Investigation of the BOLD and CBV fMRI responses to somatosensory stimulation in awake marmosets (*Callithrix jacchus*)

Yoshiyuki Hirano | Cecil C. Yen | Junjie V. Liu | Julie B. Mackel | Hellmut Merkle | George C. Nascimento | Bojana Stefanovic | Afonso C. Silva

Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA

Correspondence
A. C. Silva, Chief, Cerebral Microcirculation Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, MSC 1065, Building 49, Room 3A72, Bethesda, MD 20892-1065, USA.
Email: silvaa@ninds.nih.gov

Present Address
Yoshiyuki Hirano, Research Center for Child Mental Development, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
George C. Nascimento, Departamento de Engenharia Biomédica, Universidade Federal do Rio Grande do Norte, Natal, RN 59075-000, Brazil.
Bojana Stefanovic, Imaging Research, Sunnybrook Health Sciences Center, 2075 Bayview Avenue, Rm S6 50, Toronto, ON, M4 N 3 M5, Canada.

Understanding the spatiotemporal features of the hemodynamic response function (HRF) to brain stimulation is essential for the correct application of neuroimaging methods to study brain function. Here, we investigated the spatiotemporal evolution of the blood oxygen level-dependent (BOLD) and cerebral blood volume (CBV) HRF in conscious, awake marmosets (*Callithrix jacchus*), a New World non-human primate with a lissencephalic brain and with growing use in biomedical research. The marmosets were acclimatized to head fixation and placed in a 7-T magnetic resonance imaging (MRI) scanner. Somatosensory stimulation (333-μs pulses; amplitude, 2 mA; 64 Hz) was delivered bilaterally via pairs of contact electrodes. A block design paradigm was used in which the stimulus duration increased in pseudo-random order from a single pulse up to 256 electrical pulses (4 s). For CBV measurements, 30 mg/kg of ultrasmall superparamagnetic iron oxide particles (USPIO) injected intravenously, were used. Robust BOLD and CBV HRFs were obtained in the primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate at all stimulus conditions. In particular, BOLD and CBV responses to a single 333-μs-long stimulus were reliably measured, and the CBV HRF presented shorter onset time and time to peak than the BOLD HRF. Both the size of the regions of activation and the peak amplitude of the HRFs grew quickly with increasing stimulus duration, and saturated for stimulus durations greater than 1 s. Onset times in S1 and S2 were faster than in caudate. Finally, the fine spatiotemporal features of the HRF in awake marmosets were similar to those obtained in humans, indicating that the continued refinement of awake non-human primate models is essential to maximize the applicability of animal functional MRI studies to the investigation of human brain function.

KEYWORDS
bold, cerebral blood volume, functional neuroimaging, neurovascular coupling, non-human primate, somatosensory cortex

1 | INTRODUCTION

The spatiotemporal characteristics of the hemodynamic response function (HRF) to focal changes in neural activity limit the resolution of functional neuroimaging techniques, such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). In typical fMRI

Abbreviations used: ABS, acrylonitrile–butadiene–styrene; ANOVA, analysis of variance; ASL, arterial spin labeling; BOLD, blood oxygen level-dependent; CBF, cerebral blood flow; CBV, cerebral blood volume; EPI, echo planar imaging; fMRI, functional magnetic resonance imaging; FOV, field of view; FWHM, full width at half-maximum; GRE, gradient-recalled echo; HRF, hemodynamic response function; IRF, impulse response function; MEG, magnetoencephalography; MRI, magnetic resonance imaging; NINDS/NIDCD, National Institute of Neurological Disorders and Stroke/National Institute on Deafness and Other Communication Disorders; OT, onset time; PEEK, polyether ether ketone; RARE, rapid acquisition with relaxation enhancement; RF, radiofrequency; ROI, region of interest; S1, primary somatosensory cortex; S2, secondary somatosensory cortex; SNR, signal-to-noise ratio; TE, echo time; TR, repetition time; TTP, time to peak; USPIO, ultrasmall superparamagnetic iron oxide

Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
experiments, the stimulus is presented according to a block design paradigm in which periods of rest and stimulation are alternated. The HRF is obtained by statistical correlation of the fMRI time course with the stimulation paradigm.1,2 Because the cerebral vasculature is a continuous, yet distributed, network,3 the stimulus duration strongly influences the spatiotemporal characteristics of the HRF. Brief stimuli elicit vascular responses that consist mainly of the dilatation of local capillaries and arterioles,4,5 which leads to local increases in cerebral blood volume (CBV) and cerebral blood flow (CBF), and an inflow of oxyhemoglobin and concomitant displacement of deoxyhemoglobin in the venules and veins, causing a BOLD effect.6 Longer stimuli, however, recruit feeding arteries and draining veins that can be remotely located from the site of neural activity.7 A correct understanding of the influence of the stimulus duration on the spatiotemporal features of the HRF is essential to both the design of functional neuroimaging experiments and the interpretation of the data.

