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Abstract Step-stress accelerated life testing (SSALT) and
fractographic analysis were performed to evaluate the reli-
ability and failure modes of dental implant fabricated by
machining (surface treated with alumina blasting/acid etch-
ing) or laser sintering for anterior single-unit replacements.
Forty-two dental implants (3.75×10 mm) were divided in
two groups (n021 each): laser sintered (LS) and alumina
blasting/acid etching (AB/AE). The abutments were
screwed to the implants and standardized maxillary central
incisor metallic crowns were cemented and subjected to
SSALT in water. Use-level probability Weibull curves and
reliability for a mission of 50,000 cycles at 200 N were
calculated. Polarized light and scanning electron micro-
scopes were used for failure analyses. The Beta (β) value
derived from use-level probability Weibull calculation of

1.48 for group AB/AE indicated that damage accumulation
likely was an accelerating factor, whereas the β of 0.78 for
group LS indicated that load alone likely dictated the failure
mechanism for this group, and that fatigue damage did not
appear to accumulate. The reliability was not significantly
different (p>0.9) between AB/AE (61 %) and LS (62 %).
Fracture of the abutment and fixation screw was the chief
failure mode. No implant fractures were observed. No dif-
ferences in reliability and fracture mode were observed
between LS and AB/AE implants used for anterior single-
unit crowns.
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Introduction

It is general consensus that rough implant surfaces are more
osteoconductive than smooth surfaces, [1–3] and result in
high long-term survival and success rates [4–6]. Surface
texturing is commonly employed as one of the final steps
prior to cleaning, packaging, and sterilizing dental implants,
and such procedures may have drawbacks such as increased
final cost and potential implant contamination with blasting
media and organic contaminants from surface processing
which may jeopardize osseointegration [7]. Thus, alternative
methods which allow surface texturing during the manufac-
turing process are desirable.

The laser metal-sintering process is a technology that
produces solid metal components with intricate porous ge-
ometries [1, 2]. Potential advantages of laser sintering is
high throughput manufacturing along with potential im-
proved properties such as the elastic properties that may be
tailored to more closely match those of bone [2, 8], poten-
tially improving the bone–implant complex biomechanics
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[9, 10]. Advantages also include that implants may be
manufactured from commercially pure titanium or alloys [8].

From a host response to laser-sintered implants perspec-
tive, a previous study have demonstrated acceptable
osseointegration levels to laser-modified implants relative
to alumina-blasted/acid-etched implants, along with differ-
ent fracture patterns between the interface and bone follow-
ing mechanical testing [11, 12]. Transmission electron
microscopy and chemical analysis showed coalescence be-
tween mineralized tissue and the surface of the laser-
modified implant [13]. Recently, improved biomechanical
response has been reported for laser-sintered compared to
alumina-blasted/acid-etched implants at early times (1 and
6 weeks in vivo) [14]. A human retrieval study [8] showed
that the laser-sintered surface presented a close contact with
the bone after 8 months in vivo. However, it is unclear if the
laser sintering alters the mechanical behavior of the implant.
While the biocompatibility of implants fabricated by the
laser-sintering process has been demonstrated [1], limita-
tions that are inherent to sintering processes such as the
potential for flaws in the material surface and bulk has raised
concerns when it comes to their mechanical performance.

Several testing methods have been described for the me-
chanical evaluation of implant systems, such as single load to
fracture [15], the use fatigue followed by the application of a
static load until fracture [16, 17], the staircase method [18],
fatigue limit (ISO 14801:2007), step-stress accelerated life
testing [19], and others. While the ISO 14801:2007 was
created with the aim to standardize the testing procedures
and data presentation in fatigue of dental implants, it has been
shown that results produced by such method should be inter-
preted with caution. The wide range of testing parameters
allowed in the ISO 14801:2007 regarding testing frequency
(2–15 Hz), environment (water or dry when testing above
15 Hz), and amount of cycles (2 or 5 million, depending on
chosen frequency) have shown that a very different failure
probability distribution may result [20] as well as failure
modes (transgranular in dry compared to intergranular in wet
conditions) [21]. In addition, testing of one sample could take
12 days when carried on 2 Hz. Therefore, while attending
industry requirements for implants quality assurance and con-
trol, the ISO 14801:2007 testing methodology seems to be
under development since its first version in 2003 [20, 21].

In attempt to reduce testing times, accelerated life testing
may be designed to cause products to fail more quickly and
yet with realistic failure mechanisms compared to failures
under use stress. Qualitative or quantitative accelerated tests
may be used to describe failure modes or estimate the
probability density function, respectively, for the product
under normal use conditions, with common use in the mil-
itary, electrical, mechanical engineering, and many other
fields. Then, using data obtained during testing at different
accelerated stress levels, commonly used life distributions,

such as Exponential, Lognormal, or Weibull may be used to
estimate the parameters that best fits the data.

