
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra

Departamento de Informática e Matemática
Aplicada

Programa de Pós-Graduação em Sistemas e
Computação

Understanding the Relationship

between Continuous Integration and its

Effects on Software Quality Outcomes

Gustavo Sizílio Nery

Natal-RN
February, 2020

Gustavo Sizílio Nery

Understanding the relationship

between Continuous Integration and its effects on

software quality outcomes

A thesis submitted to the Graduate
Program in Systems and Computing
(PPGSC) in conformity with the require-
ments for the Degree of Doctor of Philos-
ophy

Supervisor

Prof. PhD. Uirá Kulesza

Co-supervisor

Prof. PhD. Daniel Alencar da Costa

PPgSC – Programa de Pós-Graduação em Sistemas e Computação

DIMAp – Departamento de Informática e Matemática Aplicada

CCET – Centro de Ciências Exatas e da Terra

UFRN – Universidade Federal do Rio Grande do Norte

Natal-RN

February, 2020

Nery, Gustavo Sizílio.
 Understanding the relationship between continuous integration
and its effects on software quality outcomes / Gustavo Sizílio
Nery. - 2020.
 147f.: il.

 Tese (Doutorado) - Universidade Federal do Rio Grande do
Norte, Centro de Ciências Exatas e da Terra, Programa de Pós-
Graduação em Sistemas e Computação. Natal, 2020.
 Orientador: Uirá Kulesza.
 Coorientador: Daniel Alencar da Costa.

 1. Computação - Tese. 2. Integração contínua - Tese. 3.
Qualidade de software - Tese. 4. Estudo empírico - Tese. 5.
Inferência causal - Tese. I. Kulesza, Uirá. II. Costa, Daniel
Alencar da. III. Título.

RN/UF/CCET CDU 004

Universidade Federal do Rio Grande do Norte - UFRN
Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Ronaldo Xavier de Arruda - CCET

Elaborado por Joseneide Ferreira Dantas - CRB-15/324

GUSTAVO SIZÍLIO NERY

“Understanding the Relationship between Continuous Integration and its
Effects on Software Quality Outcomes”

Esta Tese foi julgada adequada para a obtenção do título de doutor em Ciência

da Computação e aprovada em sua forma final pelo Programa de Pós-Graduação em
Sistemas e Computação do Departamento de Informática e Matemática Aplicada da
Universidade Federal do Rio Grande do Norte.

__
Prof. Dr. UIRÁ KULESZA (UFRN)

Presidente – Orientador

__
Profa. Dra. ANNE MAGALY DE PAULA CANUTO

Coordenadora do PPgSC

Banca Examinadora

__
Prof. Dr. DANIEL ALENCAR DA COSTA (University of Otago – NZ)

Examinador Externo

Prof. Dr. EDUARDO HENRIQUE DA SILVA ARANHA (UFRN)

Examinador Interno

Prof. Dr. GUSTAVO HENRIQUE LIMA PINTO (UFPA)

Examinador Externo

Prof. Dr. RODRIGO BONIFÁCIO DE ALMEIDA (UnB)

Examinador Externo

__
Discente: GUSTAVO SIZÍLIO NERY

Fevereiro, 2020

Dedico este trabalho à minha amada família, especialmente minha mãe, esposa e
filhos, por permanecerem ao meu lado nos momentos mais difíceis e

desanimadores. Nada faria sentido sem eles ao meu lado.

Agradecimentos

Durante uma jornada de aproximadamente 54 meses, pouco mais de quatro
anos de muitos desafios e sacríficios, nada teria evoluído sozinho. Não foram poucos
os momentos de desânimo e nem poucas as atribulações que me fizeram pensar em
desistir. Entretanto, Deus provê os mecanismos necessários para te fazer lembrar
que tudo está sob controle e que, com Ele, nada é em vão. Somente a Ele agradeço
de joelhos e me coloco sob comando.

Ainda em reconhecimento à Deus, é preciso estender minha gratidão àqueles
colocados de forma estratégica para me manter de pé. Pois Ele saberia onde eu
cairía, mas também saberia o necessário para me fazer levantar. É dessa maneira,
repleto de reconhecimento do papel gracioso dessas pessoas em minha vida, que
preciso registrar minha eterna gratidão.

Agradeço, portanto, ao meu mestre, Prof. Uirá Kulesza, por depositar em mim
confiança na capacidade de realizar um bom trabalho. Foi nesta confiança que
me firmava para acreditar que tudo teria, em seu desfecho, êxito e alegria. Todo
ensinamento e cada conselho, durante toda esta jornada, fazem parte de mim, do
ser humano e pesquisador que sou. Traços de uma pessoa melhor e mais capacitada
que vai tentar levar o seu nome por toda minha jornada.

É preciso, ainda, agradecimentos especiais ao Prof. Daniel Alencar da Costa.
Aqui confesso que não sei como apresentá-lo, se como mestre coorientador, amigo
ou família. É notório em minha confusão que o seu convívio foi mais do que impor-
tante para mim. É preciso reconhecer o esforço incondicional empenhado em não
me deixar desviar do meu caminho, sempre com conselhos e suporte que nunca
terei como retribuir. Ao amigo, deixo os meus mais profundos agradecimentos,

certo de que não pouparei esforços para honrar tamanha competência que fora
imprimida na sua tarefa de coorientador.

Manifesto também os meus respeitosos agradecimentos aos demais membros
examinadores do meu trabalho. Meu muito obrigado, pelas orientações e pelo
tempo dedicado na banca examinadora da qualificação e da defesa. Em especial,
ao Prof. Eduardo Aranha, que, além de membro da banca, participou deste pro-
cesso desde o início. Por me receber no programa de doutorado e me acompanhar
até o desfecho, sempre manifestando interesse e palavras animadoras, o meu muito
obrigado.

É preciso lembrar, ainda, das pessoas que não fizeram diretamente parte do
processo acadêmico, mas que foram, cada um de uma maneira diferente, funda-
mentais para que todo o restante de mim entrasse em harmonia. Agradeço à minha
amada família, especialmente minha mãe, esposa e filhos, por se mostrarem sem-
pre dispostos a me apoiar em todas minhas decisões. Sei que não foi fácil também
para vocês, mas agradeço pela paciência e pelo carinho. Por fim, agradeço aos
meus amigos, por não se deixarem distanciar mesmo tendo sido eu uma pessoa tão
ausente. Vocês fizeram parte de tudo isto, muito obrigado!

Don’t accept that what’s happening is just a case of others’ suffering or you’ll
find that you’re joining in “The turning away”

Gilmour & Moore, 1987

Compreendendo o relacionamento entre a

Integração Contínua e seus efeitos nos resultados

da qualidade do software

Autor: Gustavo Sizílio Nery
Orientador: Prof. PhD. Uirá Kulesza

Coorientador: Prof. PhD. Daniel Alencar da Costa

Resumo

Integração Contínua, em inglês Continuous Integration (CI), consiste na prática
de automatizar e melhorar a frequência das integrações de código (por exemplo,
através de builds diários). CI é frequentemente considerado um dos principais el-
ementos que dão suporte às metodologias ágeis. CI ajuda a reduzir os riscos de
integração no desenvolvimento de software, através de builds e testes automatiza-
dos, permitindo que equipes corrijam problemas de integração imediatamente. A
adoção de CI pode ajudar as equipes a avaliar e melhorar a qualidade dos sistemas
de software. Os potenciais benefícios de CI chamaram a atenção de pesquisadores
da engenharia de software que buscam entender, de forma empírica, as possíveis
vantagens de adoção da prática. Estudos anteriores evidenciam o impacto da
adoção de CI em diversos aspectos do desenvolvimento de software. Apesar dos
valiosos avanços, muitas suposições permanecem empiricamente inexploradas na
comunidade.

Nosso trabalho investiga, de forma empírica, os fatores da qualidade do soft-
ware e suas relações com a adoção de CI. Como contribuição, esta tese fornece um
mapeamento sistemático da literatura, que apresenta um amplo cenário de como

profissionais e pesquisadores observam o efeito de CI nos aspectos relacionados
ao produto de software. Além disso, melhoramos algumas premissas, realizando
dois estudos empíricos, visando responder às seguintes questões ainda em aberto:
(i) A adoção de CI está associada à evolução do código de teste dos projetos?
(ii) O nível de aderência às práticas de CI está relacionada a uma melhoria da
qualidade do código fonte dos projetos? Por fim, nós apresentamos um estudo
pioneiro, considerando o nosso contexto de pesquisa, que vai além dos testes de
correlação e investiga o efeito causal entre a adoção de CI e testes automatizados.
Para isto, aplicamos uma inferência causal, através da utilização de diagramas
causais e métodos probabilísticos, para determinar a efeito de CI nos testes au-
tomatizados. Nossos resultados sugerem que, apesar dos trade-offs relacionados à
adoção de CI, é provável que a prática esteja associada à melhorias na qualidade
do software. Além disso, CI emprega um efeito causal positivo e considerável no
volume de testes dos projetos.

Palavras-chave: integração contínua, qualidade de software, estudo empírico, in-
ferência causal.

Understanding the relationship between

Continuous Integration and its effects on software

quality outcomes

Author: Gustavo Sizílio Nery
Supervisor: Prof. PhD. Uirá Kulesza

Co-supervisor: Prof. PhD. Daniel Alencar da Costa

Abstract

Continuous Integration (CI) is the practice of automating and improving the fre-
quency of code integration (e.g., daily builds). CI is often considered one of the
key elements involved to support agile software teams. It helps to reduce the risks
in software development by automatically building and testing a project codebase,
which allows the team to fix broken builds immediately. The adoption of CI can
help development teams to assess the quality of software systems. The potential
benefits of adopting CI have brought the attention of researchers to study its ad-
vantages empirically. Previous research has studied the impact of adopting CI on
diverse aspects of software development. Despite the valuable advancements, there
are still many assumptions in the community that remains empirically unexplored.

Our work empirically investigates the software quality outcomes and their re-
lationship with the adoption of CI. This thesis provides a systematic literature
mapping that presents a broad knowledge of how practitioners and researchers
recognize the CI practice to affect software product-related aspects. Additionally,
we improve some assumptions by performing two empirical studies that aim to an-
swer the following open questions: (i) Does the adoption of CI share a relationship

with the evolution of test code? (ii) The adherence to CI best practices is related to
the degree of code quality? Finally, we present a pioneering study that goes beyond
the correlation tests to investigate the estimated causal effect of CI adoption and
its impact on automated tests. Thereby, we apply a causal inference using directed
acyclic graphs and probabilistic methods to determine the causal effect of CI in
automated tests. Our results suggest that, despite the CI adoption trade-offs, it
is likely to be associated with improvements in software quality. Additionally, it
employs a considerable positive causal effect on the volume of automated tests.

Keywords : Continuous integration, software quality, empirical study, causal infer-
ence.

