais e isostáticos ao longo de lineamentos mais antigos.

A continuidade do processo de distensão no Aptiano promoveu a abertura da zona equatorial em condições de margem cisalhante a qual ocasionou o rompimento generalizado das placas sul-americana e africana.

Cremonini & Karner (1995) acreditam que o evento erosivo denominado de discordância pré-Ubarana por Cremonini (1993), presente no Mesocampaniano, foi ocasionado por um soerguimento regional devido a uma anomalia térmica associada à passagem de um centro de espalhamento oceânico que se deslocou ao longo da margem equatorial em frente a porção emersa da bacia (Figura 3.5a). Após a passagem desse centro ocorreu o resfriamento da litosfera seguido de uma subsidência térmica contínua, a qual resultou no deslocamento e basculamento da discordância pré-Ubarana no sentido offshore (Figura 3.5b). Esse evento térmico teria tido reflexo em toda a Bacia Potiguar através da reativação de importantes falhamentos, entre eles a Falha de Afonso Bezerra (descrita no Capítulo 3.5).

![Diagrama de Figura 3.5](image)

Figura 3.5 – Bloco diagrama com estágios: (A) passagem do centro de espalhamento em frente à bacia; (B) resfriamento e subsidência da crosta continental após a passagem do centro de espalhamento. Segundo Cremonini & Karner (1995), ilustrado em Caldas (1998).

Para Lima Neto (1998) esse soerguimento estaria ligado termicamente à presença de uma pluma mantelica, a qual também teria sido responsável pelo rifting ativo da região, como também do vulcanismo Macau (Eoceno-Oligoceno) e a Antéclise Borborema no Cenozóico.

Uma nova concepção para o todo o processo foi apresentado por Matos (2000) que alegou que mecanismos de extensão comumente aceitos para entender a evolução de uma margem passiva não retratam adequadamente a cinemática e geometria das bacias equatoriais da margem transformante. Matos (2000) advoga que a evolução tectônica ao longo da zona equatorial é mais bem entendida se considerar não somente o estágio de desenvolvimento das zonas transformantes,
como também o posicionamento das bacias em relação a estas zonas; para tanto sugere a denominação de Pré, Sin e Pós-Transformante para estes eventos. O estágio Pré-Transformante refere-se a fase anterior à separação continental, já o Sin-Transformante marca o processo de deriva continental e a criação de assoalho oceânico (Figura 3.6), e por fim o estágio Pós-Transformante registra o domínio do drifte continental caracterizando um contexto de margem passiva.

A neotectônica da Bacia Potiguar está diretamente ligada às reativações dos principais falhamentos presentes na área. Diversos trabalhos têm sido desenvolvidos com o objetivo de se estudar esse processo, entre eles Assunção (1992) considera que todo nordeste brasileiro está atualmente submetido a um regime de esforços compressivos de direção E-W, e localmente tracionais perpendiculares à costa. Esse campo compressivo seria produto de fontes de esforços regionais atuantes na Cadeia Andina e da expansão da cadeia mesoatlântica com o arrasto na base da litosfera. (Figura 3.7)

predominância de um regime transcorrente, com compressão paralela à costa variando de E-W a NW-SE, na porção emersa da Bacia Potiguar,

3.5 – Arcabouço Estrutural

A Bacia Potiguar está inserida no contexto estrutural da Província Borborema, cujo arcabouço acomodou os principais alinhamentos estruturais durante a geração e evolução da bacia. Os eixos dos lineamentos da bacia são de direção preferencialmente NE-SW. Seu arcabouço estrutural (Figura 3.1) compreende basicamente quatro feições morfo-estruturais distintas: grabens e altos internos relacionados às fases de estiramento crustal (rifte), e plataformas rasas do embasamento e talude relativas à fase de deriva continental. (Matos, 1987a; 1992; Bertani, et al., 1990; Cremonini et al., 1996). Essas feições são o produto de duas grandes falhas listricas crustais cuja profundidade máxima de deslocamento foi estimada entre 20 a 22 km (Matos, 1992).

Na porção emersa da Bacia Potiguar grandes falhamentos normais de direção NE-SW delimitam uma calha central, ou seja, um rifte assimétrico de formato
rômbico (Matos, 1987a), que possui aproximadamente 45 km de largura por 160 km de comprimento (Figura 3.1). Na borda E-SE do rifte tem-se o sistema de falhas do alinhamento de Carnaubais (NE-SW), cujos rejeitos são variáveis e podem atingir 5.000 m, constituindo assim a borda falhada do rifte. Já na direção oposta, encontra-se a zona flexural, ou a linha de Charneira de Areia Branca (Matos, 1987a), onde os rejeitos são menores e menos expressivos. A Falha de Apodi, de direção NW-SE, define o limite S-SW da calha central.

O rifte Potiguar emerso (Figuras 3.8, 3.9 e 3.10) é compartimentado por altos e baixos internos alinhados na direção NE-SW. Os baixos, ou seja, os grabens são denominados de Umbuzeiro, Boa Vista e Guamaré, e no extremo sudoeste da calha principal do rifte está posicionado Graben de Apodi, junto à falha homônima (Figura 3.10). As cristas do embasamento são denominadas de: altos internos de Mossoró, Canudos, Quixaba, Serra do Carmo e Macau. Esses altos são limitados por escarpas abruptas de um lado e mergulho em rampa associado às falhas sintéticas secundárias no lado oposto. Bertani et al. (1990) interpretam essas feições como produto da formação de grabens por meio de grandes falhas listricas, com rotação de blocos até que as tensões concentradas na placa flexurada sejam aliviadas através de falhas normais antitéticas.

Os grabens da porção submersa da Bacia Potiguar também são assimétricos, porém com eixos paralelos à linha de costa (WNW-ESE) e são basculados para sul (Bertani et al., 1990). Essas feições estruturais são reflexos de uma tectônica transtensional dextral (Cremonini et al., 1996) em resposta ao processo de separação continental.

A calha central da bacia encontra-se bordejada por plataformas rasas do embasamento, relativamente estáveis tectonicamente, denominadas Touros a leste e Aracati a oeste, respectivamente (Figura 3.10). Embora a direção NE-SW seja proeminente no arcabouço da Bacia Potiguar como um todo, cabe ressaltar a presença de outro sistema de alinhamentos de direção NW-SE o qual corta ortogonalmente tanto a bacia quanto o embasamento, estas estruturas são interpretadas como falhas de transferência (Matos 1987b; 1992) possivelmente produto de reativações pós-campanianas (Hackspacher et al., 1985).

A Falha de Afonso Bezerra (Figura 3.10) é um importante exemplo desses alinhamentos (NW-SE) transversais citados anteriormente, e apresenta-se como uma zona de cisalhamento a qual afeta não somente a seqüência sedimentar, mas também o embasamento cristalino (Oliveira et al., 1993).

Outra zona de falhamentos NW-SE que merece destaque é a que separa os grabens de Boa Vista e Umbuzeiro do Graben de Apodi (Figura 3.10). Nessa região há uma faixa de acomodação que reflete uma mudança abrupta na geometria do rifte., o compartimento do Graben de Apodi, a sudoeste desse lineamento, se assemelha a um arco bordejado por uma grande falha normal no lado leste e, no oeste, por uma série de falhas normais de baixo ângulo. Ou seja, como sugere Borges (1992), estruturalmente esse graben exibe duas rampas do embasamento com mergulhos opostos (Seção Geológica B–B’ da Figura 3.9), as quais se assentam sobre superfícies de descolamento, no chamado ‘meio graben conjugado’, em contraste ao ‘meio graben padrão’ observado no restante do rifte Potiguar (Figura 3.11).
Matos (1992) atribui a esse contraste do estilo estrutural em relação ao restante da bacia, aos diferentes ângulos de mergulho do falhamento principal próximo à superfície dos planos de *detachment* nas intracrustais das duas regiões da bacia, como também a um terceiro plano de *detachment*, (Falha de Mulungu) restrito ao pacote sedimentar, com mergulho oposto aos anteriores (Seção Geológica B –B’ da Figura 3.9).

O arcabouço da Bacia Potiguar exibe ainda, além dessas duas direções preferenciais, um elemento estrutural de direção E-W (Figuras 3.8 e 3.10) individualizado na disposição do Graben de Algodões, pequena feição abortada do rifte principal localizada no extremo SW da bacia; e no chamado Lineamento Rio Mossoró / Alto do Rodrigues. No embasamento cristalino esta morfologia E-W também acompanha a distribuição da ocorrência do enxame de diques Rio Ceará Mirim (Figuras 3.1 e 3.10) (Oliveira, 1992).

As maiores espessuras da camada sedimentar da Bacia Potiguar emersa estão localizadas nas regiões sudeste e sul do rifte, no Graben de Umbuzeiro (Soares, 2000), junto à borda falhada do rifte no alinhamento de Carnaubais, e na região do Graben de Apodi. Acredita-se que nesses depocentros o embasamento pode alcançar profundidades de 5 a 6 km de profundidade. (Figuras 3.8 e 3.9).
3.6 – Estratigrafia

No trabalho Pessoa Neto et al. (2007) os autores sugerem que o registro estratigráfico inclui três superseqüências: uma Rifte, depositada no Cretáceo Inferior; uma Pós-Rifte, depositada durante o Andar Alagoas; e uma Drifte, depositada entre o Albiano e o Recente. Argumentam ainda que, o preenchimento sedimentar da bacia está diretamente ligado aos diversos eventos de sua evolução tectônica: duas fases de rifteamento (Rifte I e Rifte II) correspondentes às sequências continentais da Superseqüência Rife; uma fase da Superseqüência Pós-Rife; e a fase Termal referentes às sequências marinhos transgressivas e regressivas, que compõem a Superseqüência Drifte (Figuras 3.12, 3.13, 3.14 e 3.15).

A Superseqüência Rifte (Rifte I e Rifte II) corresponde a conglomerados, arenitos e folhelhos. A fase Rifte I (Neoberriasiano / Eobarremiano) é representada pelos depósitos lacustres, flúvio-deltáicos e fandeltáicos das fossas tectônicas que constituem a Formação Pendência (Figuras 3.12, 3.13 e 3.14). A fase Rifte II (Neobarremiano / Eo-Aptiano) é marcada pela mudança do eixo do rifteamento na porção submersa da bacia, de NNW para E-W, em resposta ao início do processo de deriva continental, seus sedimentos estão restritos à porção submersa em sistemas deposicionais continentais, dominados por leques aluviais e sistemas fluviais de alta energia numa cunha clástica sintectônica na chamada Formação Pescada (Figuras 3.12 e 3.14).

A Superseqüência Pós-Rifte (Aptiano – Albiano Inferior), sedimentos transicionais da Formação Alagamar (Figuras 3.12, 3.13 e 3.14), representam a passagem gradativa de sistemas deposicionais continentais para marinhos num regime tectônico marcado pela subsidência térmica. A sedimentação é dominada por sistemas flúvio-deltáicos assentados diretamente sobre uma forte discordância angular do topo da seção rifte, num afogamento gradativo cuja máxima transgressão...
é representada pelos folhelhos pretos e calcilutitos ostracoidais da chamada Camadas Ponta do Tubarão (CPT) interpretada como a primeira ingressão marinha na bacia (Figura 3.12). A partir do Albiano o ambiente deposicional é marinho raso com a formação incipiente de um sistema de plataforma-talude e bacia.
A Superseqüência Drifte compreende toda a sedimentação marinha ocorrida a partir do Albiano até o recente, podendo ser dividida em Seqüências Marinhas Transgressivas (Eoalbiano – Eocampaniano) e Seqüências Marinhas Regressivas (Neocampaniano - Holoceno).

Na fase das Seqüências Marinhas Transgressivas (Figura 3.14) a bacia teve baixas taxas de subsidência, com o depocentro numa calha fluvial (NE-SW) gradando para uma plataforma rasa siliciclástica a mista em direção ao mar, com a implantação de carbonatos de borda de plataforma e um sistema de talude/bacia escavados por cânions submarinos (Pescada e Ubarana) com turbiditos associados.

O sistema foi afogado (Neocretáceo) gradativamente num empilhamento vertical de sistemas fluviais proximais, entrelaçados na base passando a meandrantes grossos, meandrantes finos e estuarinos no topo (Formação Açu) e carbonatos marinhos rasos (Formação Ponta do Mel), como também marinhos distais (Formação Quebradas).

A Formação Açu (Figuras 3.12, 3.13 e 3.14) aflora em toda borda da porção emersa da bacia (Figura 3.15), sendo constituída por arenitos médios a muito grossos intercalados com folhelhos, argilitos e siltitos que exibem um contato inferior discordante com a Formação Alagamar ou diretamente sobre o embasamento. Esse litotipo interdigita-se lateralmente em direção contrária à costa, com a Formação
Pontas do Mel, composta por calcarenitos e calcilutitos num ambiente de plataforma rasa; e a Formação Quebradas é caracterizada por arenitos finos e folhelhos marinhos distais (Figura 3.12).

A Formação Jandaíra (Eocampaniano) representa o afogamento máximo desses sistemas que ocorreu durante a passagem do Cenomaniano para o Turonian com a implantação de uma plataforma / rampa carbonática dominada por marés. O padrão estratigráfico da sequência carbonática dessa formação (Figuras 3.12, 3.13 e 3.14) consiste de estratos com mergulhos suaves e clinoformas sigmoidais, sendo composto principalmente por calcarenitos e calcilutitos bioclásticos com eventuais intercalações de arenitos e raras camadas de folhelho, anidrita e margem em ambientes deposicionais de planicie de maré, laguna rasa e plataforma rasa / rampa. A Formação Jandaíra aflora praticamente em toda a bacia emersa (Figura 3.15), onde se encontra intensamente erodida e carstificada mergulhando suavemente em direção ao oceano. O limite inferior desses carbonatos com a Formação Açu é concordante e representa a superfície de inundação máxima do Cretáceo Superior da bacia, na porção aflorante dos sedimentos da Bacia Potiguar esse contanto constitui uma expressiva cuesta denominada de Chapada do Apodi, localizada nas proximidades da cidade homônima (Figura 3.15).