Previously, we have investigated the spatiotemporal evolution of the HRF to ultrashort forelimb stimulation in chloralose-anesthetized rats.8 We were able to determine that the HRF to a single 333-μs-long stimulus consisted of a rapid CBV and CBF response with an onset time (OT) of 350 ms and a full width at half-maximum (FWHM) of 1 s, whereas longer stimuli elicited a dispersive transit of oxygenated blood across the cortical microvasculature that significantly prolonged the evolution of the CBV and the BOLD HRF.5 We also observed a rapid growth of the spatial extent of activation with stimulus elongation, which demonstrated that functional hyperemia is an integrative process that involves the entire functional cortical depth.

In the present work, we investigate the spatiotemporal evolution of the BOLD and CBV HRF to somatosensory stimulation in conscious awake marmosets (Callithrix jacchus), a New World non-human primate with a brain size equivalent to the relative brain size of humans and approximately five times larger than the rat brain. Using stimulus parameters optimized in a previous publication,9 we obtained robust and reproducible fMRI responses in primary (S1) and secondary (S2) somatosensory cortex, as well as in the caudate. We show here that the BOLD and CBV responses to a single 333-μs-long stimulus can be robustly measured, and that the CBV HRF onsets and peaks significantly faster than the BOLD HRF. Both the size of the regions of activation and the peak amplitude of the BOLD HRFs grew quickly with increasing stimulus duration, and saturated for stimulus durations greater than 1 s. The OTs of the BOLD HRF in S1 and S2 were faster than in the caudate, which is consistent with some degree of serial processing between S1 and S2, and, as expected, with thalamo-cortical processing preceding cortico-striatal processing. Finally, the fine spatiotemporal features of the HRF in awake marmosets are more similar to those of humans, indicating that the continued refinement of unanesthetized non-human primate models is essential to maximize the applicability of animal fMRI studies to the investigation of human brain function, and to increase our understanding of the mechanisms of neurovascular coupling.

2 \hspace{1em} MATERIALS AND METHODOLOGY

2.1 \hspace{1em} Animal preparation

All experiments were approved by the National Institute of Neurological Disorders and Stroke/National Institute on Deafness and Other Communication Disorders/National Center for Complementary and Integrative Health (NINDS/NIDCD/NCCIH) Animal Care and Use Committee. Five adult male common marmosets (Callithrix jacchus; aged 7–8 years; body weight, 260–400 g) from the NINDS colony were used. The marmosets were housed one or two to a cage with a 12-h light/dark cycle on an ad libitum diet of Purina New World primate biscuits, Zupreem canned marmoset food, water, PRANG oral rehydrator (Bio-Serv, Flemington, NJ, USA), and fruit and vegetable treats. Prior to their use in the fMRI experiments, the marmosets were trained and acclimatized to tolerate the rigid head restraint required to allow the acquisition of good quality data with acceptable levels of motion artifacts.10 A progressive training schedule was devised to achieve full acclimatization in 3 weeks, briefly described below.

2.1.1 \hspace{1em} Week 1 – acclimatization to body containment

Figure 1 shows the restraint setup used to train the awake marmosets. After being caught from its cage and transported to our laboratory, each marmoset was dressed with a sleeveless jacket (Lomir Biomedical, Inc., Malone, NY, USA), which was closed by a longitudinal Velcro strip on the back. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle. The plastic body cover was secured to the cradle by nylon thumb screws fastened to the sidebars on the cradle. The jacket was attached to a plastic semi-cylindrical cover using plastic cable ties, and the marmoset was gently placed into the MRI cradle.

2.1.2 \hspace{1em} Week 2 – acclimatization to body containment in the presence of MRI sounds

Because MRI is a loud technique, it is necessary to acclimatize the animals to the sounds generated by the MRI scanner during imaging. In week 2, the animals were restrained as in week 1 for increasing periods of time, during which the sounds produced by the MRI scanner were played out at a softer level than in a real MRI session. This schedule reinforced the adaptation to the body restraint initiated in week 1, and conditioned the animals...
to ignore the MRI sounds produced by the scanner. Pediasure and mini-marshmallows were used as positive reinforcements at the beginning and end of each training session.