The use of accelerated life tests in dental research has
been reported in a series of studies concerning the reliability
of a variety of prosthetic restorative systems where a re-
markable resemblance between the resulting failure modes
was observed when compared to clinical failures [22–25].
Similar findings were reported when accelerated life tests
were used in implant-borne reconstructions [19]. Considering
the unknown mechanical performance of direct laser metal
sintering as a process for implant fabrication, the aim of this
study was to evaluate the reliability and failure modes of
anatomically correct maxillary central incisor crowns as a
function of supporting titanium implant structure (laser sin-
tered vs alumina blasted/acid etched). The postulated hypoth-
esis was that different fabrication methods would result in
different reliability and failure modes when subjected to
step-stress accelerated life testing (SSALT) in water.

Materials and methods

Sample preparation

Forty-two dental implants (3.75 mm diameter by 10 mm
length, internal connection; A.B. Dental Devices Ltd., Ash-
dod, Israel) were divided in two groups (n021) according to
the fabrication method: laser-sintered implant (LS, Figs. 1a, b
and 2a) and machining followed by alumina-blasting/acid-
etching surface treatment (AB/AE; Figs. 1c, d and 2b). All
implants were vertically embedded in acrylic resin (Orthore-
sin, Degudent, Mainz, Germany), poured in a 25-mm-
diameter plastic tube, leaving the top platform in the same
level of the potting surface.

A maxillary central incisor crown was waxed to its close
anatomical shape and cast in CoCr metal alloy (cobalt–
chrome partial denture alloy, BEGO, Bremen, Germany).
In order to reproduce the anatomy of the crowns, an impres-
sion was taken from the first waxed pattern and used by the
technician as a guide during waxing of the remaining
crowns. The prefabricated abutments (Ti-6Al-4V)were torqued
with a torque gauge according to the manufacturer’s instruc-
tions (30 Ncm; A.B. Dental Devices Ltd. Ashdod, Israel).
Following connection, the cementation surface of the crowns
was blasted with aluminum oxide (particle size ≤40 μm, using
276 KPa compressed air pressure), cleaned with ethanol, dried
with air free of water and oil, and then cemented (Rely X
Unicem, 3M ESPE, St. Paul, USA; Fig. 2c, d).

Mechanical testing and reliability analysis

For mechanical testing, the specimens were subjected to 30°
off-axis loading (Fig. 2e). Three specimens of each group
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underwent single-load-to-failure (SLF) testing at a cross-
head speed of 1 mm/min in a universal testing machine
(INSTRON 5666, Canton, MA, USA) with a flat tungsten
carbide indenter applying the load at the incisal edge of the
crown. Based upon the mean load to failure from SLF, three
step-stress accelerated life-testing profiles were determined
for the remaining 18 specimens of each group which were

assigned to a mild (n09), moderate (n06), and aggressive
(n03) fatigue profiles (ratio 3:2:1, respectively) [26]. These
profiles are named based on the step-wise load increase that
the specimen will be fatigued throughout the cycles until a
certain level of load, meaning that specimens assigned to a
mild profile will be cycled longer to reach the same load
level of a specimen assigned to the aggressive profile [27].

Fig. 1 SEM micrographs of the
threads of laser sintered (a and
b) and alumina-blasted/acid-
etched (c and d) implants where
differences in roughness and
porosities are noticeable. The
laser-sintered implant depicts
an irregular surface with ridged-
like and globular protrusions,
interspersed by intercommuni-
cations by irregular crevices (a
and b)

Fig. 2 a Laser-sintered and b
alumina-blasted/acid-etched
implant; c maxillary central in-
cisor metallic crown, internally
connected abutment and laser-
sintered implant; d components
assembled after abutment
torque and crown cementation
in a laser-sintered sample; e
mechanical testing set up,
where the load was applied at
30° to the long axis of the
implant
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The prescribed fatigue method was step-stress accelerat-
ed life-testing under water at 9 Hz with a servo-all-electric
system (TestResources 800L, Shakopee, MN, USA) where
the indenter contacted the incisal edge, applied the pre-
scribed load within the step profile and lifted off the incisal
edge. Fatigue testing was performed until failure (bending
or fracture of the fixation screw, and/or bending, partial
fracture, or total fracture of the abutment) or survival (no
failure occurred at the end of step-stress profiles, where
maximum loads were up to 600 N) [19].