A fase das Seqüências Marinhas Regressivas iniciou a partir de um evento erosivo Neocampaniano e estende-se até os dias atuais, ou seja, até o Holoceno (Figura 3.12). Esse ciclo regressivo pode ser subdividido em várias seqüências deposicionais limitadas por eventos erosivos regionais, caracterizam-se por sistemas mistos compostos por leques de arenitos costeiros, sistemas de plataformas rasas com borda carbonática e sistema de talude / bacia com folhelhos marinhos rasos a profundos, com intercaiações de turbiditos, referentes às formações Barreiras, Tibau, Guamaré e Ubarana, respectivamente.

A Formação Barreiras (Figuras 3.12 e 3.15) compõe-se de arenitos fluviais médios a grossos associados a leques aluviais e depósitos litorâneos, apresenta espessura variável e forma tabular e aflora nas porções mais elevadas da bacia emersa (Figura 3.15).

A Formação Tibau (Figuras 3.12, 3.14 e 3.15) exibe arenitos grossos de leques costeiros interdigitados com as formações Guamaré e Barreiras. A Formação Guamaré compreende calcarenitos, bioclásticos e calcirruditos num ambiente de plataforma. A Formação Ubarana (Figuras 3.12 e 3.14) é composta por folhelhos e argilitos de talude intercalados com areias turbidíticas.

O aumento do fluxo de terrígenos, durante o Mioceno, sobre o sistema Barreiras-Tibau-Guamaré deve-se ao aumento da erosão do relevo pós Cretáceo da Província Borborema. Os sedimentos mais recentes (Pleistoceno) são formados por aluvões provenientes dos Rios Açú e Mossoró, na porção proximal (Figura 3.15); depósitos de praias e dunas na região costeira; e sedimentos siliciclásticos intercalados com bioclásticos de plataforma externa a finos de talude e bacia profunda. Na porção continental esse evento erosivo é correlacionado aos sedimentos conglomeráticos imaturos da Formação Serra do Martins, a qual se encontra depositada em platôs do embasamento, a sul da Bacia Potiguar.

3.7 – Magmatismo

O Magmatismo da ‘Serra do Cuó’ ocorre a leste da cidade de Açu (Figuras 3.12 e 3.15) e é composto por soleiras de olivina basaltos com tendência alcalina. Oliveira (1998; 2000) sugere que esse pulso ígneo, com idades entre 90 a 85 Ma, se instalou durante o Campaniano/Santoniano concomitante à deposição da Formação Jandaíra ‘cozinhando’ e soerguendo os sedimentos da Formação Açu.

O Magmatismo ‘Macau’ (Figuras 3.12, 3.13 e 3.15), de idade entre 29 a 45 Ma (Mizusaki, 1987), corresponde aos derrames, diques, soleiras, necks e plugs de olivina-basalto que ocorrem intercalados nas formações Guamaré, Ubarana e Tibau (Figura 3.14) como também intrudidos no embasamento cristalino, como por exemplo, o Pico do Cabugi (Figura 3.15).

A espessura do empilhamento desses derrames chega a atingir 2 km de espessura na região do canyon de Ubarana, na porção submersa da bacia (Figura 3.14). Já sua faixa aflorante vai desde a região da cidade de Macau (RN) até Boa Vista (PB) e exibe orientação N-S aproximada. Lima Neto (1999) sugere que a origem desse vulcanismo terciário estaria ligada a passagem da margem equatorial sobre o hot spot de Fernando de Noronha.

3.8 – Revisão bibliográfica sobre estudos gravimétricos na Bacia Potiguar

Modelagens gravimétricas realizadas por Milani & Latgé (1987), ao longo de seções transversais ao Rifte Potiguar (assumindo os valores de densidade média de 2,75 g/cm³ para o embasamento, contraste de densidade entre os sedimentos e a
encaixante no valor de – 0,15 g/cm³ e a geometria regional do rifte fixa) sugerem a necessidade da introdução de corpos de maior densidade para ajustar as informações entre os perfis gravimétricos observados e calculados (Figura 3.16). Ou seja, os autores admitem a possibilidade da presença de corpos densos (2,90 g/cm³), prováveis diques básicos, intrudidos no embasamento num alinhamento E-W subparalelo aos diques aflorantes do Rio Ceará Mirim (Figuras 3.1 e 3.10).

Figura 3.16 – Modelagens gravimétricas realizadas no Rífte Potiguar com perfis gravimétricos e com as curvas: lida (linha vermelha) e calculada (linha pontilhada azul), e as respectivas interpretações (corpos de intrusões básicas: cor rósea). Modificado de Milani & Latgé (1987)

![Figura 3.17 – Mapa da profundidade da interface crosta - manto do NE brasileiro, obtido a partir de inversão de anomalias gravimétricas regionais. Castro & Medeiros (1997).](image)

No trabalho regional elaborado por Oliveira (2008) em todo NE brasileiro, o mapa das anomalias Bouguer reflete as descontinuidades crustais mais proeminentes da área, as quais correspondem às heterogeneidades estruturais do
arcabouço regional (Figura 3.18), onde se podem individualizar os principais lineamentos da Província Borborema.

![Figura 3.18 – Mapa de Anomalias Bouguer da Província Borborema (Oliveira 2008)](image)

O estudo de Pedrosa Jr. et al. (2010) por sua vez, teve como foco caracterizar regionalmente o arcabouço estrutural da Bacia Potiguar através das assinaturas magnéticas e gravimétricas numa interpretação integrada dos dados. O mapa das anomalias gravimétricas regionais (Figura 3.19a) é caracterizado por anomalias suaves de amplo comprimento de onda, associadas a um gradiente gravimétrico positivo de caráter regional comprovando o afinamento crustal descrito anteriormente por Castro et. al. (1998), merece destaque uma anomalia negativa à NW do Rifte Potiguar (próximo à cidade de Mossoró) a qual sugere, segundo os autores, a presença de um déficit de massa nesse local (Figura 3.19a). O mapa das anomalias residuais (Figura 3.19b) individualiza com clareza as heterogeneidades
crustais mais rasas correspondentes ao arcabouço da região, com base nesse resultado os autores propõem subdividir a área em seis domínios geofísicos relativos às respectivas variações das feições estruturais em sub superfície.

Um trabalho recente sobre o tema foi elaborado por Castro (2011), o qual utilizou estudos conjuntos de magnetometria e gravimetria vinculados a dados sísmicos, informações de poços e mapeamento geológico. O autor elaborou cinco perfis com seções geológicas esquemáticas obtidas de modelagens com os dados integrados (Figura 3.20) ao longo da bacia, os quais permitiram não só a visualização tridimensional da arquitetura interna do rifte, como também a identificação das prováveis heterogeneidades litológicas intra embasamento. Em linhas gerais, as seções mostram uma série de meio grabens assimétricos orientados na direção NE-SW e controlados por um sistema de falhas normais, com destaque para a variação litológica do embasamento.

Castro (2011) comenta ainda que as assinaturas do campo potencial integrada com as informações à priori de sísmica, poços e geologia sugerem que as rochas metamórficas do Paleo-proterozóico corresponderiam às heterogeneidades do embasamento ao invés de corpos máficos intrusivos os quais foram propostos por modelagens gravimétricas prévias (Milani & Latgé, 1987). Por fim, o autor argumenta que essas heterogeneidades das rochas do embasamento aliadas às zonas de cisalhamento pré existentes provavelmente teriam conduzido os processos de rifteamento mesozóicos atuantes no NE brasileiro.

Capítulo IV – Tratamento preliminar dos dados disponíveis

4.1 – Introdução

Neste capítulo será dada ênfase ao tratamento realizado nos dados disponíveis previamente à aplicação do método de inversão gravimétrica. O capítulo será subdividido em três tópicos principais: o primeiro contém a descrição do tratamento dos dados gravimétricos, o segundo apresenta as informações dos poços, e o terceiro descreve o modelo de referência para o relevo do embasamento, oriundo de dados sísmicos.

O tratamento dos dados gravimétricos inicia com o geo-referenciamento das coordenadas e junção dos dados terrestres e marítimos. Em seguida, discute-se a delimitação da área da bacia emersa a ser estudada, bem como a correção gravimétrica dos efeitos topográficos e das variações de densidade intra embasamento. Por fim, é apresentada a separação do campos gravimétrico em suas componentes regional e residual.

O segundo tópico descreve sobre as informações dos poços a serem utilizadas como vínculos no processo de inversão gravimétrica, e narra ainda informações sobre a variação das densidades das rochas e os critérios de escolha do contraste de densidade mais representativo para a região de estudo. Por último, o terceiro tópico discorre sobre a obtenção do modelo sísmico usado como modelo de referência.

4.2 – Dados gravimétricos

Os dados gravimétricos utilizados nessa dissertação advêm do banco de dados do Departamento de Geofísica da Universidade Federal do Rio Grande do Norte. Esse banco agrega dados de domínio público (disponíveis no ano de 2008) de diferentes levantamentos gravimétricos terrestres e marítimos na região nordeste do Brasil. Nessa análise será dada enfoque a porção emersa da Bacia Potiguar (Figura 4.1).
As correções de ar livre e Bouguer incorporadas no banco de dados foram descritas por Oliveira (2008). Para a grande maioria dos dados, a altimetria foi efetuada com levantamento topográfico ou DGPS, e o restante com barometria. Nas porções marítimas, os dados de gravimetria e batimetria têm origem em medidas altimétricas dos satélites GEOSAT e ERS-1 (Sandwell & Smith, 1997). Todos os dados estão referidos ao sistema IGSN – 71. No continente, a anomalia Bouguer foi calculada usando os dados altimétricos dos levantamentos gravimétricos, sendo de 2,67 g/cm³ o valor da densidade para as massas topográficas terrestres, já no mar foi utilizada a densidade 1,03 g/cm³ para a massa de água. Não foram efetuadas correções de terreno. Devido ao tipo de levantamento altimétrico, a maior parte dos dados terrestres possuem erro inferior a 0,2 mGal, e o restante tem erro inferior a 1,0 mGal. Por sua vez, no mar o erro é estimado de até 5 mGal (Sandwell & Smith, 1997). Nessa dissertação, os dados marítimos foram utilizados apenas para a remoção do campo regional, uma vez que a área de estudo está restrita à porção emersa da bacia.

4.2.1 – Geo-referenciamento das coordenadas

4.2.2 – Junção dos dados gravimétricos terrestres e marítimos

Nessa etapa, os arquivos terrestres e marítimos dos dados gravimétricos foram integrados e interpolados, resultando nos seguintes mapas da anomalia Bouguer: porção marítima (Figura 4.2), porção terrestre (Figura 4.3), integração das porções marítima e terrestre (Figura 4.4).
Figura 4.2 – Mapa da anomalia Bouguer da porção marítima da Bacia Potiguar. Intervalo de contorno de 20 mGal.

Mapa Anomalia Bouguer (Bacia Potiguar Submersa)
Figura 4.3 – Mapa da anomalia Bouguer da porção terrestre da Bacia Potiguar. Intervalo de contorno de 5 mGal.
Figura 4.4 – Mapa da anomalia Bouguer integrado das porções marítima e terrestre da Bacia Potiguar. Linha de costa: linha azul continua. Intervalo de contorno de 10 mGal.
O mapa integrado da anomalia Bouguer (Figura 4.4) exibe grandes variações dos valores das anomalias, as quais mascaram a variação dos valores na parte emersa, pois enquanto que na porção terrestre os valores variam de -20 a 20 mGal, na porção marítima chegam a alcançar 230 mGal. A despeito disso, lembramos que o objetivo da integração foi obter a tendência regional da variação das anomalias gravimétricas, de modo a tornar mais realista o processo da separação dos campos gravimétricos nas suas componentes regional e residual.

4.2.3 – Definição da área de trabalho

De modo a se aplicar o método de inversão gravimétrica na Bacia Potiguar emersa, foi definido um polígono priorizando a porção rifte da bacia (Figura 4.1). A área a ser investigada está pormenorizada na Figura 4.5 e compreende um total de 2.554 pontos gravimétricos terrestres. Devido ao espaçamento desses pontos, foi definida ainda uma malha regularmente espaçada de 5 km nas direções \(x \) e \(y \) para desenvolver os trabalhos. Na Figura 4.5 estão também discriminados os poços utilizados na inversão, a serem descritos no item 4.3.

4.2.4 – Correção gravimétrica do efeito da topografia

A distribuição das cotas topográficas da área em questão está representada no Mapa Topográfico da Bacia Potiguar (Figura 4.6). Devido ao fato de que, para a correção Bouguer, a topografia nas estações gravimétricas é considerada ser plana faz-se necessário recalcular os dados removendo esse efeito (Kearey & Brooks, 2009). Para tanto, foi definido um valor de densidade média representativa para as regiões terrestre e marítima da bacia (Figura 4.5): na porção emersa considerou-se o valor médio da densidade das rochas \((\rho_r) \) igual a 2,67 g/cm\(^3\); já para a porção submersa a densidade média foi estipulada subtraindo-se da densidade da massa da água \((\rho_a = 1,03 \text{ g/cm}^3) \) o valor da densidade média das rochas \((\rho_r = 2,67 \text{ g/cm}^3) \) resultando num valor igual a -1,64 g/cm\(^3\). Por fim, com posse dessas densidades junto aos dados de elevação (densidade Bouguer) fez-se a Correção do Terreno, a qual foi calculada subtraindo-se da anomalia ar livre o efeito da topografia resultando assim na anomalia Bouguer Corrigida do efeito topográfico.
Figura 4.5 – Mapa da área da Bacia Potiguar emersa utilizada para as inversões gravimétricas com a distribuição dos pontos gravimétricos utilizados (total de 2554 pontos) e valores de densidade média para as porções terrestre e marítima. Localização dos poços usados nas inversões: poços que atingiram o embasamento (círculos de cor rosa) e poços concluídos na seção sedimentar (círculos verdes). Linha de Costa: linha azul contínua.
Figura 4.6 – Mapa Topográfico da Bacia Potiguar. Linha de Costa: linha azul contínua. Intervalo de contorno de 20 m.
4.2.5 – Remoção de anomalias localizadas e não associadas com a bacia

Após a correção gravimétrica da topografia, a análise do mapa Bouguer resultante revelou anomalias negativas não esperadas em uma região da plataforma rasa, entre as cidades de Icapuí e Mossoró (coincidente com a anomalia negativa regional observada na Figura 3.19a, do capítulo anterior). Interpretativamente, atribuimos essas anomalias à presença de variações de densidade em rochas intra embasamento. De modo a eliminar essas anomalias nessa região, foi utilizado um operador regional como entrada junto ao dado gravimétrico, fazendo assim uma filtragem da anomalia Bouguer.