2.1.3 Week 3 – acclimatization to head restraint in the presence of MRI sounds

Traditionally, the use of awake, conscious animals in the MRI scanner requires the surgical implantation of head posts that can be rigidly secured by clamps to a specially designed frame. Three of the five marmosets included in the present study were equipped with head posts. The week following completion of the second week of training, a head implant, consisting of two low-profile round bases made of polyether ether ketone (PEEK) plastic and threaded on the inside, were surgically attached to the anterior and posterior bases of the skull using dental acrylic cement (Lang Dental Manufacturing Co, Wheeling, IL, USA) and nylon screws (size 0-80; length, 2.4 mm; Plastics One, Roanoke, VA, USA). The animals were allowed 2 weeks to recover from surgery prior to engaging in the third and final week of acclimatization. For restraining their heads, two 0.25-in round solid PEEK rods, 50 mm in length, were threaded onto the round bases and clamped to a home-built frame. Although the use of head posts allows maximum restraint of the animals, it brings many disadvantages. Amongst them, susceptibility artifacts that degrade image quality by introducing geometric distortions and/or signal dropouts in the MR images, and the constant need to perform aseptic cleaning to prevent infections, made us think of an alternative to the use of head implants by designing custom-fitted helmets to match the contour of each individual head exactly, providing a comfortable, yet effective, restraint (Figure 1). To design the helmet pieces, a three-dimensional gradient-echo MR image of the entire head and neck was acquired from each of the remaining two animals in this study. Next, a contour of the head was obtained by a three-dimensional surface rendering algorithm and fed into ‘Rhinoceros 3D’ (McNeel North America, Seattle, WA, USA), a three-dimensional modeling program, to design the top (head) and bottom (chin) helmet pieces, which were manufactured from liquid ABS (acrylonitrile–butadiene–styrene) plastic using a three-dimensional printer (ProJet HD3000, 3D Systems Corp., Rock Hill, SC, USA). To provide greater comfort for the animals, the inside surfaces of both top and bottom pieces were lined with 3-mm-thick foam. The marmosets were then restrained to the bed by the body cover, as in the previous weeks, and fitted with their custom-built helmets, as shown in Figure 1. In week 3, the animals were conditioned for increasing periods of time, as in the first 2 weeks. Whilst in the mock MRI tube, they were allowed to hear the sounds produced by the MRI scanner, played out at the same level of loudness as in a real MRI session. This schedule reinforced the adaptation to the body restraint of the previous weeks, and further conditioned the animals to ignore the MRI sounds produced by the scanner, whilst enforcing full head fixation. At the end of the third week of training, all five animals successfully completed the acclimatization procedure (see Results section).

Following the acclimatization training, the marmosets were taken to the MRI scanner for functional experiments. The animals were dressed with the sleeveless jacket and secured in the sphinx position to the MRI cradle. Their heads were fixed with head posts (three individuals) or with the two-piece helmet restraint (two individuals). For the actual fMRI scans, earplugs made of silicon jelly (Insta-Putty, Insta-Mold Products, Inc., Oaks, PA, USA) were carefully pressed into the ear canals and covered with acoustic foam pads on both sides of the head. This further restrained
head motion and protected the animals from the much louder MRI scanner noise. The tail was shaved and an indwelling intravenous catheter was placed into the lateral tail vein for the administration of MR contrast agents. Prior to being pushed into the MRI bore, the animals were fed with Pediasure ad libitum. Once inside the MRI scanner, the animals were continuously monitored via an MRI-compatible camera (MRC Systems GmbH, Heidelberg, Germany) connected to a personal computer (PC) placed by the operator’s desk.

2.2 | MRI methods

fMRI experiments were performed in a horizontal 7-T/30-cm magnet (Bruker-Biospin, Billerica, MA, USA) equipped with a 15-cm gradient capable of an amplitude of 450 mT/m within a rise-time of 120 μs (Resonance Research Inc., Billerica, MA, USA). A home-built, two-element, receive-only surface coil array (inside diameter, 1.6 cm) was positioned over the head implants or outside the helmets near the somatosensory cortex, and connected to home-built preamplifiers. BOLD fMRI data were obtained with a gradient-recalled echo (GRE), echo planar imaging (EPI) sequence in a single coronal slice with the following parameters. In Experiment 1: field of view (FOV), 32.4 × 32.4 mm²; matrix, 108 × 108; slice thickness, 2 mm; nominal resolution, 300 × 300 × 2000 μm³; acquisition bandwidth, 333 kHz; echo time (TE) = 20 ms; repetition time (TR) = 250 ms; flip angle, 30°. In Experiments 2 and 3: FOV, 25.6 × 25.6 mm²; matrix, 64 × 64; slice thickness, 2 mm; nominal resolution, 400 × 400 × 2000 μm³; acquisition bandwidth, 200 kHz; TE = 13–15 ms; TR = 250 ms. After the fMRI sessions, an anatomical image was acquired with the same FOV as in the fMRI acquisition using a rapid acquisition with relaxation enhancement (RARE) sequence (TE = 15 ms; TR = 3 s; flip angle, 90°; matrix, 240 × 216; RARE factor, 8; number of averages, 4).