List of Figures

1 Continuous Integration process overview p. 27

2 Sample causal dag of issue resolution p. 31

3 Sample causal dag of issue resolution with cofouding variables . p. 32

4 Open paths on the issue resolution problem from X to Z p. 35

5 Sample causal dag with backdoor path p. 36

6 Sample causal dag with front-door path p. 37

7 Overview of CI and NOCI projects selection process. p. 42

8 Overview of versions selection process. p. 45

9 Overview of code lines counting. p. 46

10 NOCI projects - clusters of test ratio. p. 52

11 CI projects - clusters of test ratio. p. 53

12 Beanplot comparisons of test ratio within CI and NOCI datasets p. 56

13 Beanplot comparisons of test ratio growth of CI and NOCI datasets p. 57

14 Percent coverage evolution of NOCI projects p. 60

15 Percent coverage evolution of CI projects p. 61

16 Comparison of growth of percent coverage of CI and NOCI datasets p. 63

17 Overview of RQ3 and RQ4 projects selection. p. 78

18 Comparison of CI projects build duration and independent variables p. 82

19 Comparison of CI projects time to fix and independent variables p. 83

20 Comparison of CI projects coverage and independent variables . p. 84

21 Comparison of CI Build Activity and independent variables . . . p. 85

22 Independent variables explanatory power p. 87

23 Causal Study Overview . p. 95

24 Systematic Mapping process overview p. 96

25 Systematic Mapping assumptions overview p. 102

26 Causal theory of CI effect on the Automated Tests p. 114

27 Correlation tests between theory factors p. 116

28 Final theory DAG after the correltion data rejection p. 117

29 Final theory DAG after the correltion data rejection p. 118

List of Tables

1 Commit Factors . p. 48

2 Sum of projects in clusters . p. 53

3 % Test Coverage statistical tests p. 62

4 Model I - Results of the LMM p. 65

5 Model II - Results of the LMM p. 65

6 Explanatory variables expressed in quantiles p. 79

7 Build Duration vs. Quality Outcomes p. 82

8 CI Time to Fix vs. Quality Outcomes p. 83

9 Coverate Effect . p. 84

10 CI Build Activity Effect . p. 85

11 Regression Results . p. 87

12 Example of Sympson’s Paradox p. 92

13 Questionaire of data collection in the Systematic Mapping . . . p. 97

14 Theory Assumptions . p. 112

15 SLR Assumptions . p. 113

16 Theory Factors Variables . p. 115

17 Assumptions . p. 142

Contents

1 Introduction p. 18

1.1 Problem Statement . p. 20

1.2 Thesis Proposal . p. 21

1.3 Thesis Overview . p. 21

1.4 Thesis Contributions . p. 23

1.5 Thesis Organization . p. 25

2 Background p. 26

2.1 Continuous Integration . p. 26

2.2 Software Testing & Coverage . p. 28

2.3 Continuous Code Inspection & Continuous Code Quality p. 29

2.4 Modeling Causal assumptions p. 30

2.4.1 Causal Discovery & Estimation p. 32

2.4.2 The Backdor Criterion p. 35

2.4.3 The Front-door Criterion p. 37

3 An Empirical Study of the Relationship between Continuous

Integration and Test Code Evolution p. 39

3.1 Introduction . p. 39

3.2 Study Setup . p. 41

3.2.1 Studied Projects . p. 41

3.2.2 Data Collection . p. 44

3.3 Results . p. 50

3.3.1 RQ1 - What are the evolution trends of test ratio

within CI and NOCI projects? p. 50

3.3.1.1 Motivation . p. 50

3.3.1.2 Approach . p. 51

3.3.1.3 Results . p. 51

3.3.2 RQ2 - Is there an association between the adoption

of CI and the evolution of code test ratio? p. 54

3.3.2.1 Motivation . p. 54

3.3.2.2 Approach . p. 54

3.3.2.3 Results . p. 55

3.3.3 RQ3 - Is there an association between the adoption

of CI and the evolution of test coverage? p. 58

3.3.3.1 Motivation . p. 58

3.3.3.2 Approach . p. 58

3.3.3.3 Results . p. 59

3.3.4 RQ4 - What are the most important factors to

model test ratio? . p. 61

3.3.4.1 Motivation . p. 61

3.3.4.2 Approach . p. 62

3.3.4.3 Results . p. 65

3.4 Threats to the Validity . p. 66

3.5 Conclusion . p. 67

4 On the Continuous Code Quality Outcomes of Continuous

Integration: An Empirical Study p. 69

4.1 Introduction . p. 69

4.2 Empirical Study . p. 71

4.2.1 Studied Quality Outcomes (Metrics) p. 71

4.2.2 Research Questions . p. 76

4.3 Results . p. 81

RQ1: Does the degree of CI adoption share a relationship with
improved quality outcomes? p. 81

RQ2: Which practices of CI share a relationship with technical
debt? . p. 86

4.4 Threats to the Validity . p. 88

4.5 Conclusion . p. 89

5 Estimating causal effects of Continuous Integration in soft-

ware quality outcomes p. 91

5.1 Introduction . p. 91

5.2 Study Design . p. 94

5.3 Results . p. 101

5.3.1 Mapping Causal Assumptions p. 101

5.3.2 On the continuous integration effect in Automated Tests,
an causal theory . p. 110

5.3.3 Causal Inference . p. 118

5.4 Threats to the Validity . p. 120

5.5 Conclusion . p. 121

6 Related Research p. 123

6.1 Continuous Code Inspection & Software Quality in CI p. 123

6.2 Software Test Evolution & Coverage in CI p. 124

7 Conclusions p. 128

7.1 Contributions and Findings . p. 129

Bibliography p. 131

8 Appendix A p. 142

18

1 Introduction

Continuous Integration (CI) is the practice of automating and improving the
frequency of code integration (e.g., daily builds) (FOWLER; FOEMMEL, 2006). The
adoption of CI can help development teams to assess the quality and to reduce the
risks (DUVALL; MATYAS; GLOVER, 2007) in software development.

Over history, software quality has been one of the main concerns of engineers as
it represents an essential attribute for the success of every software project (CROW-

STON; ANNABI; HOWISON, 2003; REEL, 1999; CHOW; CAO, 2008). In this matter,
software engineers are constantly developing enhancements on development meth-
ods to produce better results. They assume that a high quality software process will
likely produce a high quality software product (HUMPHREY, 1988; SOMMERVILLE,
2011). As software quality represents a broad area of study, and as it might be
affected by multiple aspects in software development, this thesis focuses on the
quality to witch regards the quality of the code and the tests. We acknowledge
that software quality is more than that. However, we believe that it is a base for
reliable and consistent CI usage.

Similarly to any business, quality becomes a big concern also in the software
community. High-quality software provides a better overall experience to end-users
in both open source and corporate solutions. The competition for better software
enhance the market and become a mandatory concern in successful companies. A
software that is built in an environment that neglect quality can cause extreme
side effects on the business and can affect people’s life. Critical software can also

19

put human life in risk (KNIGHT, 2002).

In this regard, software development methods have evolved over the time.
Continuous integration become one of the most important practice within soft-
ware processes and has gained considerable attention from both research and in-
dustry (MÅRTENSSON; STÅHL; BOSCH, 2019; PINTO; REBOUÇAS; CASTOR, 2017;
BELLER; GOUSIOS; ZAIDMAN, 2017b; VASILESCU et al., 2014; HILTON et al., 2016a;
VASILESCU et al., 2015a; aO et al., 2017; BELLER; GOUSIOS; ZAIDMAN, 2016; LUZ;

PINTO; BONIFÁCIO, 2018; ZHANG et al., 2018; WIDDER et al., 2019a).

The adoption of CI can help development teams to assess the quality of the
product by promoting the execution of automated tests (FOWLER; FOEMMEL,
2006). Such automated tests can help development teams to detect errors earlier in
the project life cycle (FOWLER; FOEMMEL, 2006). Continuous integration is often
considered one of the key elements involved to support agile software teams (STOL-

BERG, 2009). CI is also considered to reduce the risks (DUVALL; MATYAS; GLOVER,
2007) in software development by automatically building and testing a project
codebase, which allows the team to fix broken builds immediately (FOWLER; FOEM-

MEL, 2006).

The potential benefits of adopting CI have brought the attention of researchers
to study its advantages empirically. Previous research has studied the impact of
adopting CI in diverse aspects of software development (BERNARDO; COSTA;

KULESZA, 2018a; VASILESCU et al., 2015a; ZHAO et al., 2017; HILTON et al., 2017a;
LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017). Vasilescu et al. (VASILESCU et

al., 2015a) studied the quality and productivity outcomes with respect to CI on
GitHub projects. The authors found that CI improves productivity without an
observable diminishment in code quality. However, Vassallo et al. (VASSALLO et al.,
2018) investigated a core principle behind CI, the Continuous Code Quality, and
revealed a strong dichotomy between theory and practice, i.e., developers do not
perform the continuous inspection. Instead, developers that use CI tend to control
for quality only at the end of a sprint and, most of the times, only on the release

20

branch. Such research provides valuable insight into the impact of CI adoption in
software quality outcomes.

1.1 Problem Statement

Continuous integration becomes a consensus in software engineering. Adopting
CI is perceived by practitioners as something that reflects positive outcomes in
software quality aspects. However, the relationship between CI and build systems
might give the sensation that only automatizing builds might lead the projects
to improve the outcomes. Nevertheless, recent research work have proven that
this sensation represents something spurious (MÅRTENSSON; HAMMARSTRÖM;

BOSCH, 2017; FELIDRÉ et al., 2019) and might influence decision-makers to execute
wrong decisions, i.e., to neglect the efforts and practices necessary to experience
the benefits. Thus, better understanding the real scenarios where CI is associated
with quality improvement is something essential.

Despite the valuable advancements, there are still many assumptions in the
community that remains empirically unexplored. Most decisions are made in com-
mon sense that the results are positive, but there is still an unclear idea of the
trade-offs and the real impact on the quality outcomes. Additionally, most of the
studies in the area are designed to determine associations between the variables (YU

et al., 2016; VASILESCU et al., 2015b; WIDDER et al., 2019b; RAHMAN; ROY, 2017;
BERNARDO; COSTA; KULESZA, 2018b; GUPTA et al., 2017a; YU et al., 2015; ZAM-

PETTI et al., 2019; GREN, 2017), leaving open questions about the causal rela-
tionships implied by CI. Our work empirically investigates the software quality
outcomes and their relationship with the adoption of CI.

21

1.2 Thesis Proposal

This thesis provides a systematic literature mapping that presents a broad
knowledge of how practitioners and researchers recognize the CI practice to affect
software product-related aspects. Additionally, we improve some assumptions by
performing two empirical studies that aim to answer the following open questions:
(i) Does the adoption of CI share a relationship with the evolution of test code? (ii)
The adherence to CI best practices is related to the degree of code quality? Finally,
we present a pioneering study that goes beyond the correlation tests to investigate
the estimated causal effect of CI adoption and its impact on automated tests.
Thereby, we apply a causal inference using directed acyclic graphs and probabilistic
methods to determine the causal effect of CI in automated tests. This investigation
is essential for decision-makers (e.g., team leaders) to better understand whether
CI can improve software quality in the long run.

1.3 Thesis Overview

In this section we provide an overview of the thesis scope. Below we show how
chapters are organized, which studies we performed, and what are the results of
the current studies.

Chapter 2: Background

In Chapter 2, we present the core concepts of our research to provide to the
reader the basis to understand our empirical studies. We first explain in more detail
the continuous integration practice and how it relates to the agile software pro-
cesses and teams. Additionally, we provide background about Software Testing &
Coverage, which is a core concept in CI that was investigated in one of our studies,
presented in Chapter 3. Finally, we provide a base knowledge about Continuous
Inspection & Continuous Code Quality, which is related to the quality outcomes
investigated in Chapter 4 and an overview about Causal Analysis with DAG’s.

22

Chapter 3: An Empirical Study of the Relationship between Contin-

uous Integration and Test Code Evolution

Continuous Integration (CI) is the practice of automating and improving the
frequency of code integration. CI has been widely adopted by software development
teams and has brought the attention of researchers to study its benefits. Existing
research shows that CI can improve software quality by identifying the errors earlier
in the software development life-cycle. One question that remains open, however,
is whether CI increases the adoption of testing practices in software projects. In
Chapter 3 we investigate the evolution of software tests and its relationship with
the adoption of continuous integration. We set out to compare 82 projects that
adopted CI (CI projects) and 82 projects that have never adopted CI (NOCI
projects). In total, we studied 3,936 versions of our studied projects to investigate
trends on the test code ratio and coverage.