A Figura 4.7 apresenta o mapa da anomalia gravimétrica Bouguer corrigida do efeito topográfico e das variações de densidade no embasamento raso. Nesse mapa pode-se observar que as anomalias estão dispostas preferencialmente na direção NE-SW, com valores entre -12 a 20 mGal na porção emersa, chegando a 50 mGal na direção da porção marítima. Merece destaque uma feição positiva alongada correspondente ao alinhamento da Falha de Caraubais (Figura 3.10, do capítulo anterior), que não pode ser explicada apenas com o contraste entre sedimentos e embasamento, acreditamos que é possível que essa anomalia se deva à presença de corpos básicos.

4.2.6 – Separação regional - residual

O mapa de anomalias Bouguer obtido reflete os efeitos gravitacionais produzidos por fontes na crosta (dominantemente o efeito da bacia) e no manto. Desse modo, podemos admitir que a anomalia Bouger é caracterizada pela sobreposição de uma anomalia regional, ampla e suave (fonte profunda na interface crosta-manto), com anomalias residuais de menor comprimento de onda (fontes mais rasas).

Para realizar a separação regional-residual, seguimos o estudo de Beltrão et al. (1991). Essa abordagem admite que a componente regional pode ser representada por um polinômio bidimensional (uma superfície de tendência), sendo os coeficientes do polinômio estimados através de um ajuste estatístico robusto entre o polinômio e o campo Bouguer obtido anteriormente. O grau do polinômio depende da complexidade do campo regional a ser removido, sendo a sua escolha...
matéria de julgamento interpretativo. Da análise visual das superfícies polinomiais de graus 1 a 8, escolhemos o grau 4, cuja superfície de tendência associada representa o campo regional (Figura 4.8). Esse campo regional é caracterizado por anomalias suaves, de longo comprimento de onda, tendo na porção central uma feição positiva coincidente com a região sob o graben da Bacia Potiguar. Esse mapa reporta basicamente o efeito gravitacional resultante do afinamento crustal em direção à margem continental, com um aumento relativo no gradiente das anomalias na direção NE-SW.

O passo seguinte foi remover da anomalia Bouguer (Figura 4.7) o campo gravimétrico regional (Figura 4.8), resultando assim na anomalia residual, a qual foi uniformizada de modo exibir apenas valores negativos. O resultado é bastante satisfatório e ilustra claramente as feições do rifte Potiguar (Figura 4.9), nesse mapa as anomalias acompanham os principais lineamentos estruturais conhecidos da bacia, cuja direção principal é de NE-SW, variando localmente a sudoeste para NW-SE na região do Graben de Apodi (Figura 3.10). O mapa exibe ainda variações dos valores das anomalias dentro do rifte referentes às variações no relevo do embasamento nessa área (como ilustrado nos perfis gravimétricos da Figura 4.10), os valores mais negativos podem atingir até -55 mGal e ocorrem no depocentro do rifte o qual é bordejado pelas falhas principais. Já nas porções externas do rifte, os valores das anomalias variam de -20 a -30 mGal, revelando assim um seção sedimentar mais rasa (região noroeste dos perfis ‘a’ e ‘b’ da Figura 4.10). Assim, avaliamos que essa anomalia residual representa satisfatoriamente a interface entre os sedimentos da bacia e o embasamento e foi usada como entrada nos procedimentos de inversão. Para contornar um problema de extrapolação dos valores (acima de 10 km) na região NE da área (efeito de borda) durante a inversão optamos por condicionar as profundidades à 6 km.

4.3 – Descrição dos dados de poços

Para vincular a inversão gravimétrica foram utilizados dados de profundidade de 28 poços distribuídos na área (Figura 4.5 e Tabela 4.1). Desse total, cinco poços amostrados encontram-se concluídos ainda dentro da seção sedimentar (círculos de cor verde na Figura 4.5) e os demais vinte e três poços atingiram o embasamento (círculos de cor rosa na Figura 4.5).
Figura 4.7– Mapa da anomalia Bouguer da Bacia Potiguar emersa corrigida do efeito topográfico e das variações de densidade no embasamento raso. Linha de costa: linha azul contínua. Intervalo de contorno de 4 mGal.
Figura 4.8 – Mapa anomalia gravimétrica regional da Bacia Potiguar emersa obtida com o ajuste polinomial de grau 4. Intervalo de contorno de 7 mGal.
4.3.1 – Profundidade final dos poços

As profundidades dos poços estão listadas nas Tabelas 4.1 e 4.2. No caso dos poços que atingiram o embasamento, foram definidos limites mínimos (superiores) e máximos (inferiores) bastante estreitos, delimitando uma variação de apenas 50 m em torno da cota da profundidade constatada para o embasamento em cada poço (Tabela 4.1).

<table>
<thead>
<tr>
<th>Poço</th>
<th>Coordenada X (m)</th>
<th>Coordenada Y (m)</th>
<th>Profundidade embasamento (m)</th>
<th>Limite Mínimo (m)</th>
<th>Limite Máximo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>738486,6</td>
<td>9422605,4</td>
<td>-1945</td>
<td>1895</td>
<td>1995</td>
</tr>
<tr>
<td>2</td>
<td>632736,0</td>
<td>9387813,0</td>
<td>-295</td>
<td>245</td>
<td>345</td>
</tr>
<tr>
<td>3</td>
<td>727307,8</td>
<td>9430394,0</td>
<td>-1439</td>
<td>1389</td>
<td>1489</td>
</tr>
<tr>
<td>4</td>
<td>651471,3</td>
<td>9406415,1</td>
<td>-567</td>
<td>517</td>
<td>617</td>
</tr>
<tr>
<td>5</td>
<td>666179,7</td>
<td>9380036,3</td>
<td>-1927</td>
<td>1877</td>
<td>1977</td>
</tr>
<tr>
<td>6</td>
<td>703574,1</td>
<td>9438087,5</td>
<td>-1106</td>
<td>1056</td>
<td>1156</td>
</tr>
<tr>
<td>7</td>
<td>701399,9</td>
<td>9388689,9</td>
<td>-205</td>
<td>155</td>
<td>255</td>
</tr>
<tr>
<td>8</td>
<td>729536,0</td>
<td>9406572,0</td>
<td>-937</td>
<td>887</td>
<td>987</td>
</tr>
<tr>
<td>9</td>
<td>689959,7</td>
<td>9438713,2</td>
<td>-974</td>
<td>924</td>
<td>1024</td>
</tr>
<tr>
<td>10</td>
<td>781335,5</td>
<td>9433689,9</td>
<td>-1344</td>
<td>1294</td>
<td>1394</td>
</tr>
<tr>
<td>11</td>
<td>636929,2</td>
<td>9391088,4</td>
<td>-4424</td>
<td>4374</td>
<td>4474</td>
</tr>
<tr>
<td>12</td>
<td>758457,0</td>
<td>9405782,0</td>
<td>-326</td>
<td>276</td>
<td>376</td>
</tr>
<tr>
<td>13</td>
<td>737703,3</td>
<td>9444269,3</td>
<td>-2999</td>
<td>2949</td>
<td>3049</td>
</tr>
<tr>
<td>14</td>
<td>625797,0</td>
<td>9401456,4</td>
<td>-1898</td>
<td>1848</td>
<td>1948</td>
</tr>
<tr>
<td>15</td>
<td>673759,3</td>
<td>9427581,8</td>
<td>-848</td>
<td>798</td>
<td>898</td>
</tr>
<tr>
<td>16</td>
<td>712465,1</td>
<td>9394189,9</td>
<td>-251</td>
<td>201</td>
<td>301</td>
</tr>
<tr>
<td>17</td>
<td>684221,4</td>
<td>9394297,3</td>
<td>-2070</td>
<td>2020</td>
<td>2120</td>
</tr>
<tr>
<td>18</td>
<td>771438,9</td>
<td>9424206,6</td>
<td>-2022</td>
<td>1972</td>
<td>2072</td>
</tr>
<tr>
<td>19</td>
<td>651848,1</td>
<td>9387639,4</td>
<td>-3457</td>
<td>3407</td>
<td>3507</td>
</tr>
<tr>
<td>20</td>
<td>651927,1</td>
<td>9420295,4</td>
<td>-583</td>
<td>533</td>
<td>633</td>
</tr>
<tr>
<td>21</td>
<td>671500,8</td>
<td>9410322,3</td>
<td>-1838</td>
<td>1788</td>
<td>1888</td>
</tr>
<tr>
<td>22</td>
<td>702159,6</td>
<td>9417202,5</td>
<td>-2192</td>
<td>2142</td>
<td>2242</td>
</tr>
<tr>
<td>23</td>
<td>685470,0</td>
<td>9406140,0</td>
<td>-721</td>
<td>671</td>
<td>771</td>
</tr>
</tbody>
</table>

Tabela 4.1 – Informações dos vinte e três poços concluídos no embasamento (usados como vínculo da inversão), coordenadas, profundidades constatadas, e limites mínimos e máximos das respectivas profundidades. Bacia Potiguar emersa.
Quanto aos poços concluídos dentro da seção sedimentar, os limites foram definidos de modo a evitar a subavaliação das estimativas de profundidade resultantes da inversão, ou seja, impedir que as profundidades obtidas sejam muito rasas nesses locais. Assim sendo, o limite mínimo foi estipulado como sendo a profundidade final de perfuração do poço, e o limite máximo foi definido igual ao valor do limite da inversão, nesse estudo estipulado no valor igual a 6 km, a fim de evitar indesejáveis efeitos de borda descritos anteriormente (Tabela 4.2).

<table>
<thead>
<tr>
<th>Poço</th>
<th>Coordenada X (m)</th>
<th>Coordenada Y (m)</th>
<th>Profundidade final do poço (m)</th>
<th>Limite Mínimo (m)</th>
<th>Limite Máximo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>691473,0</td>
<td>9387215,8</td>
<td>-2968</td>
<td>2968</td>
<td>6000</td>
</tr>
<tr>
<td>2</td>
<td>745175,8</td>
<td>9415717,1</td>
<td>-1600</td>
<td>1600</td>
<td>6000</td>
</tr>
<tr>
<td>3</td>
<td>697824,8</td>
<td>9399947,9</td>
<td>-2558</td>
<td>2558</td>
<td>6000</td>
</tr>
<tr>
<td>4</td>
<td>721377,3</td>
<td>9416946,1</td>
<td>-1658</td>
<td>1658</td>
<td>6000</td>
</tr>
<tr>
<td>5</td>
<td>712750,9</td>
<td>9432185,8</td>
<td>-2474</td>
<td>2474</td>
<td>6000</td>
</tr>
</tbody>
</table>

4.3.2 – Densidade das rochas

Na elaboração da presente dissertação, o processo de inversão gravimétrica admite que o contraste de densidade ($\Delta \rho$) entre os meios é constante, devendo esse valor ser previamente estimado. Assim, de modo a se tentar obter essa informação compomos um Poço X (Figura 4.11) justapondo trechos de dois diferentes poços: A (da superfície até -1,7 km) e B (de -1,7 km até -4,4 km), localizados no depocentro da bacia e concluídos dentro da seção sedimentar. Mesmo não tendo atingido o embasamento, esses poços eram os únicos para os quais tínhamos acesso aos perfis de densidade. O perfil da variação do contraste de densidade com a profundidade do Poço X hipotético está apresentado na Figura 4.12 (valor médio = $-0,27$ g/cm³). Todavia este valor inicial mostrou-se inadequado, optou-se assim por um valor médio de $-0,37$ g/cm³, informações estas detalhadas no capítulo seguinte (Item 5.2.2).
Figura 4.11 – Perfil composto de um POÇO X hipotético posicionado na porção mais profunda da bacia. Variação litológica teórica (coluna à esquerda) e informações de densidade perfil RHOB (linha vermelha) com a profundidade. Poço X concluído na seção sedimentar. Bacia Potiguar emersa.
Figura 4.12 – POÇO X hipotético: variação do contraste da densidade (perfil azul) com a profundidade. $\Delta \rho$ média = - 0,27 g/cm³. Poço concluído dentro da seção sedimentar. Bacia Potiguar emersa.
4.4 – Modelo de referência resultante de dados sísmicos

Um modelo de referência é um dos itens requeridos como dado de entrada no método de inversão gravimétrica que foi utilizado. Na presente dissertação optou-se por digitalizar o mapa estrutural sísmico do embasamento em profundidade (Figura 3.8 do capítulo anterior) obtido através da interpretação sísmica de linhas 2D elaborada por Matos (1992).

Os dados do modelo sísmico foram inicialmente contornados e suavizados numa malha regular de 2,5 km. Contudo, essa malha mostrou-se inadequada, pois exibiu um indesejável truncamento nas cotas as quais recortam as feições de borda do rifte (Figura 4.13). Optou-se então por utilizar o modelo sísmico de entrada contornado e suavizado numa malha regular de 5 km, o resultado (Figura 4.14) mostrou-se mais satisfatório em relação ao anterior (Figura 4.13), uma vez que essa malha de 5 km é mais compatível com a cobertura gravimétrica disponível (Figura 4.5). Assim, o modelo sísmico contornado na malha de 5 km foi utilizado como referência no processo de inversão.

Outro procedimento realizado no modelo de referência, com a finalidade de destacar a porção rifte da bacia, foi a uniformização das cotas mais rasas (regiões das plataformas exibidas nas Figuras 3.1 e 3.10 do capítulo anterior), as quais variam entre +70 m e -140 m para uma cota hipotética ‘plana’ no valor de 0 m, como ilustrado na Figura 4.15, onde o modelo é discriminado nas visões tridimensionais de direções norte, nordeste e noroeste (itens ‘a’, ‘b’ e ‘c’, respectivamente).
5.1 – Introdução

O método de inversão gravimétrica usando os vínculos de suavidade e barreiras logarítmicas foi aplicado aos dados da Bacia Potiguar emersa. Nesse capítulo, serão descritos os passos da aplicação desse método. A princípio serão narrados os diversos testes realizados de modo a ajustar (ou “sintonizar”) as variáveis auxiliares utilizadas na inversão, englobando os testes relativos à definição dos valores dos multiplicadores de Lagrange e do contraste de densidade.