2.3 | Somatosensory stimulation

To measure the HRF to somatosensory stimulation, a pair of contact electrodes was secured across each wrist and bilateral electrical stimulation (333-μs pulses; amplitude, 2 mA; 64 Hz) was performed, synchronized with the scanner and controlled from a PC running Presentation (Neurobehavioral Systems, Inc., Albany, CA, USA). Three experiments were performed. In Experiment 1, the BOLD HRFs to stimuli of different durations were measured. A block design paradigm was run containing trials of 9 × 30-s-long off–on–off epochs in which the stimulus consisted of 1, 2, 4, 8, 16, 32, 64, 128 or 256 electrical pulses (stimulus duration, 333 μs: 4 s). The 4.5-min-long trials were repeated in randomized order 16 times. In addition, the BOLD impulse response function (IRF) was measured during the presentation of 128 trials of a single 30-s-long off–on–off epoch containing a single electrical pulse (stimulus duration, 333 μs). In Experiment 2, the dose of ultrasmall superparamagnetic iron oxide (USPIO) contrast agent for CBV measurements was optimized. An initial dose of 20 mg/kg of 30-nm USPIO particles (Molday ION, Biophysics Assay Laboratory, Inc., Worcester, MA, USA) was injected into the animals intravenously. Five minutes were allowed for the equilibration of the USPIO concentration in blood prior to the start of the CBV measurements. The trial, consisting of a single 30-s-long on–off–on–off epoch of fixed stimulus duration (256 electrical pulses = 4 s), was repeated 16 times. At the end of the measurement, an additional injection of 10 mg/kg UPBIO to take the total dose to 30 mg/kg was given and another 5 min was allowed prior to repeating the CBV measurements. Finally, in Experiment 3, the CBV IRF was measured during the presentation of 128 trials of a single 30-s-long off–on–off epoch containing a single electrical pulse (stimulus duration, 333 μs).

2.4 | Data analysis

Data preprocessing consisted of in-plane motion correction using SPM5 (Wellcome Department of Imaging Neuroscience, University College London, London, UK). Baseline drift was removed and the series of 120 images (30 s) corresponding to each stimulus duration were identified and averaged across the epochs. High-frequency noise components were removed by filtering the averaged time courses with a 1-Hz square filter apodized with a 1.5-Hz Hanning window. After data preprocessing, region of interest (ROI) analysis was performed. A functional t-map mask was generated by identifying regions of activation to the 4-s stimulus task (p < 0.05). Then, the positions of the primary (S1) and secondary (S2) somatosensory cortices, and caudate, were identified for each animal, and the location of the ROIs were further refined by multiplying the functional mask with a mask obtained from the anatomical image. For each animal, the number of activated voxels, maximum percentage signal change, time to peak (TTP) and OT were computed following a 16-fold Fourier interpolation and normalization to the mean of the pre-stimulus period. OT was defined as the time to 10% of the peak after fitting a three gamma function. One-way analysis of variance (ANOVA), followed by Scheffe post hoc test, was performed to determine the statistical significance of differences in TTP and OT, respectively.

3 | RESULTS

3.1 | Acclimatization to head restraint

To obtain a measure of tolerance to the acclimatization procedures, the marmosets were evaluated and scored according to the Behavioral Assessment Scale listed in Table 1 prior to, during and after each of the three acclimatization weeks. All five animals acclimatized well to being restrained in the MRI-compatible bed. In week 1, the marmosets started with an average score of 2.0 ± 0.0 on the Behavioral Assessment Scale and...
acclimatized to an average score of 1.0 ± 0.0 by the end of the week. In week 2, the average score started at 1.0 ± 0.0 and ended at 1.5 ± 0.7 due to the introduction of the MRI sounds and the prolonged restraint period. Finally, in week 3, with the introduction of the head restraint, the initial score was 2.5 ± 0.7 on day 1 and improved to 1.5 ± 0.7 at the end of training. We also evaluated the Behavioral Assessment Score on the first day in the MRI scanner, and all animals obtained a score of 1.0.

All MRI sessions lasted less than 4 h, during which all animals were monitored through an in-bore camera. No agitation as a result of the MRI noise or the functional stimulations was noted in any of the marmosets.

3.2 BOLD HRF to different stimulus durations

Figure 2 shows the BOLD activation maps from a representative individual marmoset in response to stimuli of different durations. Areas of activation in S1 and S2 grew from just a few voxels located in the middle and upper layers of the respective regions in response to a single pulse stimulus, to occupy the entire cortical regions with longer stimulus durations of up to 64 pulses (1 s), beyond which no additional expansion was observed. In the caudate, the response grew even more rapidly, so that, by 32 pulses (0.5 s), the entire area was active and no further expansion was observed (Figure 2).

