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RESUMO

Integracao Continua, em inglés Continuous Integration (CI), consiste na pratica
de automatizar e melhorar a frequéncia das integragoes de codigo (por exemplo,
através de builds diarios). CI é frequentemente considerado um dos principais el-
ementos que dao suporte as metodologias ageis. CI ajuda a reduzir os riscos de
integracao no desenvolvimento de software, através de builds e testes automatiza-
dos, permitindo que equipes corrijam problemas de integracao imediatamente. A
adogao de CI pode ajudar as equipes a avaliar e melhorar a qualidade dos sistemas
de software. Os potenciais beneficios de CI chamaram a atencao de pesquisadores
da engenharia de software que buscam entender, de forma empirica, as possiveis
vantagens de adocao da prética. Estudos anteriores evidenciam o impacto da
adogao de CI em diversos aspectos do desenvolvimento de software. Apesar dos
valiosos avancgos, muitas suposi¢oes permanecem empiricamente inexploradas na

comunidade.

Nosso trabalho investiga, de forma empirica, os fatores da qualidade do soft-
ware e suas relagoes com a adoc¢ao de CI. Como contribuicao, esta tese fornece um

mapeamento sisteméatico da literatura, que apresenta um amplo cenario de como



profissionais e pesquisadores observam o efeito de CI nos aspectos relacionados
ao produto de software. Além disso, melhoramos algumas premissas, realizando
dois estudos empiricos, visando responder as seguintes questoes ainda em aberto:
(i) A adogao de CI esta associada a evolugao do codigo de teste dos projetos?
(ii) O nivel de aderéncia as praticas de CI esté relacionada a uma melhoria da
qualidade do codigo fonte dos projetos? Por fim, noés apresentamos um estudo
pioneiro, considerando o nosso contexto de pesquisa, que vai além dos testes de
correlagao e investiga o efeito causal entre a adogao de CI e testes automatizados.
Para isto, aplicamos uma inferéncia causal, através da utilizacao de diagramas
causais e métodos probabilisticos, para determinar a efeito de CI nos testes au-
tomatizados. Nossos resultados sugerem que, apesar dos trade-offs relacionados a
adogao de CI, é provavel que a pratica esteja associada & melhorias na qualidade
do software. Além disso, CI emprega um efeito causal positivo e consideravel no

volume de testes dos projetos.

Palavras-chave: integracao continua, qualidade de software, estudo empirico, in-

feréncia causal.
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ABSTRACT

Continuous Integration (CI) is the practice of automating and improving the fre-
quency of code integration (e.g., daily builds). CI is often considered one of the
key elements involved to support agile software teams. It helps to reduce the risks
in software development by automatically building and testing a project codebase,
which allows the team to fix broken builds immediately. The adoption of CI can
help development teams to assess the quality of software systems. The potential
benefits of adopting CI have brought the attention of researchers to study its ad-
vantages empirically. Previous research has studied the impact of adopting CI on
diverse aspects of software development. Despite the valuable advancements, there

are still many assumptions in the community that remains empirically unexplored.

Our work empirically investigates the software quality outcomes and their re-
lationship with the adoption of CI. This thesis provides a systematic literature
mapping that presents a broad knowledge of how practitioners and researchers
recognize the CI practice to affect software product-related aspects. Additionally,
we improve some assumptions by performing two empirical studies that aim to an-

swer the following open questions: (i) Does the adoption of CI share a relationship



with the evolution of test code? (ii) The adherence to CI best practices is related to
the degree of code quality? Finally, we present a pioneering study that goes beyond
the correlation tests to investigate the estimated causal effect of CI adoption and
its impact on automated tests. Thereby, we apply a causal inference using directed
acyclic graphs and probabilistic methods to determine the causal effect of CI in
automated tests. Our results suggest that, despite the CI adoption trade-offs, it
is likely to be associated with improvements in software quality. Additionally, it

employs a considerable positive causal effect on the volume of automated tests.

Keywords: Continuous integration, software quality, empirical study, causal infer-

ence.
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1 Introduction

Continuous Integration (CI) is the practice of automating and improving the
frequency of code integration (e.g., daily builds) (FOWLER; FOEMMEL, 2006). The
adoption of CI can help development teams to assess the quality and to reduce the

risks (DUVALL; MATYAS; GLOVER, 2007) in software development.