Na sequência, será descrita a aplicação do método de inversão gravimétrica que foi feita em distintos cenários, os quais simulam as diferentes etapas ou fases de exploração de uma bacia sedimentar, conforme esquematizado na Figura 5.1. O Cenário 1 leva em conta somente informações gravimétricas e utiliza um modelo plano de entrada, desse modo, ele ilustra uma fase bastante inicial da exploração de uma bacia. O Cenário 2 (subdividido em dois) agrega à gravimetria informações de poços exploratórios (Cenário 2a) ou dados de um levantamento sísmico (Cenário 2b), ilustrando fases exploratórias intermediárias. Finalmente, no Cenário 3 a inversão é feita com o uso conjunto de um modelo sísmico de referência e de dados de poços, simulando fases mais avançadas de exploração. A idéia desse trabalho é averiguar como mudam as estimativas do relevo do embasamento ao longo das fases de exploração de uma determinada área, evidenciando assim os possíveis benefícios da aplicação do método de inversão.
5.2 – Testes para ajustar as variáveis auxiliares

Foram feitos inicialmente diversos testes de modo a se ajustar adequadamente todas as variáveis usadas na inversão, atentando também ao tempo de máquina despendido em todo o processo.

5.2.1 – Testes referentes aos parâmetros da inversão

O primeiro passo nessa etapa foi a manipulação dos dados gravimétricos de modo a serem interpolados num conjunto de 756 pontos de observação, com os correspondentes prismas regulares com 5 km de largura nas direções \(x\) e \(y\). Lembremos que cada topo de prisma está associado com uma “medida” gravimétrica. O conjunto de todos os prismas representa o volume de sedimentos da bacia, com os topos na superfície topográfica e as bases correspondendo às profundidades até o contato sedimento-embasamento (altura \(h\)), a serem determinadas no processo de inversão, como descrito no item 2.4.1 do Capítulo II (Figura 2.1).

Os parâmetros empregados no programa da inversão foram testados empiricamente de modo a fornecerem, ao mesmo tempo, bom ajuste dos dados gravimétricos, estabilidade da solução e tempo de máquina razoavelmente pequeno.

Seguindo o método de Lyrio (2009), descrito no item 2.4.2 do Capítulo II, após diversos testes, os valores \(\lambda = 1,0 \times 10^2\) e \(\mu = 6,0 \times 10^{-7}\) satisfizeram aos requisitos acima especificados. O valor de \(\eta\), parâmetro que limita o comprimento do passo e tem influência principalmente na velocidade da convergência do processo, foi escolhido como sendo 0,99 com o objetivo de otimizar os custos operacionais. A aplicação desses parâmetros no processo de inversão gravimétrica resultou num ajuste alvo, após nove iterações, compatível com a precisão dos dados gravimétricos.
5.2.2 – Testes referentes ao contraste de densidade

O valor a ser escolhido deve representar um contraste de densidade médio efetivo entre o embasamento e os sedimentos (Litinsky, 1989). O valor da densidade para as rochas do embasamento \(\rho_1 \) é considerado igual a 2,67 g/cm³, enquanto que a definição do valor da densidade dos sedimentos \(\rho_2 \) deve ser escolhida de modo a fornecer o valor mais representativo para toda a seção sedimentar da bacia.

Foram realizados alguns testes de modo a definir o melhor contraste de densidade para a área. Numa primeira etapa foi considerada uma média simples nas variações de densidade retiradas diretamente do perfil de densidade do POÇO X composto, descrito no item 4.3.2 do Capítulo IV, que resultou no valor de 2,39 g/cm³ para a densidade média e - 0,27 g/cm³ para o contraste de densidade (Figura 4.12).

No entanto, a estimativa do embasamento resultante (Figura 5.2), a despeito de ter definido com clareza a geometria do rifte Potiguar, mostrou-se inadequada porque exibe profundidades muito altas. Ou seja, o relevo do embasamento estimado com \(\Delta \rho = - 0,27 \) g/cm³ mostra-se demasiadamente profundo (acima de 5km em alguns locais), em relação ao esperado. Uma possível explicação para os valores excessivamente altos de profundidade seria de que o valor de -0,27 g/cm³ talvez seja muito pequeno, ou seja, o fato do POÇO X amostrar principalmente trechos mais profundos da bacia e deixar de considerar as porções mais rasas (e menos compactadas) está em acordo com essa hipótese.

No passo seguinte, optou-se por testar uma densidade média um pouco mais baixa para os sedimentos (2,30 g/cm³), levando a um contraste de densidade igual a - 0,37 g/cm³. Nesse caso, a resposta (Figura 5.3) foi relativamente mais plausível em relação à estimativa prévia (Figura 5.2). Perfis elaborados com a comparação entre as duas estimativas (Figura 5.4) corroboraram a afirmação anterior. Desse modo, acreditamos que esse valor de densidade médio é mais representativo em relação às rochas da bacia como um todo, assim sendo o mesmo foi adotado para o processo de inversão.
Figura 5.2 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica Inicial realizada com malha de 5 km e contraste de densidade ($\Delta \rho$) no valor de -0,27 g/cm3. Localização dos perfis A-A', B-B', C-C' e D-D' exibidos na Figura 5.4. Intervalo de Contorno de 400 m.
5.3 – Estimativas do relevo do embasamento obtidas da inversão gravimétrica

No restante do capítulo apresentaremos os resultados individuais das inversões gravimétricas realizadas para cada um dos cenários esquematizados na Figura 5.1.

5.3.1 – Cenário 1: Inversão gravimétrica usando apenas os dados gravimétricos

Nesse cenário utilizou-se na inversão apenas as observações gravimétricas, como modelo de referência (profundidade), se fez uso de um plano para minimizar a introdução do viés devido a esse modelo. Não obstante o número reduzido de pontos de observação (malha regional), a resposta do relevo invertido do embasamento obtido nesse cenário (Figuras 5.3) foi muito boa. A estimativa do relevo mostra claramente a geometria do arcabouço da bacia, inclusive a forma da calha principal, alongada na direção NE-SW e correspondente ao Rifte Potiguar, bem como discrimina nitidamente as variações de relevo nas porções internas da bacia, com a distribuição dos altos e baixos internos (Figura 3.10, do Capítulo III).

No tocante aos valores absolutos de profundidade, o resultado também é plausível, quando comparado, por exemplo, com a estimativa obtida com $\Delta \rho = -0,27$ g/cm³. Os perfis mostrados na Figura 5.4 ilustram claramente as desigualdades entre as duas respostas e confirmam que o contraste de densidade mais baixo superestima o relevo do embasamento, principalmente nas regiões mais profundas da bacia. A Figura 5.5 mostra as visões tridimensionais nas direções norte, nordeste e noroeste para o resultado do Cenário 1 (itens a, b e c, respectivamente).

O campo gravimétrico modelado (Figura 5.6) reproduziu com consistência o campo gravimétrico observado (Figura 4.9), como pode ser mais bem avaliado nos mapas e perfis mostrados nas Figuras 5.7a e 5.7b. Contudo, o mapa das diferenças (Figura 5.8) entre os campos observado e calculado (Figuras 4.9 e 5.6), exibe anomalias consistentemente positivas nas zonas mais profundas. Muito provavelmente isso se deve ao efeito ‘tendencioso’ de um vínculo relativamente forte de suavidade em relação ao modelo de referência (plano). Em outras palavras, o rifte é certamente mais profundo do que as estimativas obtidas, admitindo que o contraste de densidade esteja adequado.
Figura 5.3 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 1. (malha de 5 km e \(\Delta \rho = -0,37 \text{ g/cm}^3 \)). Localização dos perfis A-A', B-B', C-C' e D-D' exibidos na Figura 5.4. Intervalo de Contorno de 400 m.
Figura 5.4 – Perfis das estimativas de relevo do embasamento da Bacia Potiguar emersa resultante de inversões gravimétricas elaboradas com contrastes de densidade igual a −0,27 g/cm³ (linha preta contínua) e −0,37 g/cm³ (linha vermelha tracejada): a) Perfil A-A’ (NW-SE), b) Perfil B-B’ (NW-SE), d) Perfil C-C’ (SW-NE) e d) Perfil D-D’ (SW-NE). Estes perfis estão localizados nas Figuras 5.2 e 5.3. Notar que as escalas verticais são diferentes em cada perfil.
Figura 5.5 – Visualizações tridimensionais do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica do Cenário 1 (referência na Figura 5.3) nas seguintes direções: a) Norte, b) Nordeste e c) Noroeste. Exagero vertical 10X.
Figura 5.6 – Resultado do campo gravimétrico calculado no Cenário 1, Intervalo de Contorno de 4 mGal. Bacia Potiguar emersa.
Figura 5.7 – a) Mapa com os campos gravimétricos: medido (linha preta) e calculado resultante da inversão gravimétrica no Cenário 1 (linha tracejada azul); b) Perfis gravimétricos A-A’, B-B’, C-C’ e D-D’ com os respectivos campos. Bacia Potiguar emersa.

Figura 5.8 – Mapa com as diferenças entre os campos gravimétricos: calculado (Cenário 1) e medido. Intervalo do contorno de 1 mGal. Bacia Potiguar emersa.
5.3.2 – Cenário 2a: Inversão gravimétrica usando os dados gravimétricos e de poços

Esse cenário correspondente a uma fase exploratória mais avançada que a anterior, em que alguns poços exploratórios já estão disponíveis. Assim, além dos dados gravimétricos, foram utilizados vínculos sobre a profundidade em 28 poços (Capítulo IV, item 4.3). De maneira análoga ao Cenário 1, o modelo de referência (profundidade) utilizado foi plano.

A estimativa do relevo do embasamento gerada (Figura 5.9) é bastante similar à obtida no Cenário 1 e também ilustra com clareza a forma do arcabouço da bacia. Visões tridimensionais alternativas dessa estimativa são fornecidas na Figura 5.10.

Cabe ressaltar que o relevo estimado nesse cenário exibe feições anômalas em pontos coincidentes com a localização dos poços (Figuras 5.9 e 5.10). Acreditamos que esses pináculos sejam reflexos dos vínculos utilizados na inversão. Duas hipóteses podem ser colocadas: (1) os valores dos parâmetros da inversão poderiam ser melhores “sintonizados” e/ou (2) há excessivo viés (efeito tendencioso) do modelo plano de referência. Não descartamos, contudo, a hipótese alternativa de que os poços possam estar localizados em bordas de falhas, onde haja variações muito abruptas na profundidade do embasamento, que são incompatíveis com o vínculo de suavidade imposto. Notamos ainda alguns pináculos nas porções rasas, que sugerem que o embasamento estimado está relativamente profundo nesses locais. Além disso, destacamos que a profundidade estimada pelo processo de inversão é uma média em uma área de 5 X 5 km (malha), enquanto que as informações de profundidades dos poços são medidas pontuais.

O campo gravimétrico modelado (Figura 5.11) é também bem similar ao campo medido (Figura 4.9), diferindo apenas nas posições dos poços, como pode ser observado na Figuras 5.12a e 5.12b. A Figura 5.12a exibe os mapas sobrepostos desses dois campos: medido (linha preta) e modelado (linha pontilhada laranja), e a Figura 5.12b apresenta os perfis gravimétricos correspondentes nas direções NW-SE e SW-NE. A Figura 5.13 se refere às diferenças entre esses campos (Figuras 5.11 e 4.9), cujo mapa apresenta feições positivas anômalas nos posições dos poços, principalmente nos locais daqueles que atingiram o embasamento.
Figura 5.9 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 2a (círculos pretos: 23 poços que atingiram o embasamento; círculos vermelhos: 5 poços concluídos na seção sedimentar), intervalo de Contorno de 400 m (malha de 5km e Δρ = -0,37 g/cm³).
Figura 5.10 – Visualizações tridimensionais do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica do Cenário 2a (referência na Figura 5.9) nas seguintes direções: a) Norte, b) Nordeste e c) Noroeste. Exagero vertical 10X.

5.3.3 – Cenário 2b: Inversão gravimétrica usando dados gravimétricos e modelo de referência obtido da sísmica

Do mesmo modo que o Cenário 2a, o Cenário 2b corresponde a uma fase exploratória um pouco mais avançada em relação ao cenário inicial. Entretanto, nesse caso, em lugar de adicionar as medidas de profundidades oriundas dos poços, foi empregado na inversão gravimétrica, além dos dados gravimétricos, uma entrada com um modelo de referência obtido pela interpretação sísmica 2D realizada por Matos (1992), (Capítulo IV, item 4.4).

A estimativa resultante de relevo de embasamento está mostrada no mapa da Figura 5.14 e na forma de visões tridimensionais nas Figuras 5.15a 5.15b e 5.15c. Essa estimativa é muito semelhante à obtida no Cenário 1 (Figura 5.3). Em ambos os mapas, notam-se as mesmas feições dos principais alinhamentos da bacia, no entanto, nas porções internas do rifte, as cotas do relevo resultante da inversão nesse Cenário 2b são relativamente mais profundas que as do Cenário 1. Desse modo, podemos concluir que a inclusão de um modelo sísmico permite aprimorar as informações sobre a variação das profundidades.

O campo gravimétrico modelado no Cenário 2b (Figura 5.16) ajusta bem o campo observado (Figura 4.9). Os mapas sobrepostos dos dois campos, medido (linhas preta) e calculado (linha pontilhada verde), estão mostrados na Figura 5.17a, por sua vez, a Figura 5.17b apresenta alguns perfis gravimétricos para efeito de comparação. Embora esses dois campos, medido e calculado, sejam muito parecidos, notam-se pequenas diferenças nas bordas sul e centro-sudeste da área, fato comprovado no mapa das diferenças entre eles (Figura 5.18). Esse mapa exibe cotas em torno de 1 mGal nas áreas mais rasas, enquanto que na região do rifte as amplitudes das anomalias variariam de 2 até -5 mGal, essas variações do gradiente atestam as profundidades agregadas pelo modelo sísmico de entrada.
Figura 5.14 – Mapa da estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 2b (malha de 5 km e $\Delta \rho = -0.37$ g/cm3). Intervalo de Contorno de 400 m.

Figura 5.18 – Mapa das diferenças entre os campos gravimétricos: calculado (Cenário 2b) e medido. Intervalo Contorno de 1 mGal. Bacia Potiguar emersa.
5.3.4 – Cenário 3: Inversão gravimétrica usando dados gravimétricos, de poços e modelo de referência obtido da sísmica

Este Cenário 3, por fim, representa uma fase avançada na exploração de uma bacia, onde o intérprete tem maior quantidade de informações disponíveis para agregar às observações gravimétricas. Nesse cenário, a inversão foi realizada agregando não só os vínculos de poços (descrito no Capítulo IV, item 4.3), mas também modelo de referência obtido da sísmica (descrito no Capítulo IV, item 4.4).