Figure 3 shows the mean BOLD HRFs to stimuli of different durations, averaged within the three ROIs (S1, S2 and caudate) and across all five animals. Robust BOLD HRFs were obtained in all three ROIs for all stimulus durations. The caudate region presented the strongest BOLD response, whereas S1 and S2 presented equivalent peak amplitudes. The amplitude of the BOLD HRF grew from 1.3 ± 0.4, 1.2 ± 0.2 and 2.2 ± 0.5% in S1, S2 and caudate, respectively, in response to a single pulse, to 2.4 ± 0.3, 2.5 ± 0.3 and 3.4 ± 0.5%, respectively, in response to 64 pulses (1 s). Longer stimulus durations produced no additional increases in the peak amplitude of the BOLD HRF (Table 2). This saturation in the peak amplitude of the BOLD HRF can also be appreciated in the bottom three panels of Figure 3.

Figure 4 summarizes the mean growth in the number of active voxels (Figure 4A), peak BOLD amplitude (Figure 4B) and TTP (Figure 4C) with stimulus duration in S1, S2 and caudate, averaged across all five animals. All three regions presented a monotonic increase in the number of active voxels and peak amplitude with stimulus durations up to 1 s, and saturation of both measures for longer stimuli. Interestingly, the caudate region presented the lowest number of active voxels, but the highest BOLD amplitude, at all stimulus durations, and also the longest TTPs. Figure 4D shows the mean OT for each of the three regions, averaged across animals. The OT in S1 (1.0 ± 0.3 s) was significantly shorter than that in S2 (1.2 ± 0.2 s) and caudate (1.2 ± 0.3 s) [one-way ANOVA followed by Scheffe post hoc test, F(2,178) = 12.72, p < 0.001], suggesting a hierarchy of activation between the three regions.

TABLE 1 Behavioral assessment scale

<table>
<thead>
<tr>
<th>Score</th>
<th>Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Quiet: Marmoset calm and relaxed</td>
</tr>
<tr>
<td>2</td>
<td>Mostly quiet, agitated only initially</td>
</tr>
<tr>
<td>3</td>
<td>Mostly quiet, with brief, intermittent mild agitation</td>
</tr>
<tr>
<td>4</td>
<td>Quiet after initial struggle, increasingly agitated over time</td>
</tr>
<tr>
<td>5</td>
<td>Mild agitation for about half of the restraint period</td>
</tr>
<tr>
<td>6</td>
<td>Moderate agitation during half of the restraint period</td>
</tr>
<tr>
<td>7</td>
<td>Restless and agitated during most of the restraint period</td>
</tr>
<tr>
<td>8</td>
<td>Extremely agitated during most of the restraint period</td>
</tr>
</tbody>
</table>

FIGURE 2 Blood oxygen level-dependent (BOLD) activation maps from a representative marmoset at different stimulus durations. Robust activation in response to bilateral somatosensory stimulation (amplitude, 2 mA; 333-μs pulses; 64 Hz) was observed in primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate. The regions of activation in S1 and S2 grew with stimulus durations of up to 64 pulses (1 s). In the caudate, the region of activation grew with stimulus durations of up to 32 pulses (0.5 s)
3.3 | Optimization of the dose of USPIO for CBV measurements

To examine the effective dose of USPIO for CBV measurements, the CBV HRF to a 4-s stimulus was evaluated at two different doses: 20 mg/kg and 30 mg/kg. Figure 5A shows the BOLD and CBV t-score maps in a representative marmoset. Robust activations in S1, S2 and caudate were obtained with BOLD contrast. However, there was no clearly detectable CBV activation in caudate at either of the two tested USPIO dosages. This was consistently observed across all five animals. The size of the CBV regions of activation in S1 and S2 decreased at the larger USPIO dose with respect to the smaller dose, presumably as a result of the higher T2* dephasing achieved at the higher dose that lowered the baseline signal-to-noise ratio (SNR) of the images. Figure 5B shows the mean BOLD HRF (top graph) and the mean CBV HRFs obtained with the lower dose (middle graph) and higher dose (bottom graph) of USPIO, in response to a 4-s stimulus, averaged across all five animals. Compared with the peak amplitude of the CBV HRF obtained with the lower dose, the maximum relative percentage signal change obtained with the higher dose was 32% and 34% larger, respectively. For this reason, and to avoid BOLD contributions to the CBV measurements, we adopted 30 mg/kg USPIO as the more appropriate dose for carrying out the investigation of the CBV IRF.