Over history, software quality has been one of the main concerns of engineers as
it represents an essential attribute for the success of every software project (CROW-
STON; ANNABI; HOWISON, 2003; REEL, 1999; CHOW; CAO, 2008). In this matter,
software engineers are constantly developing enhancements on development meth-
ods to produce better results. They assume that a high quality software process will
likely produce a high quality software product (HUMPHREY, 1988; SOMMERVILLE,
2011). As software quality represents a broad area of study, and as it might be
affected by multiple aspects in software development, this thesis focuses on the
quality to witch regards the quality of the code and the tests. We acknowledge
that software quality is more than that. However, we believe that it is a base for

reliable and consistent CI usage.

Similarly to any business, quality becomes a big concern also in the software
community. High-quality software provides a better overall experience to end-users
in both open source and corporate solutions. The competition for better software
enhance the market and become a mandatory concern in successful companies. A
software that is built in an environment that neglect quality can cause extreme

side effects on the business and can affect people’s life. Critical software can also
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put human life in risk (KNIGHT, 2002).

In this regard, software development methods have evolved over the time.
Continuous integration become one of the most important practice within soft-
ware processes and has gained considerable attention from both research and in-
dustry (MARTENSSON; STAHL; BOSCH, 2019; PINTO; REBOUGAS; CASTOR, 2017;
BELLER; GOUSIOS; ZAIDMAN, 2017b; VASILESCU et al., 2014; HILTON et al., 2016a;
VASILESCU et al., 2015a; aO et al., 2017; BELLER; GOUSIOS; ZAIDMAN, 2016; LUZ;
PINTO; BONIFACIO, 2018; ZHANG et al., 2018; WIDDER et al., 2019a).

The adoption of CI can help development teams to assess the quality of the
product by promoting the execution of automated tests (FOWLER; FOEMMEL,
2006). Such automated tests can help development teams to detect errors earlier in
the project life cycle (FOWLER; FOEMMEL, 2006). Continuous integration is often
considered one of the key elements involved to support agile software teams (STOL-
BERG, 2009). Cl is also considered to reduce the risks (DUVALL; MATYAS; GLOVER,
2007) in software development by automatically building and testing a project
codebase, which allows the team to fix broken builds immediately (FOWLER; FOEM-
MEL, 2006).

The potential benefits of adopting CI have brought the attention of researchers
to study its advantages empirically. Previous research has studied the impact of
adopting CI in diverse aspects of software development (BERNARDO; COSTA;
KULESZA, 2018a; VASILESCU et al., 2015a; ZHAO et al., 2017; HILTON et al., 2017a;
LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017). Vasilescu et al. (VASILESCU et
al., 2015a) studied the quality and productivity outcomes with respect to CI on
GitHub projects. The authors found that CI improves productivity without an
observable diminishment in code quality. However, Vassallo et al. (VASSALLO et al.,
2018) investigated a core principle behind CI, the Continuous Code Quality, and
revealed a strong dichotomy between theory and practice, i.e., developers do not
perform the continuous inspection. Instead, developers that use CI tend to control

for quality only at the end of a sprint and, most of the times, only on the release
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branch. Such research provides valuable insight into the impact of CI adoption in

software quality outcomes.

1.1 Problem Statement

Continuous integration becomes a consensus in software engineering. Adopting
CI is perceived by practitioners as something that reflects positive outcomes in
software quality aspects. However, the relationship between CI and build systems
might give the sensation that only automatizing builds might lead the projects
to improve the outcomes. Nevertheless, recent research work have proven that
this sensation represents something spurious (MARTENSSON; HAMMARSTROM;
BOSCH, 2017; FELIDRE et al., 2019) and might influence decision-makers to execute
wrong decisions, i.e., to neglect the efforts and practices necessary to experience
the benefits. Thus, better understanding the real scenarios where CI is associated

with quality improvement is something essential.