Use level probability Weibull curves (probability of fail-
ure versus number of cycles) with a power law relationship
for damage accumulation were calculated (Alta Pro 7, Relia-
soft, Tucson, AZ, USA) [28]. The two-parameter Weibull
probability density function is given by:

f ðTÞ ¼ b
η

T

η

� �b�1

e�
T
ηð Þb ð1Þ

where: f ðTÞ � 0; T � 0; b0; η0 and η0scale parameter/
β0shape parameter (or slope)

If the use level probability Weibull calculated beta (β is
the slope of the regressed line in a probability plot and
describes the reliability and failure rate functions) was less
than 1 for any group (meaning that the implant–abutment
connection failure is controlled by materials strength rather
than damage accumulation from fatigue testing),[29] then a
Weibull two-parameter Contour plot (Weibull modulus (m)
versus characteristic strength (η, i.e., which indicates the load
at which 63.2 % of the specimens of each group would fail))
was calculated (Weibull 7++, Reliasoft, Tucson, Arizona,
USA) using final load at failure or survival of specimens as
input [27, 30]. The calculated Weibull modulus (m) and char-
acteristic strength Eta (η; 63.2 % of the specimens would fail
up to the calculated “η”) values were utilized to determine the
confidence bounds through the maximum likelihood ratio
method utilizing a chi-squared value at 95 % level of signif-
icance and 1 degree of freedom. Thus, each contoured region
represent possible values given both parameters combination,
and significant difference at 95 % level is detected if contour
overlap between groups does not exist (in such case, samples
will be considered to be from different populations) [27, 31].
The reliability (the probability of an item functioning for a
given amount of time without failure) for a mission of 50,000
cycles at 200 N load [32] (two-sided 95 % confidence inter-
vals) was calculated for comparison between AB/AE and LS.
For the mission reliability and β parameters calculated in the
present study, the 95 % confidence interval range were calcu-
lated as follows: CB0E(G)±zα sqrt(Var(G)), where: CB is the
confidence bound, E(G) is the mean estimated reliability for
the mission calculated fromWeibull statistics, zα is the z value
concerning the given CI level of significance, and Var(G) is
the value calculated by the Fisher Information matrix [27, 31].

Failure analysis

Images of failed samples were taken with macro lens attached
to a digital camera (Canon EOS, Macro 110, New York, NY,
USA) and utilized for failure mode classification and compar-
isons between groups. In order to identify fractographic mark-
ings and characterize failure origin and propagation direction,
the most representative failed samples of each group were
inspected first under a polarized-light microscope (MZ-APO
stereomicroscope, Carl Zeiss MicroImaging, Thornwood,
NY, USA) and then by scanning electron microscopy (SEM;
Model S-3500N, Hitachi, Osaka, Japan) [33].

Results

SLF and reliability

The SLF mean ± standard deviation values for the group
AB/AE were 355±31 N, and 652±251 N for the group LS.

The step-stress derived probability Weibull plots and sum-
mary statistics at a 200-N load are presented in Fig. 3a and
Table 1. The Beta (β) value mean (95 % confidence interval
range) derived from use level probability Weibull calculation
(probability of failure vs. number of cycles) of 1.48 (0.80–
2.74) for group AB/AE indicated that fatigue was an accel-
erating factor (damage accumulation). On the other hand, the
resulting β of 0.78 (0.43–1.41) for group LS indicated that
load alone dictated the failure mechanism for this group, and
that fatigue damage did not appear to accumulate.

Load-at-failure data of the two groups was then used to
calculate the probability Weibull distribution. which showed
a m010.0 for the group AB/AE and m09.8 for the group
LS, and characteristic strength of η0246.1 N for AB/AE and
η0243.9 N for LS. The confidence bounds calculated
through the likelihood ratio method at 95 % level of signif-
icance represented by the contours in Fig. 3b showed that
the groups were statistically homogenous (p>0.9; confi-
dence interval overlap) [27, 30].

The step-stress accelerated fatigue permit estimates of
reliability at a given load level (Table 1). The calculated
reliability with 95 % confidence intervals for a mission of
50,000 cycles at 200 N showed that the cumulative damage
from loads reaching 200 N would lead to implant-supported
restoration survival in 61 % for group AB/AE and 62 % for
LS. The overlap between the upper and lower limits of
reliability values in groups AB/AE and LS indicates no
statistically significant difference (Table 1).

Failure modes

All specimens failed after SSALT. When component failures
were evaluated together, failures comprised the combination
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of screw and abutment fracture. Failure modes are presented
in Fig. 4.

For both AB/AE and LS groups, fracture at the interface
between the abutment and the implant was the chief failure
mode (Fig. 4). In all specimens from both groups, the

abutment and the fixation screw fractured (Figs. 4c and 5),
but the implants were intact after mechanical testing.

Polarized-light and SEM micrographs of the fractured
surface of fixation screws and abutments allowed the consis-
tent identification of fractographic features, such as compres-
sion curl (CC), which allowed the identification of fracture
origin and the direction of crack propagation (Fig. 5b, e).
Figure 5c also depicts the dimpled appearance of the abutment
screw typical of ductile fracture of metallic materials [34].