3.4 | BOLD and CBV IRF

Figure 6 shows the mean BOLD and CBV IRFs averaged across the five marmosets. To allow comparison of their temporal characteristics with the BOLD IRFs, the signs of the CBV time courses were flipped. Figure 6A shows the BOLD and CBV IRF measured in S1, whereas Figure 6B shows the time courses measured in S2. Compared with the BOLD IRF, the CBV IRF showed a quick onset in response to the brief stimulus, and a shorter TTP.
The CBV OTs in S1 (0.5 ± 0.2 s) and S2 (0.7 ± 0.2 s) were significantly shorter than the respective BOLD OTs (1.1 ± 0.3 s in S1 and 1.3 ± 0.4 s in S2, \(p < 0.001 \), Figure 6C). The CBV TTPs were 2.2 ± 0.6 s in S1 and 2.2 ± 0.2 s in S2, significantly shorter than the respective BOLD TTPs (2.7 ± 0.2 s in S1 and 3.0 ± 0.1 s in S2, \(p < 0.001 \), Figure 6D).

DISCUSSION

In the present work, we investigated the BOLD and CBV functional responses to short somatosensory stimulation in conscious, awake marmosets. We developed a simple, yet effective, acclimatization protocol to condition and train the marmosets to tolerate physical restraint during the data acquisition, and designed a helmet-based head restraint that is completely non-invasive and able to hold the head still without sacrificing comfort. After undergoing such training, the marmosets produced robust and reproducible fMRI responses in S1, S2 and caudate, in full agreement with our previous publication.\(^9\) We were able to reliably detect the BOLD and CBV responses to a single 333-μs-long stimulus. We observed that the CBV HRF onsets and peaks significantly faster than the BOLD HRF, indicating a significant arterial contribution to the CBV response. By varying the stimulus duration, we observed a quick growth and saturation of both the size of the regions of activation and the peak amplitude of the BOLD HRFs for stimulus durations greater than 1 s. The OTs of the BOLD HRF in S1 and S2 were faster than in caudate, which is consistent with some degree of serial processing between S1 and S2, and, as expected, with thalamo-cortical processing preceding cortico-striatal processing.

4.1 | Acclimatization procedures

Because animals are inherently non-compliant, most MRI experiments performed to date on animal models have required the use of anesthesia. Although being second to none in alleviating stress, anesthesia induces a number of drawbacks. Anesthesia has a profound effect on the autonomic nervous system, requiring the monitoring and control of the systemic physiological status of the animal. Furthermore, anesthesia produces long-lasting effects on the animal physiology that may influence longitudinal studies.\(^{15}\) Anesthesia also interferes with neural activity\(^{16}\) and vascular tone,\(^{17}\) therefore affecting neurovascular coupling in ways that are not well understood,\(^{18}\) and compromising the interpretability and applicability of fMRI data to the understanding of normal brain function. In a recent publication, we compared the BOLD fMRI response to somatosensory

FIGURE 4 A, Plot of the mean growth in the size of the regions of activation in primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate with stimulus duration, averaged across all five animals. B, Plot of the peak amplitude of the blood oxygen level-dependent (BOLD) hemodynamic response function (HRF) in S1, S2 and caudate with stimulus duration, averaged across all five animals. There was a monotonic increase in the number of active voxels and peak amplitude with stimulus durations up to 1 s, and saturation for longer stimuli. C, Plot of the time to peak (TTP) in S1, S2 and caudate with stimulus duration, averaged across animals. The caudate region presented the highest BOLD amplitude and the longest TTPs at all stimulus durations. D, the mean onset time (OT) for each of the three regions of interest (ROIs), averaged across animals. \(* p < 0.05 \), one-way analysis of variance (ANOVA) followed by Scheffe post hoc test
FIGURE 5 A, Blood oxygen level-dependent (BOLD) (top) and cerebral blood volume (CBV) t-score functional maps obtained at two different doses of USPIO (middle, 20 mg/kg; bottom, 30 mg/kg) in response to a stimulus duration of 4 s. Robust BOLD and CBV activations were observed in primary somatosensory cortex (S1), secondary somatosensory cortex (S2) and caudate. However, caudate showed no CBV activation at either dosage of USPIO. B, Mean BOLD hemodynamic response function (HRF) (top graph) and mean CBV HRFs obtained with the lower dose (middle graph) and the higher dose (bottom graph) of ultrasmall superparamagnetic iron oxide USPIO, in response to a 4-s stimulus, averaged across all five animals. A stronger CBV response was observed at the higher dose of 30 mg/kg. Error bars, one standard deviation. *p < 0.05