Chapter 4: On the Continuous Code Quality Outcomes of Continu-

ous Integration: An Empirical Study

Motivated by the research results that show that CI may not be related to
a improve on quality outcomes (FREITAS, 2019) and that projects that adopt CI
may not be using CCQ in practice (VASSALLO et al., 2018), in Chapter 4, we
investigate whether adherence to CI best practices is related to the degree of code
quality. Hence, we empirically study 184 open source projects that use TravisCI

and SonarCloud to evaluate the relationship between the CI best practices and
software quality outcomes.

Chapter 5: An Empirical Study of the Relationship between Contin-

uous Integration and Test Code Evolution

Our first results, among other valuable contributions in the community, show
that CI might share a relationship with an improvement in some quality aspects.
We also observed that the associations are not always only due to CI adoption. This
scenario shows that CI is somehow linked to a gain in software quality, even that is

23

a weak association. This situation opens the discussion about the role of if CI in the
association, i.e., if it might be considered the cause of such gainings. To explore this
question, Chapter 5 presents a study that goes beyond the correlation tests and
investigates the estimated causal effect of CI adoption and its impact on automated
tests. Thereby, it shows a systematic literature mapping that draws the results
of researches about CI impact. We use these assumptions to perform a causal
inference using directed acyclic graphs and probabilistic methods to determine the
causal effect of CI in automated tests.

Chapter 6: Related Research

In this Chapter 6, we position our work with respect to the previous and related
research. We discuss the works about CI with regarding of Continuous Code In-
spection & Software Quality in CI ((HILTON et al., 2016b; VASILESCU et al., 2015a;
VASSALLO et al., 2018; FELIDRÉ et al., 2019; MARCILIO et al., 2019)) and Software
Test Evolution & Coverage in CI ((ELBAUM; GABLE; ROTHERMEL, 2001; HILTON;

BELL; MARINOV, 2018; ZAIDMAN et al., 2008, 2011; GRANO et al., 2019; BELLER;

GOUSIOS; ZAIDMAN, 2016; LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017; ZHAO

et al., 2017)).

1.4 Thesis Contributions

The studies developed for this thesis presents the following main results:

• CI projects have more projects with a rising test ratio trend. We found that
33 out of 82 (40.2%) CI projects have a rising test ratio trend, while only 14
out of 82 (17%) NOCI projects have a rising test ratio trend – (Chapter 3).

• We observe that the adoption of CI is associated with a consistent increase
of test ratio (MWW p � value = 2.908e � 10 and a small Cliff’s delta =

�0.1612838), while NOCI have a negligible change on the test ratio overtime

24

(MWW p� value = 0.0001842 and a negligible Cliff’s delta = �0.09270482)
– (Chapter 3).

• Our results reveal that CI projects likely obtain a higher test ratio growth
than NOCI projects. – (Chapter 3)

• Our analysis shows statistical evidences that most of the analyzed CI projects
tend to increase or maintain the test coverage (9 out of 10 projects), while
NOCI projects have a different tendency (5 out of 10 projects increase or
maintain the test coverage). In fact, NOCI projects have more projects de-
creasing the coverage (5 projects) when compared to CI projects (1 project)
– (Chapter 3).

• Our mixed-effect models reveal that test ratio is largely explained by the
project inherent context rather than by code or process factors – (Chapter 3).

• Although the project size expresses the most powerful explanation power on
the technical debt, our study shows that maintaining a short build duration
and high code coverage is also important to reduce the technical debt. –
(Chapter 4).

• Technical debt is largely explained by the project size, outpowering the pos-
itive effects of short build durations and high code coverage – (Chapter 4).

• Our Systematic Mapping results shows that the relationship between CI and
software factors is not always straightforward, and there is a lack of empirical
researches to explain some aspects.

• Despite the CI adoption trade-offs, ou causal modeling shows that it is likely
to be associated with improvements in software quality. Additionally, it em-
ploys a considerable positive causal effect on the volume of automated tests
(nearly 54% of probability).

25

1.5 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes the
background material to the reader. Chapter 3 presents our empirical study to in-
vestigate the evolution of software tests and its relationship with the adoption
of continuous integration. Chapter 4 presents our empirical study to evaluate the
relationship between the CI best practices and software quality outcomes. Chap-
ter 5 presents our causal study to evaluate the if is possible to determine causality
effect between CI and the evolution of software tests. Chapter 6 situates this the-
sis with respect to related research. Finally, Chapter 7 draws the conclusions and
summarize the contributions of this thesis.

26

2 Background

2.1 Continuous Integration

Continuous Integration (CI) is the practice of automating and improving the
frequency of code integration (e.g., daily builds) (FOWLER; FOEMMEL, 2006). The
adoption of CI can help development teams to assess the quality and to reduce the
risks (DUVALL; MATYAS; GLOVER, 2007) in software development.

The integration of software work is a problem that is directly proportional to
the complexity of the system and the size of the team (FOWLER; FOEMMEL, 2006).
As huger the team or more complex is the architecture (i.e., more external depen-
dencies of components) the higher to probability to have integration problems.
The integration problem becomes evident when multiple pieces of work performed
by different people must work together. Get these works to connect seamlessly is a
dream, problems often occur, and many adaptations are needed to get everything
working properly. Thus, integrating is a problem that the community assumes that
we cannot avoid. The philosophy of continuous integration claims to mitigate those
problems by increasing the regularity and systematically checking for integrations
problems and immediately fixing it.

The process of continuously integrate require habits that are not easy to adhere
to. Automated builds, a thorough test suite, and commit to the mainline branch
every day are essential practices that sounds simple at first, but they require a
responsible team to implement and constant care (MEYER, 2014). What starts

27

with improved tooling can be a catalyst for long-lasting change in your company’s
shipping culture (MEYER, 2014).

As ilustrated in Figure 1, the base of the continuous integration practice con-
sistins on, firstly, that developers work locally and commit frequently to a version
control system (e.g., Git or SVN). The CI server (e.g., TravisCI, Jenkings, Cir-
cleCI, etc.) monitors the repository and checks out changes when they occur. After
that, the CI server builds the system and runs the automated tests. If the tests
pass, the CI server releases the deployable artefacts, assign a label to the release
and inform the team about the new successful build. If the build or tests fail, the
CI server alerts the team to fix that issue at the earliest opportunity. Finally, this
process is repeatedly performed generating successful builds of broken builds that
should last quickly (FOWLER; FOEMMEL, 2006).

7($0

SXVK

5HSRVLWRU\

%XLOG
��

7HVW
�

&KHFNV���

&,�6HUYHU

)HHGEDFN

WULJJHU

Figure 1: Continuous Integration process overview

28

2.2 Software Testing & Coverage

Automated tests play an important role in CI (FOWLER; FOEMMEL, 2006) as
they represent a fundamental part of the build automation process to detect errors
as quickly as possible. Automated tests consists in scripts that are executed in an
automated test tool to verify test requirementes.

Although manual testing is also essential and can be used as an additional pro-
cess to cover missed aspects on the automated testing, it is the automated tests
that are responsible for catching integration errors that do not cause the build to
break. It means that a build can be successfully generated but can also include
errors if the automated tests are not appropriately implemented to capture these
issues. Controlling for a high degree of code coverage is a way to ensure that the
team is testing and that the process of continuous integration can accurately de-
tect integration problems. Testing represents a central role in CI, and the team
must employ the necessary effort to keep a good quality of the tests. In fact, Du-
vall (DUVALL; MATYAS; GLOVER, 2007) mentioned that without automated tests,
a project should not be considered to be adopting CI at all (DUVALL; MATYAS;

GLOVER, 2007).

Code coverage metrics are often used to identify whether an application is well-
tested. It represents the degree to which the source code of a program is executed
by automated tests. The larger the coverage the more of the source code is exercised
by the tests and the greater the possibility of finding a latent problem. There are
several metrics to represent code coverage (ELBAUM; GABLE; ROTHERMEL, 2001),
such as statement coverage and branch coverage. Statement coverage represents
the ratio of statements that are executed by automated tests over the total number
of statements in the program. Branch coverage measures which possible program
branches (e.g., if statements, loops) have been executed at least once during the
tests. Collecting coverage metrics requires running automated tests from a test
suite, instrumenting the code execution and observing the execution flow.

29

2.3 Continuous Code Inspection & Continuous Code

Quality

As shown in the sections before, automated tests play an essential role in
software quality. However, quality assurance is a more complicated process and
must involve a systematic way to check for it (VASSALLO et al., 2018). Duvall et
al. (DUVALL; MATYAS; GLOVER, 2007) advocated about the needs to check for
software quality in every build. The author presents the Continuous Inspection,
also known as Continuous Code Quality (CCQ), which consists of an additional
step on the CI pipeline that specifically performs quality analyses and generates
reports. In a properly configured CQQ environment, every build on the CI service
triggers a quality inspect analysis that applies a specific level of criteria tho ensure
the quality outcomes. If the quality result does not fulfill the criteria, the build is
considered broken, and developers must fix it.

The continuous code inspection process performs automatic static analysis of
the code to detect bugs, code smells, and others code issues. Static code analyses
are the process to check the code without running it. Adversely to the automated
tests, the static analyses does not execute any code. It just read the source to
collect possible problems or defects. It is important to say that not all code issues
can break a build. It is a configurable step, and teams must ensure the thresholds
based on rules. The purpose of CQQ is to help developers to write code with
improved quality.

SonarQube, or its online version called SonarCloud, is one of the most used
tools to perform continuous code inspection. It scans the code and detects bugs,
vulnerability nad code smell. A bug is considered a coding error that will break
the code and needs to be fixed immediately. The vulnerability consists of a point
in your code that is open to attack. Finally, code smell is an issue that makes your
code confusing and difficult to maintain (SONARSOURCE, 2019). Those issues,
if not controlled, can adversely affect the software maintainability and affect its

30

quality.

2.4 Modeling Causal assumptions

The Causal Modeling considers that any causal inferences from observational
studies must ultimately rely on some kind of causal assumptions and gives an
effective language for making those assumptions precise and explicit, so they can
be isolated for deliberation or experimentation and, once validated, integrated with
statistical data (PEARL, 2019).

The literature shows that Causal Modeling is a well-established approach and
widely used in other areas (WINSHIP, 2007; VANDERWEELE, 2015; MORTON;

FRITH, 1995; PEARL, 2019). For the best of our knowledge, all the current works
that statistically investigate the adoption of CI rely on association relationship.
None of them presented a more in-depth study to try to investigate causality. This
chapter presents a study uses the Causal Modeling approach to investigate the
causality between CI and software quality.

Structural-Equations Models (SCM) or simply Causal Systems Models consists
in a mathematical equation to describe assumptions of how variables in a system
interact with each other, describing the causal relationship between them. Accord-
ing to Pearl et al. (PEARL; GLYMOUR; JEWELL, 2016), an SCM consists of a set of
functions that defines the value for each variable in the system based on the val-
ues on the other variables. The causation inference uses the SCM model to define
causation. According to the authors, a variable X is a direct cause of a variable Y

if X appears in the function that assigns Y ’s value. In other words, X is a cause
of Y if it is a direct cause of Y , or of any cause of Y .

To illustrate the usage of SCM, consider the function fz : Z = X + Y , where
Z represents the overall number of bugs fixed in a project during the year, X the
number of new features introduced during the period and Y represents the pressure
of the client to deliver new features. In this case, both X and Y are present in the

31

function fz, consequently both define Z and both might cause Z.