A resposta da estimativa do relevo do embasamento obtida (Figura 5.19) é muito boa, o que reflete a importância dos vínculos no processo. As Figuras 5.20a, 5.20b e 5.20c exibem as perspectivas nas direções norte, nordeste e noroeste, e ilustram claramente a geometria do arcabouço da bacia. Além disso, as profundidades do embasamento obtidas nessa etapa da inversão são mais confiáveis em relação às obtidas nos cenários anteriores, pois se aproximam dos valores esperados, levando-se em conta o histórico da exploração da bacia.

Outro ponto a ser destacado sobre o resultado do Cenário 3 (Figuras 5.19 e 5.20) diz respeito aos vínculos dos poços. Nesse caso, os pináculos presentes na estimativa do relevo do Cenário 2a (Figuras 5.9 e 5.10) não estão aparentes no relevo obtido. Interpretamos deste fato que, entre as hipóteses lançadas para explicar esses “pináculos” (descritas no item 5.3.2), possivelmente a hipótese (2) é a dominante, ou seja, haveria um excessivo viés do modelo plano de referência.

O campo gravimétrico modelado no Cenário 3 (Figura 5.21) é também muito semelhante ao campo observado (Figura 4.9). A Figura 5.22a exibe os mapas desses dois campos sobrepostos, medido (linha preta) e calculado nesse Cenário 3 (linha pontilhada vermelha), como também os respectivos perfis gravimétricos (Figura 5.22b) nas direções NW-SE e SW-NE, e a Figura 5.23 mostra a diferença entre esses campos.

É evidente a semelhança entre essas figuras com os resultados do Cenário 2a (Figuras 5.12 e 5.13) evidenciando assim a ocorrência dos pináculos, todavia com menor amplitude (Figuras 5.13 e 5.23). Talvez essa diminuição das amplitudes seja devido à menor diferença de profundidade em relação aos prismas próximos embutida pelo modelo sísmico. Esse resultado era esperado para a situação padrão de validade de ajuste dos mínimos quadrados. Idealmente, se supõe que o resíduo seja descrito por uma distribuição normal de media nula.
Figura 5.19 – Mapa da estimativa do relevo de embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 3. Círculos pretos: 23 poços que atingiram o embasamento; círculos vermelhos: 5 poços concluídos na seção sedimentar. Intervalo de Contorno de 400 m. Malha de 5 km e $\Delta \rho = 0.37 \text{ g/cm}^3$. Intervalo de Contorno de 400 m.

5.4 – Conclusões

Com relação ao valor do contraste de densidade, registremos que foi necessário utilizar um valor de maior amplitude que a fornecida pela média do perfil do poço composto. Esse resultado se deve certamente ao fato de que o perfil composto não amostrou as porções mais rasas e menos densas dos sedimentos.

Em relação às inversões realizadas, podemos notar que a estimativa de relevo obtida no Cenário 1 retratou com clareza as estruturas internas do Graben Potiguar. Porém, o campo medido mostrou-se consistentemente menor que o campo observado nas regiões de maior amplitude da anomalia, o que é um indício de que as profundidades podem ser ainda maiores.

Por sua vez, a estimativa de relevo no Cenário 2a exibiu indesejáveis pináculos nos locais dos poços, o mesmo efeito se refletindo na diferença entre os campos modelado e observado, acreditamos que a influência dominante nesse efeito se deve provavelmente ao viés (efeito tendencioso) do modelo plano de referência. Já a estimativa de relevo no Cenário 2b foi bastante semelhante a do Canário 1, mostrando uma maior consistência entre os campos modelado e observado.

Por fim, a estimativa de relevo do embasamento no Cenário 3 produziu estimativas muito boas do relevo do embasamento, mostrando-se o comportamento da diferença entre os campos modelado e observado muito próximo do padrão esperado para a situação ideal.
Capítulo VI – Análise dos Resultados

6.1 – Introdução

A gravimetria tem sido tradicionalmente usada para revelar a estruturização interna de bacias sedimentares, comum em estágios de reconhecimento regional de exploração. Contudo, geralmente a interpretação é feita de forma qualitativa, sem o uso de técnicas mais avançadas de inversão. A presente dissertação tem igualmente o objetivo de evidenciar o ganho obtido com o uso dessas técnicas, não só no estágio inicial, mas também nas subsequentes fases de exploração. Esse capítulo está estruturado de forma a aprofundar a análise comparativa das estimativas obtidas – descritas no capítulo anterior – nos diferentes cenários descritos.

6.2 – Cenário 1

Como já dissemos anteriormente, a estimativa do relevo do embasamento obtida no Cenário 1 (Figura 6.1), simula um estágio inicial da exploração em caráter regional. Na inversão, foram utilizadas apenas as observações gravimétricas e um contraste de densidade igual a -0,37 g/cm³. Ressaltemos que foram utilizadas apenas 2.554 estações gravimétricas, distribuídas esparsamente ao longo de toda a bacia (Figura 4.5, item 4.2.3 do Capítulo IV). A despeito da escassez de pontos gravimétricos, a estimativa de relevo obtida foi bem razoável (Figura 6.1), acrescentamos ainda que essas figuras (6.1a e 6.1b), em particular, permitem avaliar que as feições reveladas na estimativa são compatíveis com a cobertura gravimétrica.

6.2.1 – Comparação entre a estimativa do Cenário 1 e o modelo sísmico

Um ponto inicial a ser destacado é uma comparação entre a estimativa obtida no Cenário 1 (Figuras 6.2a) e o modelo sísmico (Figura 6.2b). A Figura 6.2c exibe a superposição entre as superfícies, e a diferenças entre elas é mostrada na Figura 6.2d. Essa comparação permite concluir que a despeito de algumas diferenças concentradas na borda sudeste da Falha de Carnaubais o relevo estimado no Cenário 1 é muito semelhante ao modelo resultante da sísmica isolada.

Ou seja, mesmo uma inversão simples, realizada apenas com dados gravimétricos e numa malha regional, a estimativa obtida da inversão gravimétrica fornece uma boa idéia do arcabouço da bacia o qual, acreditamos, aproxima-se virtualmente das feições reais em sub superfície.

Cabe ainda lembrar que, os custos de um levantamento gravimétrico são muito inferiores em relação aos da sísmica, assim como os impactos ambientais, reafirmando assim a importância da gravimetria como ferramenta muito importante para direcionar as fases iniciais de exploração.

6.3 – Cenário 2a

Lembremos que no Cenário 2a são incluídas na inversão gravimétrica, além dos dados gravimétricos, as informações de 28 poços distribuídos ao longo da bacia. Além disso, foi usado um plano como modelo de referência. As Figuras 6.3a e 6.3b exibem, respectivamente o mapa de contorno (com os poços) e a vista em perspectiva da estimativa obtida nesse Cenário 2a.
Figura 6.2 – Vistas em perspectiva: a) Modelo sísmico de entrada; b) Estimativa do relevo de embaçamento resultante da inversão gravimétrica no Cenário 1; c) Superposição do modelo sísmico e da inversão no Cenário 1; d) Superfície referente às diferenças entre o modelo sísmico e a inversão no Cenário 1. Exaergo vertical 10X. Bacia Potiguar emersa.

O relevo invertido no Cenário 2a reflete nitidamente a compartimentação da bacia em sub superfície e apresenta profundidades provavelmente mais acuradas em relação às obtidas na inversão prévia (Cenário 1), especialmente nas porções internas ao rifte, pois o embasamento é relativamente mais profundo. Contudo, o modelo resultante apresenta algumas distorções nas posições dos poços, principalmente naqueles concluídos no embasamento (Figuras 6.3a e 6.3b).

6.3.1 – Comparação entre as estimativas do Cenário 2a e do Cenário 1

A observação conjunta das Figuras 6.4a (Cenário 1), 6.4b (Cenário 2a), 6.4c (superposição dos resultados dos dois cenários) e 6.4d (diferença entre os resultados dos dois cenários) permite visualizar as diferenças entre as duas estimativas. Destacam-se as feições espúrias associadas aos “pináculos” nos poços. Com exceção desses pináculos, a comparação evidencia que a inclusão de vínculos de poços possivelmente aprimora os resultados pois a estimativa do Cenário 2 é um pouco mais profunda, principalmente na região do rifte.
6.4 – Cenário 2b

Lembremos que nesse Cenário 2b são incluídas na inversão gravimétrica, além dos dados gravimétricos, um modelo de referência gerado pela interpretação sísmica. Dessa forma, o enfoque aqui é a disponibilidade de dados sísmicos para servir como entrada no processo da inversão gravimétrica. A estimativa do relevo do embasamento resultante da inversão gravimétrica nesse cenário (Figuras 6.5a e 6.5b) é bastante coerente, e as profundidades são relativamente mais plausíveis.

6.4.1 – Comparação entre a estimativa do Cenário 2b e o modelo sísmico

Inicialmente destacamos uma comparação entre o resultado da inversão no Cenário 2b e o modelo sísmico. A Figura 6.6 (itens a, b, c, d) pormenoriza essa análise como também suas diferenças, sua análise revela que o relevo do Cenário 2b é muito parecido com o modelo sísmico e, em geral mais profundo.

As maiores desigualdades dessas profundidades (Figura 6.6d) bordejam as principais falhas que limitam o rifte Potiguar. Todavia, na região centro-sudeste do alinhamento de Caruá (Figura 3.10), a estimativa resultante é relativamente mais rasa. Essas desigualdades (Figura 6.6d) são semelhantes às obtidas da mesma comparação realizada no item 6.2.1 (Figura 6.2d), porém de menor amplitude. Julgamos que esses resultados, tanto no Cenário 1 quanto no Cenário 2b, refletem distorções agregadas pelos vínculos de suavidade ‘global’ ((Capítulo II, item 2.4.1) os quais não contemplam variações abruptas de relevo.

Acreditamos ainda que as divergências entre as superfícies descritas acima podem ser oriundas de variações do contraste de densidade entre as rochas (não contempladas nesse trabalho) ou possíveis incoerências no processo de conversão de tempo para profundidade no modelo sísmico.

É interessante ressaltar que nessa fase de interpretação, a análise comparativa permite “checar” as hipóteses realizadas em diferentes métodos, mostrando os locais em que elas são consistentes (onde os resultados dos diferentes métodos são semelhantes) e, mais importante, os locais onde as hipóteses são inconsistentes pois os dois métodos fornecem resultados diferentes.

6.4.2 – Comparação entre as estimativas do Cenário 2b e do Cenário 1

Outra abordagem a ser feita é uma comparação entre os relevos resultantes das inversões no Cenário 2b e no Cenário 1 (Figuras 6.7a e 6.7b, respectivamente). A superposição entre elas (Figura 6.7c) mostra que o embasamento é relativamente mais profundo no Cenário 2b, especialmente nas regiões próximas às falhas principais do rifte. As anomalias presentes na superfície referentes às diferenças entre essas duas estimativas (Figura 6.7d) apresentam cotas em torno de 1 m, aumentando um pouco nas porções internas do rifte, e refletem as informações agregadas pelo modelo proveniente da interpretação sísmica.
Figura 6.7 – Vistas em perspectiva das inversões gravimétricas: a) Estimativa do relevo do embasamento resultante no Cenário 1, b) Estimativa do relevo do embasamento resultante no Cenário 2b, c) Superposição das duas inversões, d) Superfície referente às diferenças entre as duas inversões. Exagero vertical 10X. Bacia Potiguar emersa.
6.5 – Cenário 3

Por fim, o Cenário 3 simula um procedimento a ser usado num panorama de detalhamento exploratório. A inversão gravimétrica realizada no Cenário 3 agrega aos dados gravimétricos, os vínculos de 28 poços e um modelo sísmico de referencia. As Figuras 6.8a e 6.8b ilustram o relevo estimado no Cenário 3, e a Figura 6.9 exibe os lineamentos estruturais sobreposto ao mapa da Figura 5.22.

Nessas figuras pode-se constatar nitidamente a delimitação do arcabouço da Bacia Potiguar emersa, com as estruturas dispostas preferencialmente na direção NE-SW e secundariamente na direção NW-SE. É possível ainda visualizar com clareza a disposição dos baixos e altos internos, como também as bordas falhadas da calha principal do rifte. Em suma, a forma estrutural da bacia fica evidente, e é consistente com o arcabouço da bacia descrito no Capítulo III, item 3.5.

Em relação às variações das profundidades da estimativa do embasamento, o relevo obtido é bastante satisfatório e aproxima-se relativamente dos valores aceitáveis para a área, não só nas regiões profundas da bacia, mas também nas porções mais rasas.

Com posse desse resultado podemos concluir que a estimativa do relevo do embasamento oriunda de uma inversão gravimétrica somada a informações de poços e modelo sísmico de referência é mais plausível, permitindo assim uma maior segurança ao interprete quando da avaliação de uma bacia.

6.5.1 – Comparação entre a estimativa do Cenário 3 e o modelo sísmico

Mais uma vez avaliamos essa resposta da inversão em relação ao modelo sísmico. As Figuras 6.10a, 6.10b discriminam as visões tridimensionais da estimativa obtida no Cenário 3 e do modelo sísmico, respectivamente. A superposição entre elas (Figura 6.10c) nos permite concluir que as profundidades na região do Rifte Potiguar mostram-se, em geral, mais profundas que as do modelo sísmico. Contudo, na região central da borda sudeste do sistema de falhas de Carnaubais (Figura 3.10), a estimativa resultante é relativamente mais rasa (Figura 6.10d), essa feição está igualmente presente nas comparações anteriores com o modelo de referência descrito nos itens 6.2.1 e 6.4.1 (Figuras 6.2d e 6.6d).
Figura 6.10 – Vistas em perspectiva:

a) Modelo Sísmico de entrada.
b) Estimativa do relevo do embasamento resultante da inversão gravimétrica no cenário 3.
c) Superposição do modelo sísmico e da inversão no cenário 3.
d) Superfície referente às diferenças entre o modelo sísmico e a inversão no cenário 3. Exagero vertical 10X. Bacia Potiguar emersa.
O exame conjunto desses resultados nos leva a algumas considerações. Em primeiro lugar, no caso da hipótese do modelo sísmico estar correto e ter correspondência direta com o verdadeiro relevo do embasamento, as discrepâncias entre esses dois relevos, modelo ‘real’ em comparação ao resultante da inversão, poderiam refletir variações do contraste de densidade entre os sedimentos e o embasamento, ou até mesmo a presença de corpos com densidades anômalas não só na seção sedimentar, mas também intra embasamento. Variações estas não contempladas nessa proposta de inversão, já que o contraste de densidade entre as rochas é estabelecido ser constante.