FIGURE 6 A, Mean blood oxygen level-dependent (BOLD) (green) and cerebral blood volume (CBV) (red) hemodynamic response function (HRF) to a single 333-μs-long stimulus, measured in primary somatosensory cortex (S1) and averaged across all five animals. B, Mean BOLD (green) and CBV (red) HRF to a single 333-μs-long stimulus, measured in secondary somatosensory cortex (S2) and averaged across all five animals. C, Mean onset times (OT) for BOLD (green) and CBV (red) in S1 and S2, averaged across all five animals. D, Mean time to peak (TTP) for BOLD (green) and CBV (red) in S1 and S2, averaged across all five animals. In both regions, CBV had significantly shorter OT and TTP than BOLD. Error bars, one standard deviation. *p < 0.05
stimulation in awake versus propofol-anesthetized marmosets. We found that the responses in S1, S2 and caudate were significantly stronger in awake animals, and that anesthesia completely abolished the response in caudate. Moreover, anesthesia influenced the shape of the HRF and S1–S2 spontaneous functional connectivity. Thus, the ability to acquire physiological responses in conscious, awake animal models represents a necessary step towards a better investigation of the brain.

One approach to enforcing compliance that eliminates the need for anesthesia involves training the animal to tolerate physical restraint during data acquisition. The 3-week acclimatization protocol developed in our laboratory proved to be simple and effective in conditioning and training the marmosets to tolerate long periods of restraint with minimal levels of stress. Stress can introduce significant confounds in studies of brain function, and thus it is important to research and develop effective training protocols for the imaging of awake animals. The use of individualized, anatomically exact helmets played a large role in ensuring comfortable head restraint. The use of helmets is significantly advantageous over the more traditional head fixation method of surgically implanted head posts. Head implants are typically associated with lower data quality as a result of susceptibility artifacts in the form of geometric distortions and/or signal dropouts introduced by the dental cement and fixation screws. In addition, head implants degrade with time and require regular aseptic cleaning to prevent infections. Moreover, if the animal needs to be treated with antibiotics and/or anti-inflammatory drugs for an eventual infection, the treatment may interfere with neurovascular coupling, thus compromising the interpretation of the data. In addition, much of the major advantage of MRI as a non-invasive technique is lost with the use of head implants. The use of helmets as a non-invasive restraint device allows the animal to be employed in indefinitely prolonged longitudinal studies. The helmets also permit better placement of receive-only radiofrequency (RF) coils closer to the skull of the animal, a key factor for improved SNR. Indeed, we have recently embedded low-profile RF coil arrays inside the helmets to further improve SNR.

4.2 Spatiotemporal characteristics of BOLD HRF to brief stimulation

Robust BOLD HRFS were obtained in S1, S2 and caudate, even when the stimulus consisted of a single 333-μs-long pulse. In S1 and S2, activation began in the central layers of the cortex, and grew quickly to occupy all layers by a 64-pulse (1 s) stimulus duration. This fast spatial filling of the entire cortical depth is consistent with our previous data obtained from α-chloralose-anesthetized rats, and our follow-up study in awake marmosets, showing that functional hyperemia is an integrative process that involves the entire functional cortical depth. In the caudate, there was an equally fast growth in the area of activation, with most of the caudate area of activation filled in response to a 1-s-long stimulus. The OT of the BOLD HRF in S1 was shorter than that of S2 and caudate. The shorter onset in S1 is in agreement with previous magnetoencephalography (MEG) studies in humans, and consistent with serial processing between S1 and S2, but cannot refute the possibility of parallel processing. Of the three areas, caudate had the longest OT, suggesting that activation of caudate happens via cortico-striatal projections, which are preceded by the thalamo-cortical projections into S1 and S2.

We observed saturation of both the peak amplitude and TTP of the BOLD HRF in all three regions for stimuli longer than 128 pulses (2 s). This saturation of the peak BOLD amplitude implies that a linear relationship between the BOLD response and the neural activity, in which both the amplitude and the area under the BOLD response increase linearly with stimulus duration, can be supported for stimulus durations up to 64 pulses (1 s). For stimulus durations longer than 128 pulses (2 s), the BOLD peak amplitude becomes constant, whereas the area under the curve and FHWM increase linearly with stimulus duration.

The location and size of the areas of activation in S1 and S2 agree well with previous histological and electrophysiological studies in marmosets mapping area 3b, the main homologous area of S1 of other mammals, and area S2, respectively. Area 3b extends 2 mm in the rostrocaudal direction, and spans 8 mm lateral to the midline before bending rostrally and extending 6 mm further. The hand representation is located immediately medial to this bend, and spans 2 mm in the mediolateral direction. Thus, considering that the cortical thickness in marmosets is approximately 2 mm, the hand representation within area 3b in each hemisphere spans about 8 mm³, or 45 voxels, in agreement with the total number of activated voxels shown in Figure 4A. However, S2 is located on the upper bank of the lateral sulcus, immediately adjoining the caudal portion of S1 that represents the upper lip, and the hand and arm are represented in the more medial parts of S2. Interestingly, the number of activated voxels in S2 was nearly double that of S1 (Figure 4A). Reasons for the larger regions of activation in S2 are not entirely clear, but could be related to the fact that the receptive fields of different areas of the body, including the hands and the arms, are much larger in S2 than in S1. Further studies are needed to fully investigate this issue.