SCM may be an excellent approach to represent causal relations, just as we did
in our example. However, we provide a simple example, and the causal relationships
might consider more complex scenarios, i.e., it might have many variables, and
the relation between them might not be so simple. In those cases, the SCM may
represent a very complex equation, hard to express and worse to understand. To
provide a more human-readable expression of the causal functions, the SCM is
likely to be associated with graphical models. For this purpose, we express our
SCM using directed acyclic graphs (DAGs).

A DAG is a graphical representation of the causal assumptions. Likewise, we
can assume that a DAG expresses all the observed variables of the domain and
how these variables correlate with each other, just like the SCM but in a visual
approach. Fig.2 express our issue resolution SCM in the analogue DAG. The arrow
indicate a direct causal effect, i.e., Z are directed influenced by X and Y.

X Y

Z

Figure 2: Sample causal dag of issue resolution

Analog to our previous example, consider the scenario where the number of
new features introduced during the period (X) and the pressure of the client to
deliver new features (Y) impact on textitthe overall number of bugs fixed (Z)
but, additionally, the pressure of the client to deliver new features (Y) also shows
a direct impact on the the number of new features introduced during the period
(X). As shown in Fig.3, X might cause Z directly but this cause might be biased
by the impact that Y also cause on Z. In that case, we say that X and Z share
a common cause, and it represents a confounding bias. In cases where the causal
effect between variables marked with some bias, we need to intervene on the model

32

and use data to test the causal implication.

X Y

Z

Figure 3: Sample causal dag of issue resolution with cofouding variables

2.4.1 Causal Discovery & Estimation

Computing causal effect requires an analysis of the underlying data behind the
model. Consequently, our model must fit appropriately to the data. For example,
if we have a model where an observed variable X causes a direct impact on Z,
then X and Z must be correlated. Otherwise, our model does not correspond to
reality, and we must enhance for a better model. Identifying causal effect with a
model that fits the reality of the data is one condition to the analysis.

The term dependence in a graph, usually represented by connectivity, may refer
to mathematical, causal, or statistical dependencies (GREENLAND; PEARL, 2011).
All descendent node in the graph are dependent of its parent. In consequence,
all node must be independent from its nondescendents. These constraints in the
model must be held from the data. Dependence and independence are also present
bwtween nodes that is not in direct association. It means that we also need to
comprehend the dependency in the context of chains, forks and coliders. Pearl et
al. (PEARL; GLYMOUR; JEWELL, 2016) defines chains as a sequence of three nodes
and two edges, with one edge directed into and one edge directed ou of the middle
variable (A! B ! C); forks as three nodes with two arrows emanating from the
mediator variable (A B ! C); and colliders as one node that receives edges
from two other nodes (A! B C).

In a chain A ! B ! C, the factors A and C are dependent but become

33

independent if we condition on B, i.e., A and C are conditional independent. Con-
ditioning a variable is analog to filtering the data. A and C are conditional inde-
pendent, in this case, because we can condition on B to consider only the values
where A and C are independent. According to Greenland et al. (GREENLAND;

PEARL, 2011), two variables, A and C, are conditionally independent given

B, if there is only one unidirectional path between A and C and B is any set of
variables that intercepts that path. Regarding the forks A B ! C, the authors
state that if a variable B is a common cause of variables A and C, and there is
only one path between A and C, then A and C are independent conditional on

B. Finally, for colliders, If a variable B is the collision node between two variables
A and C, and there is only one path between A and C, then A and C are un-

conditionally independent but are dependent conditional on B and any

descendants of B.

In a DAG, the sequence of nodes connecting two variables, disregarding the
direction of the arrows, represents a path. For example, in Fig.2, there is a path
from X to Y represented by the nodes X � Z � Y . A directed path, however,
considers the paths that can be traced along with the arrows, i.e., there is no
directed path between X and Y in Fig.2. According to Textor (TEXTOR, 2015),
causal paths represents the directed paths from the exposure to the outcome and
biasing paths contains all the other paths.

Conditioning on variables is an essential technique to control the bias. Since
we cannot manipulate variables, i.e., we rely only on observational data, condi-
tioning is used as a substitute for experimental control, in the hopes that with
sufficient conditioning, X will be independent of uncontrolled influences. In other
hand, is important to notice that conditioning variables might change the behav-
ior of directed paths just like it changes the dependency of variables. For example,
conditioning B a chain A ! B ! C, blocks that path from A to C. Generally, a
path is blocked if conditioning Z when: (i) Z is in a chain X ! Pz ! Y or a fork
X Pz ! Y where Z is in Pz or (ii) a collider X ! Pz Y where Pz does not

34

contain Z or any successor of Z. In summary, conditioning a mediator in chains
or forks blocks the open path, while conditioning a mediator (or any successor of
a mediator) in a collider opens the blocked path. Pearl et al. (PEARL; GLYMOUR;

JEWELL, 2016) says that two variables are d-separated if there is no open path
connecting them, otherwise they are d-connected. Two d-separated variables are
definitely independent while d-connected variables are likely dependent.

Causal inferences on model seek for model adjustment to provide a valid repre-
sentation that minimizes the bias when estimating the causal effect of the exposure
to the outcome. The adjustment sets can determine a model to total effect when
all biasing paths are closed, leaving all causal paths opened. Additionally, the ad-
justment setting can also acquire a model to direct effect when all biasing and
causal paths are closed, remaining only the direct and immediate arrow from the
exposure to the outcome. The purpose of the analysis is to estimate the effect
considering the minimal adjustment set possible to total effect or direct effect.

The estimation of causal effects consists in the execution of an effect measure
on the underlying model, considering the minimal adjustment set utilized, which
allows the reasoning of independence conditions implied by the assumptions. Prob-
abilistic inference, used to obtain a probability distribution of variables of interest
given the data from previous observations (SHACHTER, 1988), is one of the most
used in the literature.

An quick example, considering an possible analysis performed on the bug fixing
problem, presented on the previous section and illustrated int the Fig. 3, shows
that to estimate the causal effect of X on Z we need to adjust for controlling Y (i.e.,
the minimal adjustment set), this is explained by Fig. 4. The figure shows that the
problem have two open paths, one causal path (X ! Z) and one biasing path (X
Y ! Z). Consequently, controlling Y blocks the path X Y ! Z and eliminate
the bias. Finally, the graphical representation allow the capture of the probabilistic
information and can be expressd by the equation:

P
Y P (Z|Y,X)P (Y), i.e., the

causal effect of X on Z is equal to the sum, for every value Y = y of the probability

35

that Z occurs, given that Y and Z also occurs, plus the probability that Y occurs.

X

Z

Y

Z

X

1 2

−0.5 0.0 0.5 1.0 1.5 2.0 2.5−0.5 0.0 0.5 1.0 1.5 2.0 2.5
0.9

1.2

1.5

1.8

x

y

path

a open path

Figure 4: Open paths on the issue resolution problem from X to Z

2.4.2 The Backdor Criterion

As shown in the fundamentals explained in the previous sections, a DAG ex-
presses pathways between variables. According to Textor (TEXTOR, 2015), causal
paths represents the directed paths from the exposure to the outcome and biasing
paths contains all the other paths. This subsection explores one specific case of
biasing paths, the backdoor paths. A backdoor path is a biasing path that starts
with an arrow pointing to the exposure. For example, if it is intended to estimate
the causal effect of X in Y on the DAG presented by the Figure 3, it will be
necessary to control the spurious association between X and Y that is expressed
by the backdoor path X Z ! Y . Notice that the backdoor path might be an
open, and spurious, path. In such cases, it is necessary to close the backdoor.

The adjustment set that closes all the backdoor paths is known as backdoor
criteria. Peal et atl. (PEARL; GLYMOUR; JEWELL, 2016) presented the following
definition: given an ordered pair of variables (X, Y) in a directed acyclic graph G,
a set of variables Z satisfies the backdoor criterion relative to (X, Y) if no node in

36

X Y

Z

Figure 5: Sample causal dag with backdoor path

Z is a descendant of X, and Z blocks every path between X and Y that contains
an arrow into X.

In summary, the backdoor criterion applies the following rules:

• Block all the spurious paths between the exposure and the outcome as they
represent a bias on the causal effect.

• Leave all the directed path from the exposure to the outcome unperturbed
as they are representative of the causal effect.

• Conditioning on variables in the backdoor might open new spurious paths.
The backdoor criterion should not create new spurious paths when condi-
tioning.

Pearl et al. (PEARL; GLYMOUR; JEWELL, 2016) state that if the set of variables
Z satisfies the backdoor criterion for X and Y , then the causal effect of X in Y is
given by the formula:

P (Y |do(X)) =
X

Z

P (Y |X,Z)P (Z) (2.1)

Additionally, if Z represents an empty set, i.e., no backdoor adjustment is
needed, then the causal effect of X in Y can be simply:

P (Y |do(X)) =
X

Z

P (Y |X) (2.2)

37

2.4.3 The Front-door Criterion

The backdoor criterion is used to eliminate the effect of the spurious path
and remove bias when estimating the causal effect. However, in some situations
applying the backdoor criterion is not feasible. As a DAG, in the context of causal
analysis proposed by Judea Pearl, is a representation of the relationships between
variables in the world, it is important to represent the knowledge, including all the
assumptions that we consider as truth. Hence, it is likely that our model contains
variables that we do not observe. This scenario is illustrated in Figure 6. Notice
that U opens the path X U ! Y . In order to estimate the causal effect of X
in Y we might have to adjust U to close the spurious path. But it is not possible
to adjust for something that you not control.

U

X YZ

Figure 6: Sample causal dag with front-door path

Hopefully, Pearl et al. (PEARL; GLYMOUR; JEWELL, 2016) has proven that
you can estimate the causal effect of the exposure on the outcome though the
descendants of the exposure. It is true if the front-door criterion is satisfied. A set
of variables Z satisfied the front-door criterion relative to X and Y if:

• Z intercepts all directed path from X to Y

• There is no unblocked path from X to Z

• All the backdoor paths from Z to Y are blocked by X

According to Pearl et al. (PEARL; GLYMOUR; JEWELL, 2016) theorem, if the
front-door criterion is applied, then the causal effect of X to Y is expressed by the
formula:

38

P (Y |do(X)) =
X

Z

P (Z|X)
X

X0

P (Y |X 0
, Z)P (X 0) (2.3)

39

3 An Empirical Study of the

Relationship between

Continuous Integration and

Test Code Evolution

Earlier versions of the work in this
chapter appears in the proceedings of
the International Conference on Soft-
ware Maintenance and Evolution (IC-
SME) (SIZíLIO; COSTA; KULESZA, 2019)

3.1 Introduction

Automated tests play an important role in CI (FOWLER; FOEMMEL, 2006)
as they represent a fundamental part of the build automation process to detect
errors as quickly as possible. In fact, Duvall (DUVALL; MATYAS; GLOVER, 2007)
mentioned that without automated tests, a project should not be considered to
be adopting CI at all (DUVALL; MATYAS; GLOVER, 2007). Zhao et al. (ZHAO et

al., 2017) studied the transition of open-source projects to adopt Travis-CI1. The
authors investigated how development practices (e.g., frequency of commits) have
changed after the adoption of Travis-CI. The authors observed that the number of

1https://travis-ci.org/

40

automated tests tended to increase after the initial adjustments of adopting Travis-
CI. Labuschagne et al. (LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017) studied
the bug resolution process and its relationship with automated tests. Some of their
findings reveal that 26% of non-flaky tests were due to incorrect or obsolete tests.