Despite the valuable advancements, there are still many assumptions in the
community that remains empirically unexplored. Most decisions are made in com-
mon sense that the results are positive, but there is still an unclear idea of the
trade-offs and the real impact on the quality outcomes. Additionally, most of the
studies in the area are designed to determine associations between the variables (YU
et al., 2016; VASILESCU et al., 2015b; WIDDER et al., 2019b; RAHMAN; ROY, 2017;
BERNARDO; COSTA; KULESZA, 2018b; GUPTA et al., 2017a; YU et al., 2015; ZAM-
PETTI et al., 2019; GREN, 2017), leaving open questions about the causal rela-
tionships implied by CI. Our work empirically investigates the software quality

outcomes and their relationship with the adoption of CI.
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1.2 Thesis Proposal

This thesis provides a systematic literature mapping that presents a broad
knowledge of how practitioners and researchers recognize the CI practice to affect
software product-related aspects. Additionally, we improve some assumptions by
performing two empirical studies that aim to answer the following open questions:
(1) Does the adoption of CI share a relationship with the evolution of test code? (ii)
The adherence to CI best practices is related to the degree of code quality? Finally,
we present a pioneering study that goes beyond the correlation tests to investigate
the estimated causal effect of CI adoption and its impact on automated tests.
Thereby, we apply a causal inference using directed acyclic graphs and probabilistic
methods to determine the causal effect of CI in automated tests. This investigation
is essential for decision-makers (e.g., team leaders) to better understand whether

CI can improve software quality in the long run.

1.3 Thesis Overview

In this section we provide an overview of the thesis scope. Below we show how
chapters are organized, which studies we performed, and what are the results of

the current studies.
Chapter 2: Background

In Chapter 2, we present the core concepts of our research to provide to the
reader the basis to understand our empirical studies. We first explain in more detail
the continuous integration practice and how it relates to the agile software pro-
cesses and teams. Additionally, we provide background about Software Testing &
Coverage, which is a core concept in CI that was investigated in one of our studies,
presented in Chapter 3. Finally, we provide a base knowledge about Continuous
Inspection € Continuous Code Quality, which is related to the quality outcomes

investigated in Chapter 4 and an overview about Causal Analysis with DAG's.
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Chapter 3: An Empirical Study of the Relationship between Contin-

uous Integration and Test Code FEvolution

Continuous Integration (CI) is the practice of automating and improving the
frequency of code integration. CI has been widely adopted by software development
teams and has brought the attention of researchers to study its benefits. Existing
research shows that CI can improve software quality by identifying the errors earlier
in the software development life-cycle. One question that remains open, however,
is whether CI increases the adoption of testing practices in software projects. In
Chapter 3 we investigate the evolution of software tests and its relationship with
the adoption of continuous integration. We set out to compare 82 projects that
adopted CI (CI projects) and 82 projects that have never adopted CI (NOCI
projects). In total, we studied 3,936 versions of our studied projects to investigate

trends on the test code ratio and coverage.

Chapter 4: On the Continuous Code Quality Outcomes of Continu-

ous Integration: An Empirical Study

Motivated by the research results that show that CI may not be related to
a improve on quality outcomes (FREITAS, 2019) and that projects that adopt CI
may not be using CCQ in practice (VASSALLO et al., 2018), in Chapter 4, we
investigate whether adherence to CI best practices is related to the degree of code
quality. Hence, we empirically study 184 open source projects that use TRAVISCI
and SONARCLOUD to evaluate the relationship between the CI best practices and

software quality outcomes.

Chapter 5: An Empirical Study of the Relationship between Contin-

uous Integration and Test Code Evolution

Our first results, among other valuable contributions in the community, show
that CI might share a relationship with an improvement in some quality aspects.
We also observed that the associations are not always only due to CI adoption. This

scenario shows that CI is somehow linked to a gain in software quality, even that is
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a weak association. This situation opens the discussion about the role of if CI in the
association, i.e., if it might be considered the cause of such gainings. To explore this
question, Chapter 5 presents a study that goes beyond the correlation tests and
investigates the estimated causal effect of CI adoption and its impact on automated
tests. Thereby, it shows a systematic literature mapping that draws the results
of researches about CI impact. We use these assumptions to perform a causal
inference using directed acyclic graphs and probabilistic methods to determine the

causal effect of CI in automated tests.
Chapter 6: Related Research

In this Chapter 6, we position our work with respect to the previous and related
research. We discuss the works about CI with regarding of Continuous Code In-
spection € Software Quality in CI ( (HILTON et al., 2016b; VASILESCU et al., 2015a;
VASSALLO et al., 2018; FELIDRE et al., 2019; MARCILIO et al., 2019)) and Software
Test Evolution & Coverage in CI ( (ELBAUM; GABLE; ROTHERMEL, 2001; HILTON;
BELL; MARINOV, 2018; ZAIDMAN et al., 2008, 2011; GRANO et al., 2019; BELLER;
GOUSIOS; ZAIDMAN, 2016; LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017; ZHAO
et al., 2017)).