Por outro lado, o modelo sísmico poderia conter algumas incoerências as quais conduziriam a falseamento dos resultados. Ressaltamos ainda que o problema com essas incoerências é inerente ao método, uma vez que o levantamento sísmico utilizado por Matos (1992) foi 2D e em caráter regional, atentamos também a respeito da qualidade sísmica dos dados e ao processo de conversão tempo X profundidade utilizado pelo autor.

6.5.2 – Comparação entre as estimativas do Cenário 3 e do Cenário 1

Outro ponto importante a destacar é a comparação entre os resultados obtidos das inversões no Cenário 1 (apenas com dados gravimétricos) e no Cenário 3 (dados gravimétricos somado a vínculos de poços e modelo sísmico). As perspectivas nas direções Norte, Nordeste e Noroeste desses resultados são visualmente bem semelhantes (Figuras 6.11 e 6.12, respectivamente). O mesmo é constatado na Figura 6.13 (itens a, b, c, d) onde essas inter-relações são detalhadas, as anomalias presentes na superfície referente às diferenças entre elas (Figura 6.13d) são de baixa amplitude e reproduzem basicamente as informações sobre as variações de relevo agregadas pelo modelo sísmico e pelos poços.

Por fim, foram elaborados perfis dispostos estrategicamente ao longo da bacia, tanto na direção NW-SE quanto na direção NE-SW (Figura 6.14, itens a, b, c, d), sendo o Cenário 1 apresentado em linha pontilhada azul, e o Cenário 3, em linha vermelha contínua. Os perfis atestam as conclusões anteriormente descritas, merecendo destaque o perfil D-D’ o qual acompanha a borda do alinhamento de Carnaubais, onde a discrepância entre as estimativas é mais elevada (Figura 6.14d).

Figura 6.14 – Perfis com estimativas de relevo do embasamento resultante de inversões gravimétricas na Bacia Potiguar emersa: Cenário 1 (linha pontilhada azul) e Cenário 3 (linha vermelha contínua): a) Perfil A-A’ (NW-SE), b) Perfil B-B’ (NW-SE); d) Perfil C-C’ (SW-NE), d) Perfil D-D’ (SW-NE). Estes perfis estão localizados nas Figuras 5.2 e 5.3. Notar que as escalas verticais são diferentes em cada perfil.
Da análise das figuras descritas acima pode se notar que é nítida a semelhança entre os modelos na definição da forma estrutural da bacia como um todo. Todavia, em relação aos relevos obtidos a estimativa do relevo do embasamento nessa última fase (Cenário 3) é relativamente mais profunda e acredita-se ser mais confiável, já que os vínculos tornam as profundidades mais próximas às reais.

Ainda no contexto da inter-relação entre as respostas resultantes das estimativas dos Cenários 1 e 3, indiscutivelmente houve um benefício da inclusão do modelo sísmico e dos poços no resultado final. Todavia, o ganho não foi tão significativo já que as feições regionais do arcabouço da bacia já haviam sido delimitadas na primeira inversão gravimétrica do Cenário 1. O maior proveito, sem dúvida, refere-se às profundidades agregadas pelos vínculos visto que, pelo histórico de exploração da bacia, acredita-se serem mais realísticas no caso do relevo invertido do Cenário 3.

6.5.3 – Comparação entre as estimativas do Cenário 3 e do Cenário 2a

Nessa etapa foi feita uma avaliação a respeito das estimativas obtidas no Cenário 3 (dados gravimétricos somado a vínculos de poços e modelo sísmico) em relação ao do Cenário 2a (dados gravimétricos com vínculos de poços), para tanto foram confeccionadas as imagens exibidas na Figura 6.15 (itens a, b, c e d).

A análise dessas figuras mostra que, em geral, os efeitos dos pináculos nas posições dos poços são reduzidos no processo de inversão gravimétrica com a inclusão de um modelo de entrada mais criterioso (não plano), ou seja, um modelo sísmico. No entanto, dois pináculos persistem e pela análise das anomalias presentes na superfície referente às diferenças entre os relevos, acreditamos na hipótese de serem coincidentes com poços anormalmente rasos concluídos no espelho de falhas da borda do rifte (flechas de cor amarela na Figura 6.15d).
6.5.4 – Comparação entre as estimativas do Cenário 3 e do Cenário 2b

Cabe por fim, uma comparação entre os resultados das inversões realizadas no Cenário 3 (dados gravimétricos somado a vínculos de poços e modelo sísmico) e no Cenário 2b (dados gravimétricos com modelo sísmico). A superposição entre essas estimativas (Figura 6.16c) nos permite concluir que as profundidades na região do Rifte Potiguar mostram-se, em geral, um pouco mais profundas no relevo obtido no Cenário 3, as quais acreditamos serem mais plausíveis. Em relação às anomalias presentes na superfície das diferenças entre as estimativas (Figura 16.d), estas reproduzem basicamente os vínculos dos poços agregados na inversão, cabendo ressaltar duas anomalias (descritas no item anterior, mas com menor amplitude) referentes provavelmente à poços anormalmente concluídos no espelho de falhas da borda do rifte (flechas de cor branca na Figura 6.16d).

Esse último exame comprova substancialmente a efetividade do processo, ou seja, a inclusão apenas de um modelo sísmico aos dados gravimétricos no processo de inversão possivelmente acarreta estimativas de variações de relevo com profundidades ainda não satisfatórias. Ou seja, os vínculos dos poços são fundamentais para assegurar a efetividade dos resultados no que diz respeito aos valores absolutos de estimativa de profundidade.

6.6 – Conclusões

Este Capítulo apresentou uma discussão a respeito dos resultados das estimativas do relevo do embasamento realizadas, como também várias comparações entre essas respostas. À princípio consideramos que o propósito desse trabalho como um todo, foi alcançado na medida em que as diversas inversões aplicadas em diferentes cenários representaram virtualmente a evolução dos trabalhos de interpretação de uma bacia.

Em linhas gerais, a inversão gravimétrica simples aplicada no Cenário 1 já forneceu uma boa estimativa da geometria do relevo do embasamento, mesmo sendo realizada somente com dados gravimétricos numa malha com espaçamento regional. Em seguida, a inclusão de outras informações, contribuiu para o aperfeiçoamento das profundidades do relevo resultante da inversão.
No entanto, deve-se atentar que, a utilização isolada de vínculos de poços ou modelo de entrada (Cenários 2a e Cenário 2b) juntamente às informações gravimétricas, pode não ser suficiente para obtenção de uma estimativa mais plausível, destacando o indesejável resultado do Cenário 2a onde os poços ficaram individualizados (pináculos), provavelmente devido ao viés de um modelo de referência plano.

Por fim, no caso da estimativa do relevo do embasamento obtida da inversão gravimétrica no Cenário 3, isto é, a inclusão de um modelo sísmico de entrada associada a vínculos de poços junto aos dados gravimétricos, forneceu não só uma boa idéia do arcabouço da bacia, mas também profundidades mais coerentes, as quais acreditamos, aproximam-se virtualmente das feições reais em sub superfície.

Em relação às divergências entre as estimativas resultantes nos diversos cenários, estas refletem possíveis incoerências no modelo sísmico de entrada e/ou variações do contraste de densidade, já que os dados vinculados pelos poços que atingiram o embasamento são informações confiáveis.

A princípio a avaliação do modelo sísmico usado como referencia pode conter incoerências inerentes ao método, uma vez que a sísmica 2D utilizada foi adquirida com parametrização regional no final da década de 80. Além disso na porção mais profunda da bacia ocorre uma perda de resolução na definição dos refletores referentes ao embasamento dificultando sua identificação. Outro ponto a ser considerado é a conversão dos dados de tempo para profundidade, processo que pode ter ocasionado erros devido às variações das velocidades das rochas. Esses fatores podem ter contribuído para fornecer um modelo de referencia que não reproduz com fidelidade as estruturas em sub superfície.

Argumentamos ainda que, a premissa de considerar constante o contraste de densidade, entre os sedimentos e o embasamento, é um fator limitante e possivelmente pode ter acarretado distorções nas soluções das inversões. Por exemplo, procedimentos de inversão gravimétrica com contraste de densidade constante entre os meios envolvidos não contempla a presença de corpos com densidades anômalas dentro das rochas, não só nos sedimentos como também no embasamento.

Por outro lado, é conhecido o fato de que o aumento da compactação dos sedimentos de uma bacia com a profundidade provoca uma elevação nas
densidades dessas rochas e consequente diminuição do contraste de densidade entre rochas. Assim sendo, a redução do contraste lateral de densidade entre a seção sedimentar e o embasamento acentua a instabilidade da estimativa dos resultados devido a uma diminuição do sinal da anomalia gravimétrica. Desse modo, a reconstituição do relevo do embasamento através da inversão gravimétrica no caso do contraste de densidade variável, demanda maior grau de estabilização devido ao aumento de variáveis no processo.

A despeito das não conformidades descritas anteriormente os modelos interpretativos são válidos e os resultados confirmam a efetividade do processo de inversão.

Em última análise, reforçamos que na estimativa obtida no Cenário 1 o arcabouço principal da bacia já ficou bem delimitado, e que as demais respostas somente ajustaram as profundidades do relevo invertido. Isso é relevante se levarmos em consideração os custos e o impacto ambiental de um levantamento gravimétrico em relação à sísmica ou a perfuração de poços.
Capítulo VII – Conclusões e Recomendações

Apresentamos nesta dissertação a aplicação de um método de inversão gravimétrica na Bacia Potiguar Emersa. Esse processo de inversão faz uso dos vínculos de suavidade e de barreiras logarítmicas, bem como de um modelo de referência.

Os testes preliminares realizados evidenciam a importância de se escolher uma malha compatível com a cobertura gravimétrica disponível, bem como de um valor adequado de densidade media efetiva.

Com relação aos resultados da inversão gravimétrica nos diferentes cenários, podemos sumarizar os resultados nas seguintes considerações. A forma do arcabouço estrutural da bacia já ficou claramente delimitada na inversão com apenas dados gravimétricos. As inversões posteriores contribuíram no aprimoramento das profundidades dos relevos resultantes, na medida em que agregaram outras informações ao processo. Entretanto, a inclusão dessas informações isoladamente pode acarretar distorções, principalmente nos locais dos poços. Por fim, argumentamos que o relevo obtido da inversão no Cenário 3 é relativamente mais confiável, já que produz valores considerados aceitáveis para a área, não só na região do rifte, mas também nas porções mais rasas da bacia.

Notamos uma boa similaridade entre as respostas das inversões em comparação com o modelo sísmico, inclusive a do Cenário 1. No geral, as estimativas de relevo são mais profundas que o modelo sísmico de entrada, exceto na porção central da borda da Falha de Carnaubais onde é mais raso, talvez originado pelas informações agregadas na inversão, por exemplo, poços concluídos na borda da falha.

Em relação às divergências encontradas entre as estimativas do relevo do embasamento nos diferentes cenários, possivelmente elas expressam variações do contraste de densidade e/ou incoerências no modelo sísmico de referência. A primeira hipótese é bem plausível, uma vez que a premissa de considerar constante o contraste de densidade, entre os sedimentos e o embasamento, é um fator limitante e sabemos que pode ter acarretado distorções nas soluções. No segundo
caso, a avaliação do modelo sísmico é igualmente limitante, por que possivelmente pode conter incoerências inerentes ao método, lembrando que a sismica 2D utilizada foi adquirida com parametrização regional no final da década de 80. Além disso, nas porções profundas da bacia pode ocorrer perda de resolução na definição dos refletores referentes ao embasamento, dificultando sua identificação. Outra restrição seria a conversão dos dados de tempo para profundidade, processo que pode ser erroneamente avaliado devido às variações das velocidades das rochas.

Argumentamos, todavia que a despeito das não conformidades descritas anteriormente, os modelos interpretativos são válidos e os resultados confirmam a efetividade do processo de inversão, principalmente no Cenário 3 onde acreditamos que o resultado é mais robusto uma vez que honra simultaneamente aos dados gravimétricos, de poços e sísmica.

Outro ponto a ser destacado é que, mesmo na presença de um relevo de embasamento obtido pela interpretação sísmica, é válido atualizar a estimativa de relevo com base na inversão gravimétrica, já que as discrepâncias entre as estimativas obtidas podem revelar inconsistências nos respectivos processamentos (como descritas anteriormente) ou ainda por outro lado, a ‘ausência’ dessas inconsistências serve de validação das hipóteses, utilizadas independentemente, no tratamento individual dos dados de cada método. Assim, acreditamos que aplicar uma inversão gravimétrica aliada a vínculos de poços e modelo sísmico de entrada fornece ao interprete uma maior segurança na avaliação de uma determinada área.

Não obstante, gostaríamos de voltar a salientar a boa resposta do relevo obtida no Cenário 1 em relação à geometria do rifte. Isto é, mesmo a inversão realizada apenas com dados gravimétricos, numa malha com espaçamento ‘regional’, já fornece uma estimativa do relevo do embasamento bastante coerente com o arcabouço da bacia. Essa é uma importante informação se levarmos em conta os custos dos levantamentos, de perfuração de poços e a diferença de impacto ambiental de um levantamento gravimétrico em relação aos da sísmica ou da perfuração de poços, reafirmando assim a importância da gravimetria como ferramenta de interpretação.

Com base nessas análises, passamos a recomendar alguns procedimentos para enriquecer e dar continuidade a esse estudo de inversão gravimétrica. A princípio sugerimos o adensamento da malha gravimétrica, ou seja, atualmente
existem outros levantamentos gravimétricos adquiridos na região da Bacia Potiguar que podem ser acrescentados. Consequentemente, um maior número de prismas poderia ser incluído no processo, permitindo assim num maior detalhamento do relevo estimado.

Outro ponto importante refere-se a reajustes no modelo de referência. Existem atualmente dados de sismica 3D’s disponíveis, que poderiam compor um modelo sismico mais robusto, ou ainda poderíamos aumentar a quantidade de poços para vincular o processo.