Despite the valuable advancements of previous research, the question as to
whether CI enhances the evolution of software tests remains unexplored. This
investigation is important for decision makers (e.g., team leaders) to better un-
derstand whether CI can improve the test evolution in the long run. Our work
empirically studies the evolution of test code and its relationship with the adop-
tion of CI. We set out to compare 82 projects that have adopted CI (CI projects)
and 82 projects that have not adopted CI (NOCI projects). In total, we study
3,936 versions of our CI and NOCI projects to investigate trends on the test code
and coverage. In particular, we address the following research questions:

• RQ1 - What are the evolution trends of test ratio within CI and

NOCI projects? We find that 40.2% of the CI projects have a rising test
ratio (i.e., the proportion of test code in a project) trend while only 17% of
the NOCI have a rising test ratio trend.

• RQ2 - Is there an association between the adoption of CI and

the evolution of code test ratio? We observe that the adoption of CI
is associated with a consistent growth of test ratio, whereas NOCI projects
have a negligible change of test ratio overtime.

• RQ3 - Is there an association between the adoption of CI and the

evolution of test coverage? Our analysis shows statistical evidences that
most of the analyzed CI projects tend to increase or maintain the test cov-
erage (9 out of 10 projects), while NOCI projects show a different tendency
(5 out of 10 projects increase or maintain the test coverage). In fact, NOCI
projects have more projects decreasing the coverage (5 projects) when com-
pared to CI projects (1 project)

41

• RQ4 - What are the most important factors to model test ratio? Our
mixed-effect models reveal that test ratio is largely explained by the project
inherent context (nearly 84% to 88% of the explanatory power) rather than
by the code or process factors.

In overall, our results suggest that the adoption of CI can be empirically as-
sociated with a healthier test code evolution. However, the benefits of the CI
adoption in terms of test code is likely more associated with the project inherent
context (e.g., project culture), rather than process or code factors (e.g., number of
contributors or number of commits that include test changes).

Chapter organization: The rest of this chapter is organized as follows. In
Section 3.2 we explain the design of our empirical study. In Section 3.3, we present
the results of our empirical study, while Section 3.4 presents the threats to the
validity. Finally, we draw conclusions in Section 3.5.

3.2 Study Setup

In this section we explain the design of our study. We describe how we select
the projects and collect the data for our analyses. We made all datasets discussed
in this section available in our online appendix. 2

3.2.1 Studied Projects

To perform our experiments, we analyze two groups of projects: (i) open source
projects that have adopted CI at some point of their lifetime (CI projects) and
(ii) open source projects that have never adopted CI during their lifetime (NOCI
projects).

CI Projects. This dataset must consist of consolidated projects that eventu-
ally adopted CI at some point of their history. These projects also must have a

2https://ciqualityresearch.github.io/doctoral_thesis/

42

12&,

&,

)LOWHU�SURMHFWV�WKDW�
XVHV�&,

6WHS��

������SURMHFWV

5HPRYH��SURMHFWV�
ZLWK�ORZ�QXPEHU�RI�

SXOO�UHTXHVWV
�	�WR\�SURMHFWV

6WHS����

���SURMHFWV

5HPRYH�SURMHFWV�
ZLWKRXW�WHVW�FRGH

6WHS��

���SURMHFWV

%HUQDUGR�HW�DO��GDWDVHW

)LOWHU�SURMHFWV�WKDW�
GR�QRW�XVHV�&,

6WHS��

������SURMHFWV

5DQGRPO\�VHOHFW�
���SURMHFWV�ZLWK�

WHVW�FRGH�
�GLVFDUGLQJ�WKH�7R\�

3URMHFWV�

6WHS��

���SURMHFWV

6HOHFW�SURMHFWV�
WKDW�VWLOO�DFWLYH�DQG�
ZLWK���RU�PRUH�

\HDUV

6WHS��

����SURMHFWV

6WHS��

)LOWHU�VWDUJD]HG�
SURMHFWV�

�-DYD��3\WKRQ��5XE\��
3+3�DQG�-DYD6FULSW�

������SURMHFWV

)LOWHU�VWDUJD]HG�
SURMHFWV�

�-DYD��3\WKRQ��5XE\��
3+3�DQG�-DYD6FULSW�

������SURMHFWV

6WHS��

Figure 7: Overview of CI and NOCI projects selection process.

considerable data history (e.g., 2 years of data) before and after they have adopted
CI. This is important because, in some of our analyses, we compare the evolution
of tests before and after adopting CI. We leverage the dataset made available
by Bernardo et al. (BERNARDO; COSTA; KULESZA, 2018a) to obtain our studied
projects. Fig. 7 shows the process used by Bernardo et al. (BERNARDO; COSTA;

KULESZA, 2018a) to collect the dataset by using the GitHub API3. Bernardo
et al. (BERNARDO; COSTA; KULESZA, 2018a) selected the 3,000 most stargazed
projects that are written in the five most popular programming languages on
GitHub (Java, Python, Ruby, PHP and JavaScript). Afterwards, the authors fil-
tered for quality criteria, such as the removal of toy projects and projects with
low number of pull requests. To filter for projects that adopt CI, Bernardo et al.
(BERNARDO; COSTA; KULESZA, 2018a) used the Travis-CI API4 and found builds

3https://developer.github.com/v3/
4https://docs.travis-ci.com/api/

43

using the Travis-CI service. The authors considered the first build on Travis-CI as
the date at which a project started using CI. Projects that have not had any build
on Travis-CI were removed.

Fig. 7 also shows an additional filter that we apply onto the dataset provided
by Bernardo et al. (BERNARDO; COSTA; KULESZA, 2018a) to select our projects.
As our goal is to investigate the relationship between the adoption of CI and the
test code evolution, we excluded 5 projects in which we did not find any test code
(Step 5 in Fig. 7). Our online appendix shows the information regarding the 82 CI
projects that remained in our modified dataset5.

NOCI Projects. This dataset must consist of projects that have never adopted
CI. This dataset is especially important for checking the presence of bias in our
observations. For example, if we observe an increase in the test coverage after the
adoption of CI, we also check whether the same increase of test coverage also occurs
in the NOCI projects. If we observe the increase of test coverage in both datasets,
then it is unlikely that the observed increase is associated with the adoption of CI.

To construct the NOCI projects dataset, we follow a similar approach as per-
formed by Bernardo et al. (BERNARDO; COSTA; KULESZA, 2018a). Fig. 7 shows
the process for building the dataset. We use the GitHub API to identify the 3,000
most stargazed projects that are written in the five most popular programming
languages on GitHub (Java, Python, Ruby, PHP and JavaScript). However, in the
NOCI projects dataset we select projects that have never adopted CI. We use the
Travis-CI API to discard projects that have at least one build on Travis-CI. To
avoid studying inactive and immature projects, in Step 3 of Fig. 7, we filter for
projects that are still active in 2018 and have at least 4 years of activity. In step
4, we randomly select 82 projects from the 392 NOCI projects obtained from Step
3. This random selection is performed in several iterations. For example, for each
randomly selected NOCI project we check (i) whether the project is a toy project
(i.e., academic, books samples or data storage) and (ii) whether the project has

5https://ciqualityresearch.github.io/doctoral_thesis/#study1_datasets

44

tests in its development process (i.e., we search for test files and packages). If a
given NOCI project does not fulfill both criteria, we discard the project and ran-
domly select another one. We also manually check the projects to check whether
they have configuration files of other popular CI services (e.g. Jenkins6 and Cir-
cleCI7). If we identify that the project uses another CI service provider, we also
exclude such a project from our analyses. To strengthen our certainty that our
NOCI projects have never adopted CI, we contact the members of each project
by using the development channels and developers e-mails. We repeat the process
until we obtain 82 NOCI projects (i.e., to mach the number of CI projects). We
received a NOCI confirmation reply for about 48% of the NOCI projects. For the
remaining 52% NOCI projects, we confirmed the NOCI attribute by manually in-
specting their code to find CI services configuration files. Finally, the reason to aim
for 82 NOCI projects is to perform fair comparisons with the other 82 CI projects
in our analyses (see our online appendix5).

3.2.2 Data Collection

Once we collect our projects, we also collect the versions of each project to
perform our analyses. Since we aim to analyze the impact of adopting CI on the
test ratio and coverage, we need to collect the history data from before and after
the adoption of CI for our CI projects. In the dataset made available by Bernardo
et al. (BERNARDO; COSTA; KULESZA, 2018a), the moment at which a CI project
has adopted CI is the moment when the first build on Travis-CI was generated.
Therefore, the first build on Travis-CI is also the event that we consider as the
moment at which a CI project has adopted CI. However, inspired by the work of
Zhao et. al. (ZHAO et al., 2017), we disregard a period of 30 days around the event
of adopting CI before collecting further data. The authors describe this period as
an unstable period that might represent noisy data. Fig.8 shows how we collect
the versions of our CI projects. Each red arrow indicates a checkout of the nearest

6https://jenkins.io/
7https://circleci.com/

45

snapshot (i.e., a commit in a project). We collect the 12 months historical data
before the adoption of CI and 12 months after the adoption of CI for each of our
CI projects.

3URMHFW
OLIHWLPH

$QDO\VLV�SRLQW

���
GD\V

XQVWDEOH�SHULRG�����GD\V�

���
GD\V

Figure 8: Overview of versions selection process.

With regards to our NOCI projects, we also need to establish a moment in
time to divide their history in two sets of data. As stated before, having these two
sets of data is important to double-check the observations that we obtain when we
compare the data before and after in CI projects. If we observe the same evolution
trend (e.g., an increase in test coverage) by comparing different time periods in
both CI and NOCI projects, then it is unreasonable to consider the adoption of CI
as the precursor of the observed trend. Considering that dividing the data history
of NOCI projects is less obvious (i.e., there is no event such as the adoption of
CI) we select a point of time that is proportional to a project’s lifetime. First, we
randomly select 10 projects from the CI projects dataset. Next, we compute the
number of months prior to the adoption of CI. Then, we identify the proportion of
time (in terms of percentage) that the 10 projects took to adopt CI with respect
to the lifetime of the projects. For example, we observe that a particular project
adopted CI at the 20% of its lifetime. Finally, we compute the median of the
proportions. We find that, in the median, the sampled projects adopted CI at the
27,36% of their lifetime.

Subsequently, we clone the repositories of all CI and NOCI projects. We per-
form a checkout of 24 versions for all projects (i.e, both CI and NOCI projects)
by following the process depicted in Fig. 8. For CI projects, the dividing event is
the adoption of CI, whereas for NOCI projects, the dividing event is the 27% of
their lifetime. For each version of a project, we compute the following metrics to

46

perform our study.

Test Ratio. The test code ratio is the proportion of test code in the project.
To collect the test code ratio, we first define how to measure the source code. First
(Step 1 in Fig. 9), we consider only the files related to the programming languages,
i.e., we do not consider configuration files or HTML files. Afterwards, we select
all code files (Step 2 in Fig. 9) for each project using the find unix command
with a Regular Expression. Our command searches for Ruby (*.rb), PHP (*.php),
Python (*.py), JavaScript (*.js) and Java (*.java). Given that we find a number of
projects using different languages (e.g., Java & Scala), we also include TypeScript
(*.ts), CoffeScrip (*.coffee), Scala (*.sc and *.scala) and Groovy (*.groovy, *.gvy,
*.gy, *.gsh) in our search. The added languages represent a set of languages that
may have a strong relationship with the main languages of our dataset (e.g., Java
and Scala is likely a combination). We search for code files containing all the
aforementioned extensions.

3URMHFW�ILOHV

$OO�FRGH�ILOHV

6WHS��

ILQG��UHJH[�DOO�FRGH! &2'(

$OO�WHVW�ILOHV

ILQG��UHJH[�DOO�WHVW!