The caudate is an area known to receive inputs from both motor and somatosensory cortices, as well as from the thalamus. In our previous publication comparing BOLD fMRI responses in awake marmosets with those obtained in animals anesthetized with propofol, the caudate also produced robust and reproducible responses under awake conditions, but not under anesthesia. Interestingly, the fMRI response in caudate obtained here was stronger than that in the previous publication, and stronger than the responses in S1 and S2. A possible explanation is that the present study utilized bilateral stimulation and a thicker slice (2 mm) compared with the previous work. These experimental differences may have contributed to a better integration of functional activity in the caudate.

4.3 Comparison of temporal characteristics between BOLD and CBV

Robust BOLD and CBV responses to a single 333-μs pulse were obtained. In S1, the CBV HRF consists of a short OT = 0.5 s and TTP = 2.2 s, both parameters significantly shorter than those of the BOLD HRF (OT = 1.3 s; TTP = 2.7 s). In S2, the respective parameters were longer than in S1,
again consistent with some degree of serial processing between S1 and S2. We interpret the temporal lag of the BOLD HRF to be a result of the influence of the arteriole–venule transit time.8,36,37 For short stimuli (< 1 s), the local hemodynamic changes involve an active redistribution of blood flow and volume within the capillary network and cortical arterioles and venules.4,8,36 We have demonstrated previously in anesthetized rats that the temporal evolution of the functional CBF and CBV responses to a short stimulus are well matched, because of the contained involvement of the local microvasculature and the small relative changes in CBF and CBV associated with the short stimulus.8 In the present work, we were not able to implement arterial spin labeling (ASL) techniques to measure CBF. It will be interesting in the future to verify the temporal match of CBF and CBV responses in awake marmosets.

It is interesting to compare the temporal characteristics of HRF in marmosets with the data obtained in other species. The TTPs of the CBV HRF (2.2 s) and BOLD HRF (2.7 s) in S1 were longer than the respective TTPs obtained in α-chloralose-anesthetized rats (CBV, 1.1 s; BOLD, 1.5 s),8 but shorter than the TTP obtained in the human visual cortex (BOLD, 4.51 s),38 indicating that the cortical microvascular length in marmosets may be more similar to humans than to rodents, presenting an elongated dispersive contribution of the transit of deoxyhemoglobin through the post-capillary side of the cerebral vasculature. However, the serial processing between S1 and S2, seen in the present study, seems to disagree with the results from anesthetized cats, which showed no differences in OT between primary and secondary visual cortices.39 This may be because the thalamus projects to both the primary and secondary visual cortices in the cat, unlike most primates, where the secondary sensory cortices receive input merely from the primary cortices.

5 | CONCLUSIONS

The present study demonstrates the feasibility of measuring both BOLD and CBV HRFs to extremely brief stimuli in conscious, awake marmosets acclimatized to head fixation. Robust and reproducible fMRI responses were obtained in S1, S2 and caudate, and the shorter OTs in S1 suggest that the HRF starts in S1 and propagates in hierarchical order along the sensory pathway. Finally, the fine spatiotemporal features of the HRF in awake marmosets are more similar to those of humans, indicating that the continued refinement of unanesthetized non-human primate models is essential to maximize the applicability of animal fMRI studies to the investigation of human brain function, and to increase our understanding of the mechanisms of neurovascular coupling.

ACKNOWLEDGEMENTS

The authors are deeply indebted to Dr Alan P. Koretsky for enlightening scientific discussions, and to Mrs Xian Feng (Lisa) Zhang for her invaluable help in animal preparation. This research was supported by the Intramural Research Program of the National Institutes of Health (NIH), National Institute of Neurological Disorders and Stroke (NINDS) (Alan P. Koretsky, Scientific Director).

ORCID

Afonso C. Silva \(\text{http://orcid.org/0000-0002-6105-7567}\)

REFERENCES

How to cite this article: Hirano Y, Yen CC, Liu JV, et al. Investigation of the BOLD and CBV fMRI responses to somatosensory stimulation in awake marmosets (Callithrix jacchus). NMR in Biomedicine. 2018;31:e3864. https://doi.org/10.1002/nbm.3864