Acrescentamos por fim que, enfocar a variação do contraste de densidade seria uma importante contribuição para aprimorar os resultados. No entanto, essa abordagem demanda maior grau de estabilização devido ao aumento das variáveis envolvidas no processo.
Capítulo VIII – Referências

BARBOSA VCF, SILVA JBC & MEDEIROS WE. 1999b, Gravity inversion of a discontinuous relief stabilized by weighted smoothness constraints on depth: Geophysics, 64 (5), 1429-1437.

BEZERRA HR & VITA-FINZI C. 2000. How active is a passive margin? Paleoseismicity in northeastern Brazil, Geology, v. 28, no. 7; 591-594.

LYRIO JCSO. 2009. Processing and inversion of full tensor gravity gradiometry data: Faculty and the Board of Trustees of the Colorado School of Mines (USA), CSM Department of Geophysics, Number T6617, PhD Thesis.

MATOS RMD. 1987b. Expressão sísmica de prováveis falhas de transferência na Bacia Potiguar emersa e Graben de Jacaúna (CE). In: SEMINÁRIO DE GEOFÍSICA, 2, Nova Friburgo. Atas... PETROBRAS/DEPEX, p. 137-151

Anexo

Manuscrito submetido à Revista Brasileira de Geofísica:

INVERSAO GRAVIMETRICA DO RELEVO DO EMBASAMENTO DA BACIA POTIGUAR EMERSA: SIMULACAO DE RESULTADOS EM DIFERENTES FASES EXPLORATORIAS

Marina B. Gaino (1), (3), *, Julio C.S.O. Lyrio (2), Walter E. Medeiros (3), (4)

(1) PETROBRAS / UO-RNCE / EXP / ABIG, Av. Euzébio Rocha, 1000 – Cidade da Esperança, 59.070-660, Natal, RN, Brasil. E-mail: marina@petrobras.com.br
(2) PETROBRAS / E&P / GEOF / MNS, Av. República do Chile, 330 Torre Leste, 11º andar, Centro, 20.031-170, Rio de Janeiro, RJ, Brasil. E-mail: jlyrio@petrobras.com.br
(3) Programa de Pós-Graduação em Geodinâmica e Geofísica (PPGG / UFRN), Departamento de Geofísica – Universidade Federal do Rio Grande do Norte, Centro de Ciências Exatas e da Terra (CCET / UFRN), Campus Universitário, Lagoa Nova, 59.072-970, Natal, RN, Brasil. E-mail: walter@geofisica.ufrn.br
(4) INCT-GP, Instituto Nacional em Ciência e Tecnologia em Geofísica do Petróleo (CNPq), Brazil, at: http://www.cnpq.br/

(*) Corresponding author.
A inversão gravimétrica é uma ferramenta que pode ser usada para estimar o relevo de uma interface entre dois meios homogêneos como, por exemplo, o relevo do embasamento cristalino de uma bacia sedimentar. Entretanto, este é um problema matematicamente mal-posto devido à instabilidade das soluções. A maneira habitual de regularizar esse problema é minimizar um funcional que, além do ajuste das observações gravimétricas, incorpora vínculos ao problema de modo a estabilizar a sua solução (e.g. Barbosa et al. (1999) e outras referências neste artigo citadas).

Este trabalho apresenta aplicações de inversão gravimétrica visando estimar o relevo do embasamento cristalino da Bacia Potiguar emersa. Admite-se que o contraste de densidade entre os sedimentos e o embasamento é constante e conhecido, e foi utilizado um valor de densidade média ou efetiva (Litinsky, 1989). O pacote sedimentar é aproximado por um conjunto de prismas verticais lateralmente justapostos cujas espessuras, ou profundidades até o embasamento, são os parâmetros a serem estimados na inversão. A estabilização do problema é obtida com o uso dos vínculos de suavidade na variação espacial do relevo do embasamento e de proximidade a valores de referência e/ou conhecidos, Barbosa et al. (1997; 1999) e Lyrio (2002; 2009).

Além das medidas gravimétricas, foram utilizados dados de poços e/ou dados oriundos da interpretação sísmica, em diferentes combinações, de modo a simular três diferentes cenários ou etapas de exploração da bacia ao longo do tempo. No primeiro cenário, o modelo utilizado como entrada na inversão é plano, de modo a simular uma situação de máximo desconhecimento sobre o relevo da bacia. No cenário seguinte, têm-se duas opções: a disponibilidade de dados de poços ou de um modelo sísmico de referência. Por fim, no último cenário, é agregado ao processo de inversão um modelo sísmico de referência para o embasamento somado a informações, não só de poços que atingiram o embasamento, mas também de poços concluídos na seção sedimentar. Pretende-se com esse estudo averiguar como mudam as estimativas do relevo do embasamento com o avanço das fases exploratórias, evidenciando assim os benefícios da aplicação do método de inversão gravimétrica nas diferentes fases.
O trabalho está organizado da seguinte maneira: primeiro faremos uma síntese das técnicas de inversão gravimétrica utilizadas; em seguida, apresentaremos uma síntese do arcabouço estrutural da Bacia Potiguar emersa, bem como uma descrição de todos os dados utilizados e dos cenários compostos com estes dados; e por fim, discutiremos os resultados da inversão para cada cenário, seguidos de uma análise comparativa.
INVERSÃO GRAVIMÉTRICA

A técnica de inversão gravimétrica utilizada nesse trabalho baseia-se nas propostas de Barbosa et al. (1997; 1999) sobre o uso de vínculos de suavidade na variação espacial do relevo do embasamento e de proximidade a valores conhecidos de profundidade do embasamento, oriundos de poços que atingiram o embasamento, por exemplo. Operacionalmente, utilizamos um algoritmo desenvolvido por Lyrio (2002; 2009), que amplia os resultados anteriores, de modo a incluir também vínculos de desigualdade nas profundidades associados a locais em que os poços não atingiram o embasamento. Matematicamente esses vínculos são introduzidos na forma de barreiras logarítmicas (Lyrio, 2002; 2009).

A seção sedimentar é discretizada num conjunto de prismas verticais justapostos e regulares, cuja espessura em cada ponto é a profundidade a ser estimada usando o campo gravimétrico medido na superfície. É admitido que os prismas têm densidade constante (Litinsky, 1989), topos coincidentes com a superfície plana da Terra e espaçamento regular, igual ao da malha resultante da interpolação das observações gravimétricas.

O algoritmo utilizado demanda o conhecimento da anomalia gravimétrica residual na forma de uma malha regular, do contraste de densidade entre os sedimentos e o embasamento, de um modelo de referência para o relevo do embasamento, bem como de parâmetros de controle associados ao processo de estabilização da solução. Podem ser também utilizadas informações de poços, inclusive de alguns deles que não atingiram o embasamento. Os parâmetros de regularização empregados no algoritmo de inversão foram testados empiricamente de modo a fornecerem, ao mesmo tempo, bom ajuste dos dados gravimétricos, estabilidade da solução e tempo de máquina razoavelmente pequeno. Os parâmetros foram mantidos constantes para todos os cenários de inversão.
ARCABOUÇO ESTRUTURAL DA BACIA POTIGUAR EMERSA

A Bacia Potiguar Emersa é de idade cretácia e implantou-se durante o processo de separação das placas Sul-Americana e Africana (Matos, 1987). Essa bacia encontra-se atualmente em uma fase madura de sua exploração de petróleo, que se iniciou em meados da década de 1970. Portanto, do ponto de vista exploratório, admite-se que a bacia já é bem conhecida, particularmente o relevo do seu embasamento cristalino.

O arcabouço estrutural da bacia emersa (Fig. 1) é definido por semi-grabens e altos internos de direção NE-SW, encaixados entre plataformas rasas do embasamento, delimitando um rifte assimétrico de formato rômбico (Matos, 1987). O rifte Potiguar é compartimentado em semi-grabens alinhados na direção NE-SW e basculados para SE. Estes semi-grabens são bordejados à E-SE pelo alinhamento de falhas Carnaubais (NE-SW), cujos rejeitos são variáveis e podem atingir 5 km, constituindo assim a borda falhada da bacia. Na direção oposta encontra-se a zona flexural, associada à Charneira de Areia Branca, onde os rejeitos são menores e menos expressivos. Por sua vez, a Falha de Apodi tem direção NW-SE e define o limite S-SW do rifte.

Embora a direção NE-SW seja proeminente no arcabouço da Bacia Potiguar Emersa, cabe ressaltar a presença de outro sistema de alinhamentos de direção NW-SE, associado ao sistema do alinhamento de falhas de Afonso Bezerra, que cortam ortogonalmente tanto a bacia quanto o embasamento (Oliveira et al., 1993).

DADOS E CENÁRIOS UTILIZADOS

Neste trabalho, utilizamos um modelo de referência para as profundidades do embasamento resultante da interpretação sísmica, informações de poços sobre profundidades e dados gravimétricos. Todos os dados estão associados com a porção emersa da Bacia Potiguar, exceto o conjunto dos dados gravimétricos que englobou uma área mais extensa, inclusive marinha, de modo a proporcionar melhores condições para definir os campos gravimétricos regional e residual. Na porção emersa, a área coberta por esse estudo compreende um retângulo de cerca de 12 X 23 km², e engloba todo o rifte da bacia.

O modelo de referência para o embasamento está apresentado na Figura 2, e foi construído a partir da digitalização do mapa estrutural sísmico apresentado por Matos (1992) oriundo da interpretação sísmica 2D. Observe que esse modelo (Figs. 2a e 2b) reproduz muito bem todas as estruturas apresentadas na Figura 1. Observe ainda que, por simplicidade, atribuímos espessura nula para a coluna sedimentar na região externa ao rifte.

Foram agregados ao processo de inversão vínculos sobre as profundidades de vinte e três poços que atingiram o embasamento, somados às informações de cinco poços concluídos na seção sedimentar.

Os dados gravimétricos empregados nesse trabalho advêm do banco de dados da Universidade Federal do Rio Grande do Norte, que agrega estações de diferentes levantamentos gravimétricos e cobre toda a Província Borborema e áreas adjacentes. Estes dados foram tratados previamente por Oliveira (2008), que uniformizou todas as correções gravimétricas.

As medidas gravimétricas foram interpoladas numa malha quadrada de 5 km de lado, resultando num conjunto de 756 prisms para o processo de inversão gravimétrica. O campo Bouguer resultante está mostrado na Figura 3a. A sua separação em componente regional e residual (incluindo áreas adjacentes) foi realizada através do método do ajuste polinomial robusto de Beltrão et al. (1991). Foi escolhido o polinômio de grau quatro para representar a componente regional (Fig. 3b), resultando no campo residual mostrado na Figura 3c.

O contraste de densidade efetivo entre sedimentos e embasamento foi admitido ser igual a -0.37 g/cm³. Esse valor não resulta de uma média das
densidades dos perfis de poços, e sim é resultado de uma série de testes de
inversão nos quais as profundidades máximas para o embasamento foram da
ordem de 6 km. Esse valor reflete um limite razoável para a profundidade
máxima admitida para a bacia.

Os dados acima descritos foram utilizados em diferentes combinações
de modo a simular três diferentes cenários ou fases de exploração da bacia ao
longo do tempo.

No primeiro cenário (Cenário 1), admite-se conhecer apenas o campo
gravimétrico residual e uma estimativa de contraste de densidade, sendo plano
o modelo de referência utilizado como entrada na inversão. Dessa forma, tenta-
se reproduzir uma situação de máximo desconhecimento sobre o relevo da
bacia, de modo que esse primeiro cenário simule uma fase inicial do seu
processo de exploração.

No cenário seguinte, têm-se duas situações: a disponibilidade adicional
de dados de poços (Cenário 2a), ou a de um modelo sísmico de referência
para o embasamento (Cenário 2b), reproduzindo assim estágios intermediários
de exploração da bacia. Por fim, na última etapa (Cenário 3), é agregado ao
processo de inversão o citado modelo sísmico de referência, bem como as
informações de poços, incluindo alguns que não atingiram o embasamento.
Este cenário simula, portanto, uma fase já bem avançada de exploração da
bacia. Pretende-se com esse estudo averiguar como mudam as estimativas do
relevo do embasamento com o avanço das fases exploratórias, evidenciando
assim, os benefícios da aplicação do método de inversão gravimétrica nas
diferentes fases.
RESULTADOS E DISCUSSÕES

As estimativas de relevo do embasamento da Bacia Potiguar Emergente, associadas aos Cenários 1, 2a, 2b e 3, estão apresentadas na forma de mapas com curvas de níveis nas Figuras 4a, 4b, 5a e 5b, respectivamente. De modo a facilitar a visualização e comparação dos resultados, as mesmas estimativas estão apresentadas também de duas outras maneiras: (1) conjuntamente, na forma de perfis estrategicamente dispostos ao longo da área de direção NW-SE (Figs. 6a e 6b) e de direção SW-NE (Figs. 6c e 6d); (2) mapas e respectivas visões em perspectiva, para cada um dos cenários (Figs. 7 a 10). Em particular, na Figura 7a exibimos também as medidas gravimétricas utilizadas, de modo a proporcionar ao leitor uma análise de consistência ou compatibilidade entre a resolução obtida para o relevo do embasamento e o conjunto das medidas; e, na Figura 8a, apresentamos os poços agregados no processo de inversão, sendo vinte e três deles (círculos pretos) concluídos no embasamento e os cinco restantes (círculos vermelhos) concluídos na seção sedimentar.

Os campos modelados ou ajustados em todos os cenários não foram apresentados, contudo, todos eles reproduzem satisfatoriamente o campo gravimétrico residual (Fig. 3c).

Em linhas gerais, as estimativas de relevo do embasamento evidenciam a geometria interna da Bacia Potiguar Emergente em todos os cenários. Cabe ressaltar, contudo, que o modelo resultante no Cenário 2a apresenta algumas feições espúrias – na forma de “pináculos” – associadas com as posições dos poços (Figs. 4b, 8a e 8b). A explicação mais provável para esses “pináculos” é que eles refletem vínculos demasiadamente fortes para as profundidades dos poços. Não se pode descartar, contudo, a possibilidade de que alguns desses poços estejam localizados em bordas de falhas, onde ocorrem variações abruptas de profundidades, as quais são incompatíveis com o vínculo de suavidade imposto.