1.4 Thesis Contributions

The studies developed for this thesis presents the following main results:

e CI projects have more projects with a rising test ratio trend. We found that
33 out of 82 (40.2%) CI projects have a rising test ratio trend, while only 14
out of 82 (17%) NOCI projects have a rising test ratio trend — (Chapter 3).

e We observe that the adoption of CI is associated with a consistent increase
of test ratio (MWW p — value = 2.908¢ — 10 and a small Cliff’s delta =
—0.1612838), while NOCI have a negligible change on the test ratio overtime
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(MWW p —wvalue = 0.0001842 and a negligible Clift’s delta = —0.09270482)
— (Chapter 3).

Our results reveal that CI projects likely obtain a higher test ratio growth
than NOCI projects. — (Chapter 3)

Our analysis shows statistical evidences that most of the analyzed CI projects
tend to increase or maintain the test coverage (9 out of 10 projects), while
NOCI projects have a different tendency (5 out of 10 projects increase or
maintain the test coverage). In fact, NOCI projects have more projects de-

creasing the coverage (5 projects) when compared to CI projects (1 project)

— (Chapter 3).

Our mixed-effect models reveal that test ratio is largely explained by the

project inherent context rather than by code or process factors — (Chapter 3).

Although the project size expresses the most powerful explanation power on
the technical debt, our study shows that maintaining a short build duration

and high code coverage is also important to reduce the technical debt. —
(Chapter 4).

Technical debt is largely explained by the project size, outpowering the pos-
itive effects of short build durations and high code coverage — (Chapter 4).

Our Systematic Mapping results shows that the relationship between CI and
software factors is not always straightforward, and there is a lack of empirical

researches to explain some aspects.

Despite the CI adoption trade-offs, ou causal modeling shows that it is likely
to be associated with improvements in software quality. Additionally, it em-
ploys a considerable positive causal effect on the volume of automated tests

(nearly 54% of probability).
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1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the
background material to the reader. Chapter 3 presents our empirical study to in-
vestigate the evolution of software tests and its relationship with the adoption
of continuous integration. Chapter 4 presents our empirical study to evaluate the
relationship between the CI best practices and software quality outcomes. Chap-
ter b presents our causal study to evaluate the if is possible to determine causality
effect between CI and the evolution of software tests. Chapter 6 situates this the-
sis with respect to related research. Finally, Chapter 7 draws the conclusions and

summarize the contributions of this thesis.
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2 Background

2.1 Continuous Integration

Continuous Integration (CI) is the practice of automating and improving the
frequency of code integration (e.g., daily builds) (FOWLER; FOEMMEL, 2006). The
adoption of CI can help development teams to assess the quality and to reduce the

risks (DUVALL; MATYAS; GLOVER, 2007) in software development.

The integration of software work is a problem that is directly proportional to
the complexity of the system and the size of the team (FOWLER; FOEMMEL, 2006).
As huger the team or more complex is the architecture (i.e., more external depen-
dencies of components) the higher to probability to have integration problems.
The integration problem becomes evident when multiple pieces of work performed
by different people must work together. Get these works to connect seamlessly is a
dream, problems often occur, and many adaptations are needed to get everything
working properly. Thus, integrating is a problem that the community assumes that
we cannot avoid. The philosophy of continuous integration claims to mitigate those
problems by increasing the regularity and systematically checking for integrations

problems and immediately fixing it.

The process of continuously integrate require habits that are not easy to adhere
to. Automated builds, a thorough test suite, and commit to the mainline branch
every day are essential practices that sounds simple at first, but they require a

responsible team to implement and constant care (MEYER, 2014). What starts



27

with improved tooling can be a catalyst for long-lasting change in your company’s

shipping culture (MEYER, 2014).

As ilustrated in Figure 1, the base of the continuous integration practice con-
sistins on, firstly, that developers work locally and commit frequently to a version
control system (e.g., Git or SVN). The CI server (e.g., TravisCI, Jenkings, Cir-
cleClI, etc.) monitors the repository and checks out changes when they occur. After
that, the CI server builds the system and runs the automated tests. If the tests
pass, the CI server releases the deployable artefacts, assign a label to the release
and inform the team about the new successful build. If the build or tests fail, the
CI server alerts the team to fix that issue at the earliest opportunity. Finally, this
process is repeatedly performed generating successful builds of broken builds that

should last quickly (FOWLER; FOEMMEL, 2006).