7(67

$SSO\�FORF

$SSO\�FORF

6WHS�� 6WHS��

$OO�FRGH�YDOLG�
OLQHV

$OO�WHVW�YDOLG�
OLQHV

Figure 9: Overview of code lines counting.

In addition to identifying the source code files, we identify the test code. To
this end, we apply another find command that, in addition to filtering for source
files of our specific languages, also filters for the following conditions: (i) files inside
test or spec folders; (ii) files that end with .test, -test, _test, Test, .spec, -spec,
spec, Spec and (ii) files starting with test., test-, test, Test, spec., spec-, spec_,

47

Spec. All these rules were defined by manually studying the code conventions of
our studied languages.

By applying the aforementioned filters, we obtain two sets of files: (i) code files
and (ii) test files. We the apply the cloc

8 tool (Step 3 on Fig. 9) onto the two
sets of files. The cloc tool counts blank lines, comment lines and physical lines
of source code in many programming languages. Our analyses consider only the
valid lines (i.e, excluding the comment and blank lines) to count the overall code
and test lines of a project. Using these two metrics (i.e., all lines and test lines),
we compute the test ratio, which is defined by the test_lines

all_lines fraction.

In addition to the test ratio, we compute the test ratio growth. The test ratio
growth measures the proportional growth of tests from a version to a subsequent
version. The test ratio growth is defined as test_ratio_growth = test_ratioi�
test_ratioi�1, where i is a given version and i� 1 is the nearest previous version.

Collecting commit factors. In this study, we also investigate important
software development factors that can be associated with the increase/decrease of
the test ratio metric. CI is a practice that requires the team to adapt their workflow
to embrace the good practices of Source Code Management (SCM) (FOWLER;

FOEMMEL, 2006). Examples of guidelines that are usually introduced with the
adoption of CI include: “Make small commits” and “Commit self-testing code.”
With respect to this matter, we explore factors in the SCM system (e.g., Git) that
can influence the test ratio when adopting CI. For example, after adopting CI, the
commits in a given project may be smaller and may contain more test code.

To collect the commit factors, we consider all the periods of 30 days presented
in Fig.8. Each period contains the commits from one version to the next. In sum-
mary, a version comprises the set of commits that was recorded in the previous 30
days. We collect the log of each commit from each version and extract our studied
factors from the commit logs. Table 1 shows the collected factors and the rationale
behind each factor.

8https://github.com/AlDanial/cloc

48

Table 1: Commit Factors

Variable Rationale
Total Committers The count of every user that performed at least

one commit in the version. More committers can
contribute to more tests being developed, which
can increase or maintain the test ratio.

Total Commits The count of every commit performed in the ver-
sion. A high number of commits in the version
may decrease the test ratio if tests are not in-
cluded.

Total Changes, To-
tal Code & Test
Changes

The sum of lines changed in all commits from the
version. The higher the test lines that were intro-
duced in one version, the higher the probability
of increasing the test ratio.

Median Files & Me-
dian Code Files

The median number of files touched by the com-
mits in the version. Small commits represent a
good practice and can contribute to a more con-
sistent test development and consequently in-
crease or maintain the test ratio.

Median Changes
& Median Code
Changes

The median number of lines changed by the com-
mits in the version. These factors also represent
the size of commits. Small commits represents
a good practice and can contribute to a more
consistent test development and consequently in-
crease or maintain the test ratio.

Test Changes per
Commit

Defined by total_test_lines_changed
total_commits . This factor rep-

resents the test workload. A greater Test Changes
per Commit can increase the test ratio.

Count Commits
With Tests

Total number of commits that changed at least
one test file in the version. More commits modi-
fying test files can increase the test ratio.

Test Commit Ratio Defined by count_commits_with_tests
total_commits . Represent the

percentage of the commits that have worked on
test files. A greater Test Commit Ratio can in-
crease the test ratio.

49

Collecting Test Coverage. Although test ratio is a global measure of the
amount of test code that a project has, it does not necessarily capture the amount
of code that is exercised by the tests. Code coverage metrics are often used to
identify if an application is well-tested (MALAIYA et al., 2002). In order to compute
the test coverage for our projects, we face the challenge of configuring and building
each project to run the tests, which is a non trivial process. As we study 2 years
of historical data for each project, we face several changes in the project’s design.
These design changes require different libraries and settings to be configured. A
tremendous effort would be required to configure and run all the 2 years of historical
data of all of our studied projects in order to compute the test coverage of each
project’s snapshot. Notwithstanding the use of automated build tools (such as
maven, gradle or ant), we still face the challenge of unavailability of libraries and
other required assets to build the legacy code of our studied projects. Therefore, we
further sample our CI and NOCI datasets. We randomly select 10 CI projects and
obtain 4 Python, 3 Java and 3 JavaScript projects. We then randomly select 10
NOCI projects and obtain 4 Python, 3 Java and 3 JavaScript projects. With a set
of 20 projects (10 CI and 10 NOCI), we have a total of 480 versions to configure,
build and run the tests.

Collecting the coverage is a process that requires instrumenting the code. For
this purpose, we use popular tools such as Coverage.py

9 to instrument Python
projects, Open Clover

10 for Java projects and Istanbul
11 for JavaScript projects.

After running the tests with these tools, we collect the test coverage for each
version of each project. Open Clover computes the coverage percentage using the
following formula: PC = (BT+BF+SC+MC)/(2⇤B+S+M)⇤100%. BT stands
for the branches that evaluated to “true” at least once, BF stands for the branches
that evaluated to “false” at least once, SC stands for the covered statements, MC
stands for the entered methods, B represents the total number of branches, S the

9https://coverage.readthedocs.io/en/v4.5.x/
10https://openclover.org/
11https://istanbul.js.org/

50

stands for the total number of statements and M is the total number of methods12.
Istanbul and Coverage.py compute the coverage percentage using the following
formula: PC = EL/V L where EL stands for executed lines and VL stands for valid
lines (i.e., ignoring comments and blank lines).

In addition to the test coverage, we compute the test coverage growth, which
measures the proportional growth (or decrease) of test coverage from a version to
the subsequent version.

3.3 Results

In this section we disclose the motivation, approach, and results for our research
questions (RQ).

3.3.1 RQ1 - What are the evolution trends of test ratio

within CI and NOCI projects?

3.3.1.1 Motivation

Recent research has studied the characteristics of test code in projects that use
CI. For example, Beller et al. (BELLER; GOUSIOS; ZAIDMAN, 2016) investigated the
central role that testing has in CI. However, previous research has not explored
whether the adoption of CI can improve the test ratio in software projects. In
this RQ, we first study the trends of test code ratio in NOCI and CI projects.
This preliminary investigation is important to first identify whether there is an
apparent difference in the trends of test ratio evolution when comparing NOCI
and CI projects. If significant differences in the test ratio trends are apparent, we
have further motivation to deepen our analyses regarding the impact of adopting
CI on the test ratio and coverage metrics.

12http://openclover.org/documentation

51

3.3.1.2 Approach

We study two datasets of 82 CI projects and 82 NOCI projects. We analyze
the evolution trends of test ratio in each dataset (as illustrated in Fig. 8).

The evolution of the test ratio overtime can be interpreted as a time series data.
Therefore, to identify the dominant trends of test ratio evolution, we use the Dy-
namic Time Warping (DTW) algorithm. DTW minimizes the differences between
two time series by aligning their offsets (BERNDT; CLIFFORD, 1994; SALVADOR;

CHAN, 2007). This characteristic of DTW allows us to better group the test ratio
trends into clusters. For example, if we use the euclidean distance to cluster our
time series, we may group similar trends into different clusters due to the offsets in
the time series. Although DTW supports the cluster discovering, we must first set
the optimal number of clusters (MILLIGAN; COOPER, 1985) to obtain high quality
clusters, i.e., clusters that better represent the trends of test ratio. To this end, we
use the gap statistics approach (TIBSHIRANI; WALTHER; HASTIE, 2001) by varying
the number of clusters from 2 to 20. According to the gap statistic, the optimal
number of clusters for the NOCI projects is 4, whereas the optimal number of
clusters for CI projects is 18. After running the DTW algorithm we analyze the
obtained clusters to identify the increasing, decreasing or maintaining trends of
test ratio in CI and NOCI projects. It is important to mention that the level of
test ratio is not in analyses, we focus on the trend, i.e., how it behaves along the
time. The difference of scale on the test ratio is the focus of the next research
question and will be discussed further in this chapter.

3.3.1.3 Results

Observation–1. We observe more projects with rising test ratio trends

in the CI projects (40%) than NOCI projects (17%). Fig. 10 shows the test
ratio clusters of NOCI projects. Each graph on the figure contains the distribution
of test ratios (Y axis) and the versions of the NOCI projects (X axis). We denom-

52

inate as raising trends, the groups of which the centroids represent a continuous
growth in the analyzed period of time. We denominate as decreasing trends, the
groups of which the centroids represent a continuous decrease in analyzed period
of time. Finally, the maintaining trends are represented by the groups of which the
centroids represent a negligible growth or decrease in the analyzed period of time.

We observe that the centroids (i.e., the gray dashed lines) of clusters 1, 3, and
4 denote a maintaining test ratio trend. However, cluster 2 denotes a slightly rising
trend of test ratio. We observe that 68 CI projects have a maintaining test ratio
trend (nearly 83%) and 14 projects have a rising test ratio trend (nearly 17%).

3 4

1 2

0 5 10 15 20 25 0 5 10 15 20 25

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.00
0.25
0.50
0.75

t

va
lu

e

Clusters' members

Figure 10: NOCI projects - clusters of test ratio.

Regarding the CI projects, Fig. 11 shows that the centroids of clusters 5, 6, 10,
12, 14, 16 and 17 represent maintaining test ratio trends. However, we also observe
that clusters 1, 2, 3, 7, 8, 9, 11, 13, 15 and 18 represent rising test ratio trends.
The number of projects that falls within each cluster denotes that 49 projects have
maintaining test ratio trends (nearly 59.8%) and 33 projects have rising test ratio
trends (nearly 40.2%).

Our results reveal that CI projects have considerably more rising trends (nearly
40.2%) than NOCI projects (nearly 17%), as shown in the Table 2. The result of

53

16 17 18

11 12 13 14 15

6 7 8 9 10

1 2 3 4 5

0 510152025 0 510152025 0 510152025

0 510152025 0 510152025

0.0
0.1
0.2
0.3

0.0
0.2
0.4
0.6

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75

0.0
0.2
0.4

0.6
0.7
0.8
0.9

0.0
0.1
0.2
0.3

0.425
0.450
0.475
0.500
0.525

0.30
0.35
0.40
0.45

0.00
0.25
0.50
0.75

0.00
0.25
0.50
0.75

0.15
0.20
0.25

0.1
0.2
0.3
0.4

0.2
0.4
0.6

0.0
0.1
0.2
0.3

0.00
0.05
0.10
0.15

0.0
0.1
0.2
0.3

0.0
0.1
0.2
0.3

t

va
lu

e
Clusters' members

Figure 11: CI projects - clusters of test ratio.

this RQ motivates us to further investigate whether the adoption of CI was a main
precursor of the rising test ratio trend within the CI projects.

Table 2: Sum of projects in clusters

Decreasing Maintaining Raising
CI 0 49 33
NOCI 0 68 14

54

3.3.2 RQ2 - Is there an association between the adoption of

CI and the evolution of code test ratio?

3.3.2.1 Motivation

RQ1 reveals that CI projects have considerably more rising test code ratio
trends than NOCI projects. Hence, in this RQ, we empirically investigate whether
the adoption of CI has a significant influence on the evolution of test ratio within
CI projects. This investigation is important to better understand the impact of
adopting CI in software development in terms of the growth of software tests.