No tocante às variações de profundidade do embasamento nota-se, principalmente através dos perfis (Figs. 6a, 6b, 6c e 6d) que, à medida que os vínculos são aplicados, as informações agregadas aumentam o nível de complexidade do relevo do embasamento. Uma vez que as soluções apresentadas são estáveis, podemos relacionar, pelo menos em primeira
aproximação, o aumento da complexidade no relevo do embasamento com o aumento da resolução (excetuando-se, é claro, as feições espúrias já comentadas). O relevo obtido no Cenário 3 (linha vermelha nas Figs. 6a-6d) é certamente o mais confiável, pois resulta da utilização do modelo de referencia para o embasamento (oriundo da interpretação sísmica), calibrado com as profundidades de poços.

Vamos, agora, pormenorizar uma análise comparativa dos resultados. O primeiro ponto a ser destacado desses resultados é que a inversão gravimétrica no Cenário 1 já forneceu uma visão muito boa da geometria do relevo do embasamento (Figs. 4a, 7a e 7b). Observe que essa estimativa foi realizada utilizando somente os dados gravimétricos, numa malha com espaçamento regional (Fig. 7a). A estabilização dos resultados resulta apenas do uso do vínculo de suavidade na variação espacial do relevo, não obstante, as principais feições estruturais da bacia ficam evidentes (compare as Figs. 7b e 1).

A inclusão de dados sobre as profundidades (oriundas de poços) na inversão gravimétrica no Cenário 2a forneceu uma estimativa de relevo de embasamento (Figs. 4b, 8a e 8b) em geral mais profunda, em relação à inversão prévia do Cenário 1 (Figs. 4a, 7a e 7b). Contudo, como já comentamos, o modelo resultante apresenta alguns “pináculos” coincidentes com a posição dos poços, principalmente naqueles concluídos no embasamento (Figs. 8a e 8b).

No passo seguinte, no Cenário 2b, a introdução do modelo de referência sísmico para o embasamento (Figs. 2a e 2b) na inversão gravimétrica, forneceu um embasamento invertido (Figuras 5a, 9a e 9b) também com relevos um pouco mais profundos em relação à inversão do Cenário 1 (Figs. 4a, 7a e 7b). Esse resultado ainda poderia ser aperfeiçoado, levando-se em conta as limitações da interpretação sísmica, devido à perda de qualidade da definição dos refletores principalmente nas porções mais profundas do rifte.

Por fim, a estimativa do relevo do embasamento obtida da inversão gravimétrica no Cenário 3, forneceu não só uma visão muito boa do arcabouço da bacia (Figuras 5b, 10a e 10b), mas também exibiu um relevo com profundidades mais coerentes com o modelo de referencia, em relação aos resultados anteriores, não só nas regiões profundas da bacia mas também nas
porções mais rasas, as quais, acreditamos, aproximam-se virtualmente das feições reais em sub-superfície.

Um ponto importante a ser comentado são as discrepâncias, em relação ao modelo de referência (Figs. 2a e 2b), das estimativas obtidas nos Cenários 2b e 3 (Figs. 9b e 10b), como ilustrado nas Figuras 11a e 11c, respectivamente. As superfícies referentes às diferenças entre as duas estimativas e o modelo de entrada (Figs. 11b e 11d) nos permitem concluir que os relevos estimados são muito parecidos ao modelo sísmico, e, em geral, mais profundos. Todavia na região centro-sudeste da Falha de Carnaubais (Fig. 1) notam-se anomalias positivas alinhadas, confirmando que nessa área as estimativas resultantes são relativamente mais rasas do que o modelo sísmico (setas cor rósea nas Figs. 11b e 11d).

O exame desses resultados nos sugere duas hipóteses. Na primeira, no caso do modelo sísmico estar mais correto (isto é, ter melhor correspondência com o relevo verdadeiro do embasamento), as discrepâncias para os modelos gravimétricos estimados poderiam refletir possíveis variações do contraste de densidade entre os sedimentos e o embasamento, ou ainda variações intra-embasamento de densidade. Por outro lado, na hipótese do modelo gravimétrico estar mais coerente (isto é, ter melhor correspondência com o relevo verdadeiro do embasamento), o modelo de referencia sísmico conteria inconsistências que falseariam os resultados. Várias são as explicações possíveis nesse caso, entre elas incoerências no processo de conversão tempo-profundidade associadas, por exemplo, com variações laterais de velocidade dentro do pacote sedimentar.

Ao se comparar conjuntamente as estimativas resultantes das inversões nos Cenários 1 e 2a (Fig. 12a), nota-se que, a despeito da semelhança entre os relevos estimados, destacam-se na diferença entre elas as feições espúrias associadas aos “pináculos” nos poços (Fig. 12b). No caso da comparação entre os relevos estimados nos Cenários 1 e 2b (Fig. 12c), a superfície das diferenças entre essas estimativas exibe apenas pequenas anomalias, possivelmente associadas ao modelo sísmico de referencia (Fig. 12d).

Por sua vez, no caso da comparação entre os Cenários 1 e 3 (Fig. 13a), as respostas são também parecidas e diferem principalmente nos locais dos vínculos agregados (Figura 13b). Com relação à comparação entre as
estimativas obtidas nos Cenários 2a e 3 (Fig. 13c), a superfície da diferença resultante (Fig. 13d) reproduz as posições dos poços, com destaque para duas anomalias (setas amarelas na Fig. 13d), as quais acreditamos representar dois poços anormalmente rasos concluídos nas bordas das falhas do rifte.

Por fim, a comparação entre os relevos obtidos nos Cenários 2b e 3 (Fig. 13e) exibe uma semelhança muito significativa entre os dois relevos, pois as anomalias presentes na superfície das diferenças entre eles (Figura 13f) são de baixa amplitude e reproduzem as informações de variações de relevo agregadas pelos poços e pelo modelo de entrada, exceto apenas localmente (setas amarelas na Fig. 13f) na mesma posição já descrita na Figura 13d, contudo com menor evidência (comparar as escalas das Figs. 13d e 13f).

Observa-se então que, em geral, no Cenário 3 os efeitos dos “pináculos” nos poços são reduzidos no processo de inversão com a inclusão de um modelo de referência mais acurado. Nesse caso, os vínculos dos poços ajudaram a calibrar as profundidades, assegurando a efetividade dos resultados no tocante aos valores absolutos das profundidades estimadas. Todavia, o ganho obtido do Cenário 1 em relação ao Cenário 3 não foi tão significativo, já que as feições regionais do arcabouço da bacia já haviam sido delimitadas na inversão gravimétrica associada ao primeiro cenário. Se levarmos em conta o reduzido custo e baixo impacto ambiental característicos de um levantamento gravimétrico, vemos que em termos de custo / benefício, os resultados obtidos no Cenário 1 são significativos e justificam uma análise aprofundada dos dados gravimétricos nas fases exploratórias iniciais.
CONCLUSÕES

Neste trabalho, combinamos medidas gravimétricas e informações de poços e/ou oriundas da interpretação sísmica, com o objetivo de simular diferentes cenários ou etapas de exploração da Bacia Potiguar emersa ao longo do tempo. No primeiro cenário foram utilizados somente dados gravimétricos. No segundo cenário, simulamos duas situações utilizando adicionalmente: uma com vínculos de poços e a outra com um modelo sísmico de referência para o embasamento. Por fim, no último cenário foram agregados dados gravimétricos, de poços e o modelo sísmico de referência para o embasamento.

As estimativas obtidas para o relevo do embasamento revelaram nitidamente o arcabouço da bacia em todos os cenários. A principal conclusão é que as feições mais marcantes do arcabouço estrutural da bacia já foram bem delineados na inversão associada ao Cenário 1. Esse fato é importante, particularmente quando se levam em conta os custos e o impacto ambiental de um levantamento gravimétrico em relação a um levantamento sísmico ou à perfuração de poços. As estimativas obtidas em fases posteriores contribuíram para aprimorar os valores absolutos das profundidades, aumentando a resolução do relevo estimado, na medida em que agregaram outras informações ao processo.

Certamente, a estimativa do relevo do embasamento obtida no Cenário 3, em que dados de poços e um modelo de referência sísmico foram utilizados, é a mais confiável, pois ela é mais próxima dos valores aceitáveis para a área, não só na região do rifte, mas também nas porções mais rasas da bacia.

Cabe destacar que, mesmo na presença de um relevo de embasamento obtido pela interpretação sísmica, é válido atualizar a estimativa de relevo com base na inversão gravimétrica, porque as discrepâncias entre as estimativas obtidas com os dois métodos podem revelar inconsistências nas hipóteses utilizadas nos respectivos processamentos, a exemplo de variações de densidade intra-embasamento, problemas de qualidade sísmica ou ainda de incoerências no processo de conversão tempo-profundidade. Além disso, a aplicação da inversão gravimétrica, aliada aos vínculos de poços e modelo sísmico, pode fornecer ao interprete uma maior segurança na avaliação de
uma determinada área, especialmente no caso em que pequenas discrepâncias são encontradas entre as estimativas oriundas das interpretações sísmica e gravimétrica. Nesse caso, a ausência de inconsistência serve de validação das hipóteses, utilizadas independentemente, no tratamento individual dos dados de cada método.
AGRADECIMENTOS

Os autores agradecem à Universidade Federal do Rio Grande do Norte pela cessão dos dados gravimétricos, à PETROBRÁS pela disponibilização do pacote InvGrav para realizar as inversões gravimétricas, ao CNPq pela bolsa PQ (Processo No. 304.301/2011-6) e a Grant associada.
DESCRIÇÃO DAS FIGURAS

Fig. 1. Arcabouço estrutural da Bacia Potiguar emersa, com destaque para a calha principal (rifte). Modificado de Soares et al. (2003).

Fig. 2. Embasamento da Bacia Potiguar emersa obtido do mapa sísmico em profundidade elaborado por Matos (1992): a) Mapa de contorno, b) Vista em perspectiva com exagero vertical de 8X.

Fig. 3. Mapas da Bacia Potiguar emersa: a) Anomalia Bouguer (intervalo de contorno de 4 mGal e linha de costa de cor azul), b) Anomalia gravimétrica regional obtida com o ajuste polinomial de grau 4 (intervalo de contorno de 7 mGal), c) Anomalia gravimétrica residual (intervalo de contorno de 4 mGal).

Fig. 4. Estimativas de relevo do embasamento da Bacia Potiguar emersa resultante das inversões gravimétricas realizadas: a) Cenário 1 e b) Cenário 2a. Tem-se também em (a) localização dos perfis A-A’, B-B’, C-C’ e D-D’ exibidos na Fig. 6, e em (b) posição dos poços (círculos pretos para os poços que atingiram o embasamento, e círculos vermelhos para os poços concluídos na seção sedimentar). Intervalo de contorno de 400 m.

Fig. 5. Estimativas de relevo do embasamento da Bacia Potiguar emersa resultante das inversões gravimétricas realizadas: a) Cenário 2b, b) Cenário 3. Intervalo de contorno de 400 m.

Fig. 6. Perfis das estimativas de relevo do embasamento resultante de inversões gravimétricas na Bacia Potiguar emersa: a) Perfil A-A’ (NW-SE), b) Perfil B-B’ (NW-SE), c) Perfil C-C’ (SW-NE), e d) Perfil D-D’ (SW-NE). Legenda: Cenário 1 (linha preta contínua), Cenário 2a (linha verde pontilhada), Cenário 2b (linha azul pontilhada) e Cenário 3 (linha vermelha contínua). A localização dos perfis está mostrada na Fig. 4a. Notar que as escalas verticais e horizontais são diferentes em cada perfil.
Fig. 7. Estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 1: a) Mapa de contorno com a localização das estações gravimétricas (pontos pretos), b) Vista em perspectiva com exagero vertical de 8X.

Fig. 8. Estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 2a: a) Mapa de contorno com a localização dos poços concluídos no embasamento (círculos pretos) e poços concluídos na seção sedimentar (círculos vermelhos), b) Vista em perspectiva com exagero vertical de 8X.

Fig. 9. Estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 2b: a) Mapa de contorno, b) Vista em perspectiva da estimativa com exagero vertical de 8X.

Fig. 10. Estimativa do relevo do embasamento da Bacia Potiguar emersa resultante da inversão gravimétrica realizada no Cenário 3: a) Mapa de contorno, b) Vista em perspectiva com exagero vertical de 8X.

Fig. 11. Vistas em perspectiva para comparação entre as estimativas do relevo do embasamento da Bacia Potiguar emersa e o modelo sísmico: a) Superposição do modelo sísmico (cor vermelha) e da estimativa associada ao Cenário 2b (cor azul), b) Superfície referente à diferença entre estes dois modelos, c) Superposição do modelo sísmico (cor vermelha) e da estimativa associada ao Cenário 3 (cor verde), d) Superfície referente à diferenças entre estes dois últimos modelos. Atentar para as setas (cor rósea) referentes à região centro-sudeste da Falha de Carneubais. Exagero vertical 8X em todas as perspectivas.

Fig. 12. Vistas em perspectiva para comparação entre as estimativas do relevo do embasamento da Bacia Potiguar emersa: a) Superposição das estimativas associadas aos Cenários 1 (cor amarela) e 2a (cor rósea), b) Superfície referente à diferença entre estes dois modelos, c) Superposição das estimativas associadas aos Cenários 1 (cor amarela) e 2b (cor azul), d)
Superfície referente à diferenças entre estes dois últimos modelos. Exagero vertical 8X em todas as perspectivas.

Fig. 13. Vistas em perspectiva para comparação entre as estimativas do relevo do embasamento da Bacia Potiguar emersa: a) Superposição das estimativas associadas aos Cenários 1 (cor amarela) e 3 (cor verde), b) Superfície referente à diferença entre estes dois modelos, c) Superposição das estimativas associadas aos Cenários 2a (cor rósea) e 3 (cor verde), d) Superfície referente à diferenças entre estes dois respectivos modelos, e) Superposição das estimativas associadas aos Cenários 2b (cor azul) e 3 (cor verde), f) Superfície referente à diferenças entre estes dois últimos modelos. Atentar para as setas (cor amarela) referentes provavelmente aos locais de poços posicionados em bordas de falhas. Exagero vertical 8X em todas as perspectivas.
REFERÊNCIAS

LYRIO JCSO. 2009. Processing and inversion of full tensor gravity gradiometry data: Faculty and the Board of Trustees of the Colorado School of Mines (USA) Tese de Doutorado.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 8
Fig. 10
Fig. 11
Fig. 12
Fig. 13.