Repository

Build
+

Test
+

Checks...

Feedback

Figure 1: Continuous Integration process overview
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2.2 Software Testing & Coverage

Automated tests play an important role in CI (FOWLER; FOEMMEL, 2006) as
they represent a fundamental part of the build automation process to detect errors
as quickly as possible. Automated tests consists in scripts that are executed in an

automated test tool to verify test requirementes.

Although manual testing is also essential and can be used as an additional pro-
cess to cover missed aspects on the automated testing, it is the automated tests
that are responsible for catching integration errors that do not cause the build to
break. It means that a build can be successfully generated but can also include
errors if the automated tests are not appropriately implemented to capture these
issues. Controlling for a high degree of code coverage is a way to ensure that the
team is testing and that the process of continuous integration can accurately de-
tect integration problems. Testing represents a central role in CI, and the team
must employ the necessary effort to keep a good quality of the tests. In fact, Du-
vall (DUVALL; MATYAS; GLOVER, 2007) mentioned that without automated tests,
a project should not be considered to be adopting CI at all (DUVALL; MATYAS;
GLOVER, 2007).

Code coverage metrics are often used to identify whether an application is well-
tested. It represents the degree to which the source code of a program is executed
by automated tests. The larger the coverage the more of the source code is exercised
by the tests and the greater the possibility of finding a latent problem. There are
several metrics to represent code coverage (ELBAUM; GABLE; ROTHERMEL, 2001),
such as statement coverage and branch coverage. Statement coverage represents
the ratio of statements that are executed by automated tests over the total number
of statements in the program. Branch coverage measures which possible program
branches (e.g., if statements, loops) have been executed at least once during the
tests. Collecting coverage metrics requires running automated tests from a test

suite, instrumenting the code execution and observing the execution flow.
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2.3 Continuous Code Inspection & Continuous Code
Quality

As shown in the sections before, automated tests play an essential role in
software quality. However, quality assurance is a more complicated process and
must involve a systematic way to check for it (VASSALLO et al., 2018). Duvall et
al. (DUVALL; MATYAS; GLOVER, 2007) advocated about the needs to check for
software quality in every build. The author presents the Continuous Inspection,
also known as Continuous Code Quality (CCQ), which consists of an additional
step on the CI pipeline that specifically performs quality analyses and generates
reports. In a properly configured CQQ environment, every build on the CI service
triggers a quality inspect analysis that applies a specific level of criteria tho ensure
the quality outcomes. If the quality result does not fulfill the criteria, the build is

considered broken, and developers must fix it.

The continuous code inspection process performs automatic static analysis of
the code to detect bugs, code smells, and others code issues. Static code analyses
are the process to check the code without running it. Adversely to the automated
tests, the static analyses does not execute any code. It just read the source to
collect possible problems or defects. It is important to say that not all code issues
can break a build. It is a configurable step, and teams must ensure the thresholds
based on rules. The purpose of CQQ is to help developers to write code with

improved quality.

SonarQube, or its online version called SonarCloud, is one of the most used
tools to perform continuous code inspection. It scans the code and detects bugs,
vulnerability nad code smell. A bug is considered a coding error that will break
the code and needs to be fixed immediately. The vulnerability consists of a point
in your code that is open to attack. Finally, code smell is an issue that makes your
code confusing and difficult to maintain (SONARSOURCE, 2019). Those issues,

if not controlled, can adversely affect the software maintainability and affect its
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quality.

2.4 Modeling Causal assumptions

The Causal Modeling considers that any causal inferences from observational
studies must ultimately rely on some kind of causal assumptions and gives an
effective language for making those assumptions precise and explicit, so they can
be isolated for deliberation or experimentation and, once validated, integrated with

statistical data (PEARL, 2019).

The literature shows that Causal Modeling is a well-established approach and
widely used in other areas (WINSHIP, 2007; VANDERWEELE, 2015; MORTON;
FRITH, 1995; PEARL, 2019). For the best of our knowledge, all the current works
that statistically investigate the adoption of CI rely on association relationship.
None of them presented a more in-depth study to try to investigate causality. This
chapter presents a study uses the Causal Modeling approach to investigate the

causality between CI and software quality.