3.3.2.2 Approach

To address RQ2, we further split our two datasets (i.e., CI and NOCI projects)
into two subdatasets: before-CI, after-CI, early-NOCI and late-NOCI (Fig. 8). The
before-CI dataset contains the data of our CI projects before the adoption of CI,
whereas the after-CI dataset contains the data after the adoption of CI. Conversely,
the early-NOCI contain the first 27% of the lifetime of our NOCI projects, whereas
the late-NOCI dataset contains the remaining data of the NOCI projects (i.e., the
remaining 73% of the projects’ lifetime, see Section 3.2.2). We collect 12 versions
for both before and after the dividing events for both CI and NOCI projects.
Afterwards, we perform comparisons between the before-CI and after-CI with
respect to the test ratio to check whether there exist significant differences on
the test ratio after adopting CI. We also perform comparisons between the early-
NOCI and late-NOCI to double check if the results obtained for the comparisons
between before-CI and after-CI datasets can simply occur due to the projects’
natural growth (i.e., and not mainly because of the CI adoption). In addition to
comparing the differences in the test ratios, we study the test ratio growth metric
to verify whether CI influences the overall increase of test ratios across the projects’
versions.

To check whether the distributions of test ratio are statistically different when

55

comparing before-CI vs after-CI and early-NOCI vs late-NOCI, we use Mann-
Whitney-Wilcoxon (MWW or Wilcoxon rank sum test) tests (WILKS, 2011). The
MWW is a non-parametric test which checks the null hypothesis (H0) that two
distributions come from the same population (↵ � 0.05), i.e., two distributions are
not significantly different.

Although the MWW test shows whether two distributions are statistically dif-
ferent, MWW does not indicate the magnitude of such a difference (e.g., large or
small). Therefore, we use the Cliff’s delta metric to check the magnitude of the sta-
tistical differences between distributions (MACBETH; RAZUMIEJCZYK; LEDESMA,
2011). A positive Cliff’s delta indicates that the first distribution is higher than
the second distribution (and a negative Cliff’s delta indicates otherwise). The
higher the Cliff’s delta the larger the difference between the values of two distri-
butions. We use the default thresholds from the effsize R package13. The default
thresholds are the same as provided by Romano et al. (ROMANO et al., 2006). The
thresholds are set as the following: delta < 0.147(negligible), delta < 0.33 (small),
delta < 0.474 (medium), and delta >= 0.474 (large). First, we compare the dis-
tributions of test ratio between the before-CI and after-CI datasets. Afterwards,
we compare the distributions of test ratio between the early-NOCI and late-NOCI
datasets to double-check our observations. We repeat the same comparison process
for analyzing the test growth metric.

3.3.2.3 Results

Observation–2. CI projects tend to increase the test ratio in a con-

stant growth, while NOCI projects have a negligible change in the test

ratio overtime. The beanplot in Fig 12a shows the distribution of test ratios for
the before-CI and after-CI datasets. We observe an increase in the median test ra-
tio after the CI adoption. We obtain a Wilcoxon rank sum p�value = 2.908e�10,
which indicates a statistical difference between the test ratios in the before-CI

13https://cran.r-project.org/web/packages/effsize/

56

and after-CI datasets. We also obtain a small (non-negligible) Cliff’s delta of
�0.1612838.

The beanplot of Fig 12b shows the distribution of test ratios of the early-NOCI
and late-NOCI datasets. We observe an increase in the median test ratio in the
late-NOCI dataset (p � value = 0.0001842). Nevertheless, we obtain negligible
Cliff’s delta of �0.09270482.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 BEFORE−CI

AFTER−CI

Test Ratio

(a) CI projects

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 early−NOCI

late−NOCI

Test Ratio

(b) NOCI projects

Figure 12: Beanplot comparisons of test ratio within CI and NOCI datasets

Our results suggests that the adoption of CI is likely to have an impact on the
test ratio, since we observe a negligible difference in test ratios when analyzing the
NOCI projects (and non-negligible difference when analyzing the CI projects). To
further check whether the increase in test ratio is unrelated to the natural grow
of the projects, we analyse the test ratio growth metric, which is the degree of
change in the test ratio between one version and another. The beanplot in Fig 13b
shows the distribution of test ratio growth for the early-NOCI and late-NOCI
projects. Although we observe a decrease in the test ratio growth in the late-NOCI
dataset, we obtain a negligible Cliff’s delta (MWW p� value = 0.3861 and Cliff’s
delta = 0.02301242). The beanplot on Fig 13a shows the distribution of test ratio
growth for the before-CI and after-CI datasets. We observe that, after adopting
CI, the median of test ratio growth is also maintained (MWW p� value = 0.1164

and a negligible Cliff’s delta = �0.04144399).

57

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

BEFORE−CI
AFTER−CI

Test Ratio Growth

(a) CI projects

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

early−NOCI
late−NOCI

Test Ratio Growth

(b) NOCI projects

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

early−NOCI
before−CI

Test Ratio Growth

(c) early-NOCI vs before-CI

−0
.0

4
−0

.0
2

0.
00

0.
02

0.
04

late−NOCI
after−CI

Test Ratio Growth

(d) late-NOCI vs after-CI

Figure 13: Beanplot comparisons of test ratio growth of CI and NOCI datasets

Furthermore, we compare the before-CI dataset against the early-NOCI dataset
and the after-CI dataset against the late-NOCI dataset. This analysis helps us to
further understand how the projects that adopted CI have evolved.

The beanplot in Fig 13c shows the distribution of test ratio growth for the
before-CI and early-NOCI datasets. We obtain a non significant difference between
distributions (Wilcoxon rank sum test p � value = 8.892e � 07 but a negligible
Cliff’s delta of �0.1321945). Moreover, the beanplot in Fig 13d shows the distri-
butions of test ratio growth for the after-CI and late-NOCI datasets. We observe
a significant difference in the test growth distributions (Wilcoxon rank sum test
p� value = 2.566e� 15 and non-negligible small Cliff’s delta �0.2138018).

Our results suggest that the adoption of CI may have a small and positive

58

effect on the test ratio. However, by analyzing the test ratio growth, our results
reveal that, after adopting CI, the project maintains the same ratio growth as
before the adoption of CI. Our results suggest that the CI period has a superior
test ratio, but it is likely a consequence of a growth that has already existed before
adopting CI.

Finally, the non-significant differences observed between the before-CI and
early-NOCI datasets, as well as the significant differences observed between the
after-CI and late-NOCI datasets, may suggest that the adoption of CI is associated
with a positive maintenance of the test ratio growth. Conversely, not adopting CI
may incur a decrease in the test ratio growth. Therefore, projects that adopt CI
may value testing more than projects that do not adopt CI.

3.3.3 RQ3 - Is there an association between the adoption of

CI and the evolution of test coverage?

3.3.3.1 Motivation

In RQ1 and RQ2, we study the test ratio in CI and NOCI projects. However, as
much as the test ratio provides an idea of the proportion of test code in a project,
the test ratio does not show how much code is actually exercised by the tests. For
example, two distinct projects may have 50% of test ratio. However, one project
can concentrate the majority of the tests to exercise few functionalities (i.e., low
test coverage), while the other project may exercise almost all the functionalities
in its tests (i.e., high test coverage). We investigate the test coverage of CI and
NOCI projects to better understand the impact of the adoption of CI on the test
coverage of the studied projects.

3.3.3.2 Approach

To address this RQ, we randomly select 10 CI and 10 NOCI projects as ex-
plained in Section 3.2. We compare the CI and NOCI projects to study whether

59

CI has a significant influence on the test coverage. We also analyze the impact of
CI on the test coverage growth. Similar to the previous RQs, we use the MWW
tests and the Cliff’s delta (MACBETH; RAZUMIEJCZYK; LEDESMA, 2011) in our
analyses.

3.3.3.3 Results

Observation–3. Most of the analyzed CI projects tend to increase

or maintain the test coverage (9 out of 10 projects) while for NOCI

projects only 5 out of 10 increase the test coverage. Fig. 14 and Fig. 15
shows the evolution of test coverage for each studied project. The graph shows the
percentage of test coverage in the Y-axis and the project version in the X-axis.
The vertical dotted line in the middle represents the point of transition from early-
NOCI and late-NOCI for NOCI projects and before-CI and after-CI for NOCI
projects. The red lines represent the test coverage evolution, and the blue line
represents the linear regression in each period.

By analyzing the NOCI projects, we observe that, in its majority, NOCI
projects experience a decrease or maintenance in the test coverage in the late-NOCI
dataset. The Table 3 shows the statistical tests results of the coverage comparison
of the projects periods (before-CI/after-CI and early-NOCI and late-NOCI). The
results of our Wilcoxon rank sum tests show significant differences of test coverage
between the early-NOCI and late-NOCI. Our Cliff’s delta measurements reveal (i)
a large negative effect size in 5 out of 10 projects (red rows), (ii) a positive effect
size for 4 projects (green rows) and (iii) only 1 negligible effect size (yellow rows).

Regarding the CI projects, we observe that the majority of the projects ex-
perience a significant increase in the test coverage. Our Wilcoxon rank sum tests
(with alternative=“less”) reveal significant differences between the before-CI and
after-CI periods and our Cliff’s delta measurements are significantly positive (large
or small) for 6 out of the 10 projects (green rows). Our results suggest that the
projects that eventually adopt CI may likely experience an increase in the test

60

−50
0

50
100

0 5 10 15 20 25
Version

%
 c

ov
er

ed velocity

84879093

0 5 10 15 20 25
Version

%
 c

ov
er

ed jsrender

7.07.58.08.59.09.5

0 5 10 15 20 25
Version

%
 c

ov
er

ed SlickGrid

24.825.225.6

0 5 10 15 20 25
Version

%
 c

ov
er

ed explainshell

40
60
80

0 5 10 15 20 25
Version

%
 c

ov
er

ed bup

−100
102030

0 5 10 15 20 25
Version

%
 c

ov
er

ed netty−socketio

72.575.077.580.0

0 5 10 15 20 25
Version

%
 c

ov
er

ed jieba

20222426

0 5 10 15 20 25
Version

%
 c

ov
er

ed Mycat−Server

29.329.429.529.629.7

0 5 10 15 20 25
Version

%
 c

ov
er

ed pybrain

0
5

10
15

0 5 10 15 20 25
Version

%
 c

ov
er

ed jstorm

% Covered of NOCI Projects

Figure 14: Percent coverage evolution of NOCI projects

coverage.

Similarly to RQ2, we also analyse a measure of growth for the test coverage.
The measure of growth is important to check whether the increase or decrease of
the test coverage occurs due to a natural aging process of a project. Our results
show that both NOCI projects (Fig. 16b) and CI projects (Fig. 16a) have negligible
results in terms of test coverage growth. NOCI projects obtain a MWW p�value =
0.3032 and a Cliff’s delta = 0.0385124(negligible), while CI projects obtain a
MWW p � value = 0.383 and Cliff’s delta = �0.02322314(negligible). However,
by comparing the late-NOCI and after-CI periods (Fig. 16c), our data reveals a
small, but positive, effect size for the after-CI period (MWW p�value = 0.003509

and Cliff’s delta = �0.2068595, small). Our results suggest that CI projects tend

61

70
75
80
85

0 5 10 15 20 25
Version

%
 c

ov
er

ed cesium

94.094.494.895.2

0 5 10 15 20 25
Version

%
 c

ov
er

ed underscore

10152025

0 5 10 15 20 25
Version

%
 c

ov
er

ed pdf.js

3040506070

0 5 10 15 20 25
Version

%
 c

ov
er

ed picasso

70758085

0 5 10 15 20 25
Version

%
 c

ov
er

ed mrjob

405060

0 5 10 15 20 25
Version

%
 c

ov
er

ed dropwizard

5560657075

0 5 10 15 20 25
Version

%
 c

ov
er

ed scipy

57.560.062.565.0

0 5 10 15 20 25
Version

%
 c

ov
er

ed cython

64687276

0 5 10 15 20 25
Version

%
 c

ov
er

ed robolectric

0306090

0 5 10 15 20 25
Version

%
 c

ov
er

ed sympy

% Covered of CI Projects

Figure 15: Percent coverage evolution of CI projects

to maintain the test coverage growth while NOCI projects may likely experience
a decrease.