Discussion

The majority of published data concerning evaluation of
implants fabricated by different methods (alumina-blasted/
acid-etched and laser-sintered implants) have focused on the

Fig. 3 a Use level probability
Weibull for tested groups
showing the probability of
failure as a function of number
of cycles (time) given a mission
of 50,000 cycles at 200 N. b
Contour plot (Weibull modulus
vs characteristic strength) for
group comparisons (laser-sin-
tered and alumina-blasted/acid-
etched implant). Note the over-
lap between groups indicating
the absence of statistical
significance

Table 1 Calculated reliability for laser-sintered and alumina-blasted/
acid-etched implants used to support maxillay central incisors given a
mission of 50,000 cycles at 200 N load

Output (50,000 cycles at 200 N) AB/AE LS

Upper 0.80 0.80

Reliability 0.61 0.62

Lower 0.34 0.35

Beta 1.48 (0.80–2.74) 0.78 (0.43–1.41)
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biomechanical testing in in vivo laboratory animal model.
These studies reported an increase in removal torque for the
laser-treated titanium implants compared to implants that
were fabricated by machining [35–37]. Such results are
likely due to the higher surface roughness and thereby
mechanical interlocking between bone and laser-sintered/
textured implants compared to implants that are first ma-
chined and then textured by a variety of methods (Coelho et
al. 2008). Other studies have also shown acceptable osseoin-
tegration of laser-treated surfaces [8, 13]. Since previous
work has reported the appropriate biocompatible and osseo-
conductive properties of laser-treated and laser-sintered
implants, the present study aimed to investigate whether

laser-sintered fabricated implants would present different
reliability and failure modes compared to current industry
standard alumina-blasted/acid-etched implant.

The scenario simulated in the present study represented a
common clinical situation for single-tooth replacements in
anterior region of maxilla. The specimens were subjected to
step-stress accelerated fatigue test in water, which has been
suggested as an important service-related cause of failure in
metals [34]. Our results showed similar fatigue endurance
for both alumina-blasted/acid-etched and laser-sintered
implants. On the other hand, the resulting β value (called
the Weibull shape factor) of 1.48 for group AB/AE and of
0.78 for group LS indicated that damage accumulation

Fig. 4 a Abutment and
alumina-blasted/acid-etched
implant assembly; b represen-
tative region of fracture of the
abutment and abutment screw;
c fractured abutment

Fig. 5 a Macro picture of the
abutment screw and d fractured
abutment; SEM micrograph of
(b and c) fractured abutment
screw and (d and e) the
abutment surfaces. b and e The
white arrows shows a
compression curl (CC), which
allowed the identification of
direction of crack propagation.
c Dimpled surface appearance
of the abutment screw fractured
surface
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influenced in implant-supported restoration failure only for
AB/AE surface implants. The β value describes failure rate
changes over time (β<1: failure rate is decreasing over time,
commonly associated with “early failures” or failures that
occur due to egregious flaws; β~1: failure rate that does not
vary over time, associated with failures of a random nature;
β>1: failure rate is increasing over time, associated with
failures related to damage accumulation) [26, 38].

In the present study, the region of fracture in all specimens
was between the abutment and implant platform for both AB/
AE and LS groups. Thus, it may be assumed that the abutment
and fixation screw fractured together, and the implant was the
strongest component of the implant–abutment connection
regardless of implant fabrication method. These findings sug-
gest that the laser-sintered titanium implant surface did not
affect the implant fatigue endurance. This is of special interest
considering that although implant fracture may not be a com-
monly reported failure, it must be acknowledged that avail-
able clinical studies mainly involve follow-ups from 5 to
10 years [39–44]. Longer clinical observations of 15 years
for instance have reported implant fractures mainly occurring
after 5 years of occlusal function resulting in an incidence of
3.5 % [45]. As implants are expected to survive long periods it
becomes crucial to understand the fatigue mechanical behav-
ior of implant systems fabricated by different methods.

Considering that the replacement of single-unit edentu-
lous spaces in the anterior region of maxilla with implant-
supported restorations is a challenging scenario in terms of
mechanics and esthetics for the long-term success [46],
every effort (such as laser technology) to improve the
bone-to-implant contact is desirable. Therefore further stud-
ies, especially in vivo investigations related to biomechan-
ical aspects of laser-sintered implants are warranted.

Conclusion

The postulated hypothesis that different implant fabrication
methods result in different reliability and failure modes
when subjected to step-stress accelerated life testing was
rejected. When varying the implant fabrication method, no
significant differences were observed in values of reliability
after SSALT.
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