Structural-Equations Models (SCM) or simply Causal Systems Models consists
in a mathematical equation to describe assumptions of how variables in a system
interact with each other, describing the causal relationship between them. Accord-
ing to Pearl et al. (PEARL; GLYMOUR; JEWELL, 2016), an SCM consists of a set of
functions that defines the value for each variable in the system based on the val-
ues on the other variables. The causation inference uses the SCM model to define
causation. According to the authors, a variable X is a direct cause of a variable Y
if X appears in the function that assigns Y'’s value. In other words, X is a cause

of Y if it is a direct cause of Y, or of any cause of Y.

To illustrate the usage of SCM, consider the function f, : 7 = X + Y, where
Z represents the overall number of bugs fixed in a project during the year, X the
number of new features introduced during the period and Y represents the pressure

of the client to deliver new features. In this case, both X and Y are present in the
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function f,, consequently both define Z and both might cause Z.

SCM may be an excellent approach to represent causal relations, just as we did
in our example. However, we provide a simple example, and the causal relationships
might consider more complex scenarios, i.e., it might have many variables, and
the relation between them might not be so simple. In those cases, the SCM may
represent a very complex equation, hard to express and worse to understand. To
provide a more human-readable expression of the causal functions, the SCM is
likely to be associated with graphical models. For this purpose, we express our

SCM using directed acyclic graphs (DAGs).

A DAG is a graphical representation of the causal assumptions. Likewise, we
can assume that a DAG expresses all the observed variables of the domain and
how these variables correlate with each other, just like the SCM but in a visual
approach. Fig.2 express our issue resolution SCM in the analogue DAG. The arrow

indicate a direct causal effect, i.e., Z are directed influenced by X and Y.

X Y

Z

Figure 2: Sample causal dag of issue resolution

Analog to our previous example, consider the scenario where the number of
new features introduced during the period (X) and the pressure of the client to
deliver new features (Y) impact on textitthe overall number of bugs fixed (Z)
but, additionally, the pressure of the client to deliver new features (Y') also shows
a direct impact on the the number of new features introduced during the period
(X). As shown in Fig.3, X might cause Z directly but this cause might be biased
by the impact that Y also cause on Z. In that case, we say that X and Z share
a common cause, and it represents a confounding bias. In cases where the causal

effect between variables marked with some bias, we need to intervene on the model



32

and use data to test the causal implication.

X Y

Z

Figure 3: Sample causal dag of issue resolution with cofouding variables

2.4.1 Causal Discovery & Estimation

Computing causal effect requires an analysis of the underlying data behind the
model. Consequently, our model must fit appropriately to the data. For example,
if we have a model where an observed variable X causes a direct impact on Z,
then X and Z must be correlated. Otherwise, our model does not correspond to
reality, and we must enhance for a better model. Identifying causal effect with a

model that fits the reality of the data is one condition to the analysis.

The term dependence in a graph, usually represented by connectivity, may refer
to mathematical, causal, or statistical dependencies (GREENLAND; PEARL, 2011).
All descendent node in the graph are dependent of its parent. In consequence,
all node must be independent from its nondescendents. These constraints in the
model must be held from the data. Dependence and independence are also present
bwtween nodes that is not in direct association. It means that we also need to
comprehend the dependency in the context of chains, forks and coliders. Pearl et
al. (PEARL; GLYMOUR; JEWELL, 2016) defines chains as a sequence of three nodes
and two edges, with one edge directed into and one edge directed ou of the middle
variable (A — B — C); forks as three nodes with two arrows emanating from the
mediator variable (A <— B — C); and colliders as one node that receives edges

from two other nodes (A — B <« C).

In a chain A — B — (', the factors A and C are dependent but become
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independent if we condition on B, i.e., A and C' are conditional independent. Con-
ditioning a variable is analog to filtering the data. A and C' are conditional inde-
pendent, in this case, because we can condition on B to consider only the values
where A and C' are independent. According to Greenland et al. (GREENLAND;
PEARL, 2011), two variables, A and C', are conditionally independent given
B, if there is only one unidirectional path between A and C' and B is any set of
variables that intercepts that path. Regarding the forks A < B — C, the authors
state that if a variable B is a common cause of variables A and C, and there is
only one path between A and C', then A and C' are independent conditional on
B. Finally, for colliders, If a variable B is the collision node between two variables
A and C, and there is only one path between A and C, then A and C are un-
conditionally independent but are dependent conditional on B and any

descendants of B.

In a DAG, the sequence of nodes connecting two variables, disregarding the
direction of the arrows, represents a path. For example, in Fig.2, there is a path
from X to Y represented by the nodes X — Z — Y. A directed path, however,
considers the paths that can be traced along with the arrows, i.e., there is no
directed path between X and Y in Fig.2. According to Textor (TEXTOR, 2015),
causal paths represents the directed paths from the exposure to the outcome and

biasing paths contains all the other paths.

Conditioning on variables is an essential technique to control the bias. Since
we cannot manipulate variables, i.e., we rely only on observational data, condi-
tioning is used as a substitute for experimental control, in the hopes that with
sufficient conditioning, X will be independent of uncontrolled influences. In other
hand, is important to notice that conditioning variables might change the behav-
ior of directed paths just like it changes the dependency of variables. For example,
conditioning B a chain A — B — C, blocks that path from A to C'. Generally, a
path is blocked if conditioning Z when: (i) Z is in a chain X — P, — Y or a fork

X <~ P, — Y where Z is in P, or (ii) a collider X — P, < Y where P, does not
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contain Z or any successor of Z. In summary, conditioning a mediator in chains
or forks blocks the open path, while conditioning a mediator (or any successor of
a mediator) in a collider opens the blocked path. Pearl et al. (PEARL; GLYMOUR;
JEWELL, 2016) says that two variables are d-separated if there is no open path
connecting them, otherwise they are d-connected. Two d-separated variables are

definitely independent while d-connected variables are likely dependent.

Causal inferences on model seek for model adjustment to provide a valid repre-
sentation that minimizes the bias when estimating the causal effect of the exposure
to the outcome. The adjustment sets can determine a model to total effect when
all biasing paths are closed, leaving all causal paths opened. Additionally, the ad-
justment setting can also acquire a model to direct effect when all biasing and
causal paths are closed, remaining only the direct and immediate arrow from the
exposure to the outcome. The purpose of the analysis is to estimate the effect

considering the minimal adjustment set possible to total effect or direct effect.

The estimation of causal effects consists in the execution of an effect measure
on the underlying model, considering the minimal adjustment set utilized, which
allows the reasoning of independence conditions implied by the assumptions. Prob-
abilistic inference, used to obtain a probability distribution of variables of interest
given the data from previous observations (SHACHTER, 1988), is one of the most

used in the literature.

An quick example, considering an possible analysis performed on the bug fixing
problem, presented on the previous section and illustrated int the Fig. 3, shows
that to estimate the causal effect of X on Z we need to adjust for controlling Y (i.e.,
the minimal adjustment set), this is explained by Fig. 4. The figure shows that the
problem have two open paths, one causal path (X — Z) and one biasing path (X «+
Y — Z). Consequently, controlling Y blocks the path X <Y — Z and eliminate
the bias. Finally, the graphical representation allow the capture of the probabilistic
information and can be expressd by the equation: ), P(Z]Y, X)P(Y), i.e., the

causal effect of X on Z is equal to the sum, for every value Y = y of the probability
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that Z occurs, given that Y and Z also occurs, plus the probability that Y occurs.

path

open path

0.9- ' ' ' ' ' e ' ' ' ' ' '
-0.5 0.0 0.5 1.0 1.5 2.0 285 0.0 0.5 1.0 1.5 2.0 25

X

Figure 4: Open paths on the issue resolution problem from X to Z

2.4.2 The Backdor Criterion

As shown in the fundamentals explained in the previous sections, a DAG ex-
presses pathways between variables. According to Textor (TEXTOR, 2015), causal
paths represents the directed paths from the exposure to the outcome and biasing
paths contains all the other paths. This subsection explores one specific case of
biasing paths, the backdoor paths. A backdoor path is a biasing path that starts
with an arrow pointing to the exposure. For example, if it is intended to estimate
the causal effect of X in Y on the DAG presented by the Figure 3, it will be
necessary to control the spurious association between X and Y that is expressed
by the backdoor path X < Z — Y. Notice that the backdoor path might be an

open, and spurious, path. In such cases, it is necessary to close the backdoor.

The adjustment set that closes all the backdoor paths is known as backdoor
criteria. Peal et atl. (PEARL; GLYMOUR; JEWELL, 2016) presented the following
definition: given an ordered pair of variables (X, Y ) in a directed acyclic graph G