3.3.4 RQ4 - What are the most important factors to model

test ratio?

3.3.4.1 Motivation

In addition to analyzing the impact of CI on test ratio, we aim to study which
software development factors are important to explain the test ratio on CI projects.
This is important because, as we have observed, not all CI projects improve the

62

Table 3: % Test Coverage statistical tests

NOCI projects MWW p � value Cliff ’s delta
velocity 0.0001185 �0.8680556(large)
jsrender 0.9998 0.8263889(large)
SlickGrid 0.9998 0.8541667(large)

explainshell 0.0009023 �0.6944444(large)
bup 1.369e� 05 �1(large)

netty-socketio 1 1(large)
jieba 0.6985 0.1180556(negligible)

Mycat-Server 1 1(large)
pybrain 0.9913 0.5138889(large)
jstorm 1.439e� 05 �1(large)

CI projects MWW p � value Cliff ’s delta
cesium 0.0002361 �0.8472222(large)

underscore 6.095e� 05 �0.9166667(large)
pdf.js 0.8225 0.2152778(small)
picasso 4.816e� 05 �0.9444444(large)
mrjob 0.3313 �0.1111111(negligible)

dropwizard 1.759e� 05 �1(large)
scipy 0.01871 �0.5069444(large)

llow cython 0.5116 0(negligible)
robolectric 1.815e� 05 �1(large)

sympy 0.3322 �0.1111111(negligible)

test ratio after adopting CI. Therefore, understanding factors that explain the
increase of test ratio can help developers to leverage the full potential of adopting
CI.

3.3.4.2 Approach

We use the CI projects dataset to observe the periods before and after the
CI adoption. The dataset contains 82 projects with 24 versions each (12 versions
before CI and 12 versions after CI), totalling 1,968 versions. As shown in Section
3.2, we retrieve the git commit history and extract a set of factors (Table 1), which

63

−4
−2

0
2

4

BEFORE−CI
AFTER−CI

% Coverage Growth

(a) CI Projects

−4
−2

0
2

4

early−NOCI
late−NOCI

% Coverage Growth

(b) NOCI Projects

−4
−2

0
2

4

late−NOCI
after−CI

% Coverage Growth

(c) late-NOCI vs after-CI

Figure 16: Comparison of growth of percent coverage of CI and NOCI datasets

capture aspects for the projects’ evolution (e.g., size, frequency, and nature of the
changes). We then use a linear mixed-effects regression to model the test ratio in
our CI projects at the version level, i.e., each observation in our model is a version
with its respective test ratio. Linear mixed-effects models are statistical regression
models that contain both fixed and random effects (JULIAN, 2016). Fixed effects
are variables with constant coefficients and intercepts for every observation (i.e.,
version), while random effects may vary. Random effects are variables that are used
to control the variances between observations across different groups. Our linear
mixed-effects models assume that each project represents a group (i.e., a source of
random variation), therefore we consider a different intercept for each project. This
is reasonable, since a software project may have a huge source of external influences
that are specific to the project (e.g., the complexity of the project domain or the

64

development culture).

Regression models can be adversely affected by the existence of highly cor-
related and redundant independent variables (DOMINGOS, 2012). We perform
correlation analyses for the studied factors (henceforth referred as independent
variables) used in our models. We use the varclus function from the rms

14
R

package. For each pair of independent variables within all correlation clusters that
have a correlation |⇢| > 0.7, we remove one variable and keep the simpler variable
by following the principle of parsimony (VANDEKERCKHOVE; MATZKE; WAGEN-

MAKERS, 2015). Afterwards, we use the redun function from the rms R package
to perform the redundant variable analysis for the remaining variables. The re-
dundant analysis verifies whether an independent variable can be estimated by
other independent variables. We discard a variable that can be estimated with an
R

2
>= 0.9, since such variables do not add explanatory power to the model and

can distort the relationship between other variables (JR, 2015).

After removing correlated and redundant variables, we use the lmer function
from the lme4

15 R package to fit a linear mixed-effects model (LMM) to our data.
We divide our dataset in two: before and after CI adoption. We then perform
the linear mixed-effects regression in both datasets to construct the LMM that
fits to the two periods of versions (before and after CI). We evaluate the perfor-
mance of the models using the marginal R2 and the conditional R2 as computed
by the squaredGLMM function from MuMIn

16
R package. To identify the significant

independent variables and their explanatory power, we use the Wald �
2 metric.

The higher the �
2 for a given independent variable, the stronger the shared rela-

tionship between the variable and the test ratio. All the p-values, correlated and
redundant variables, �2 values and coefficients of our models are available in our
online appendix.

14https://cran.r-project.org/web/packages/rms/index.html
15https://cran.r-project.org/web/packages/lme4/index.html
16https://cran.r-project.org/web/packages/MuMIn/index.html

65

3.3.4.3 Results

Observation–4. Test ratio is largely explained by the project inherent

context rather than code or process factors. This result shows that it might
exist some uncontrolled factor that coevolves among the project version evolution
that might better explain the test ration evolution.

We call Model I the model that fits the period before the adoption of CI and
Model II the model that fits the period after the adoption of CI. We obtain a good
fit for Model I with a marginal R2 = 0.3098444 and a conditional R2 = 0.9621811

and Model II with a marginal R2 = 0.2596061 and a conditional R2 = 0.985688.
The �

2 values and coefficients are summarized in the Table 4 and Table 5

Table 4: Model I - Results of the LMM

Factor Coef �2 Pr(> �2) Sign
Intercept 2.200e� 01 64.5024 9.642e� 16 ***
Median Files �8.492e� 03 6.6942 0.0096728 **
Total Commits �1.662e� 04 20.8298 5.020e� 06 ***
Test Changes / Commit 7.463e� 05 25.6239 4.149e� 07 ***
Count Commit with Tests 5.604e� 04 11.0556 0.0008842 ***
Version:Project 1002.0471 < 2.2e� 16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 5: Model II - Results of the LMM

Factor Coef �2 Pr(> �2) Sign
Intercept 2.594e� 01 58.0176 2.598e� 14 ***
Total Commits �1.348e� 04 11.8034 0.0005912 ***
Test Changes / Commit �4.410e� 05 5.0549 0.0245569 *
Count Commit with Tests 2.872e� 04 7.0145 0.0080854 **
Total Committers 7.241e� 04 4.7638 0.0290636 *
Version:Project 461.4989 < 2.2e� 16 ***
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

66

Our model reveals that, instead of being explained by process or code factors
(as described in Table 1), test ratio is largely explained by the project inherent con-
text. The project independent variable obtains the vast majority of the explanatory
power in our models. The proportional �2 of the project variable corresponds to
nearly 88% of the explanatory power in Model I and nearly 84% of the explanatory
power in Model II. We also observe that Test Changes per Commit correspond to
only 3% of the explanatory power before the adoption of CI and 0, 9% after the
adoption of CI.

Our results suggest that the influence of the project inherent context is still
the dominant influence on the test ratio when comparing to other metrics that
can be computed by the SCM system. This result might signal that a high test
ratio might depend more on the cultural aspects of a given project rather than the
number of commiters or the number of test code per commit.

3.4 Threats to the Validity

In this section, we discuss the threats to the validity of our study.

Construct Validity. The construct threats to validity are concerned with
errors caused by the methods that we use to collect our data. We use the GitHub
and Travis-CI APIs to collect our projects samples. We also use existing popular
tools to collect the coverage and total lines of test code. Any bias in these tools
may influence our results. However we analyze the results in a dataset sample
to test and assess these tools. Another threat is that the selection of the NOCI
projects was accomplished by analyzing projects that are not supported by Travis-
CI and other (most used) CI services. However, we recognize that projects may
use other tools for continuous integration. We mitigate this threat by contacting
the community to reinforce that a given project does not use any CI service. 39
projects out of the 82 NOCI projects have replied and confirmed that they do not
use any CI service. For the remaining 43 projects, we performed a manual analysis

67

to check any evidence of CI usage, such as configuration files of other CI services or
tools (e.g., Circle-CI). Additionally, we assume that a project with Travis-CI builds
is using continuous integration. However we did not ensure that they adopt the
CI practices or use the Travis-CI only to automate the build. We plan to conduct
future researches that evaluate the degree of adoption of CI and software quality.
Finally, there is a threat in the way we define the project lifetime. We consider
that a project lifetime consists in the time that the project uses GitHub, however,
it could exist projects that have migrated from another CVS and we disregard the
time before GitHub adoption.

Internal Validity. Internal threats are concerned with the ability to draw
conclusions from the relationship between the dependent variable (test code ratio
& test coverage) and independent variables (e.g., the variables collected in Ta-
ble 1). We recognize that our independent variables described in Table 1 are not
exhaustive. The use of additional independent variables (e.g., number of pull re-
quests submitted in a version) may produce different results in our model. We plan
to collect a more exhaustive list of independent variables in future work.

External Validity. External threats are concerned with the extent to which
we can generalize our results (PERRY; PORTER; VOTTA, 2000). In this work we
analyzed 3,936 versions of 164 popular open source projects from GitHub. All CI
projects adopt the most popular CI server on GitHub, i.e., Travis-CI. We excluded
projects that do not use the most used CI services for obtaining the NOCI dataset.
However we recognize that our results is restricted to our projects’ setup and
further analysis (e.g., additional projects) should be performed in future work.

3.5 Conclusion

In this study, we investigate the impact of adopting CI on the evolution of test
ratio and coverage. We set out to compare 82 CI and 82 NOCI projects. In total,
we studied 3,936 versions of our studied projects. Our results reveal that:

68

• CI projects have more projects with a rising test ratio trend. We found that
33 out of 82 (40.2%) CI projects have a rising test ratio trend, while only 14
out of 82 (17%) NOCI projects have a rising test ratio trend.

• We observe that the adoption of CI is associated with a consistent increase
of test ratio (MWW p � value = 2.908e � 10 and a small Cliff’s delta =

�0.1612838), while NOCI have a negligible change on the test ratio overtime
(MWW p�value = 0.0001842 and a negligible Cliff’s delta = �0.09270482).

• Our results reveal that CI projects likely obtain a higher test ratio growth
than NOCI projects.

• Our analysis shows statistical evidences that most of the analyzed CI projects
tend to increase or maintain the test coverage (9 out of 10 projects), while
NOCI projects have a different tendency (5 out of 10 projects increase or
maintain the test coverage). In fact, NOCI projects have more projects de-
creasing the coverage (5 projects) when compared to CI projects (1 project).

• Our mixed-effect models reveal that test ratio is largely explained by the
project inherent context rather than by code or process factors.

In overall, our work demonstrates that continuous integration can be empir-
ically associated with a healthier test code evolution (in terms of test ratio and
coverage).

69

4 On the Continuous Code

Quality Outcomes of

Continuous Integration: An

Empirical Study

4.1 Introduction

Automated Tests is a core concept in the CI environment. Our previous study
(Chapter 3) among other works (ZHAO et al., 2017; VASILESCU et al., 2015a; DU-

VALL; MATYAS; GLOVER, 2007; LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017) ex-
plored the relationship between continuous integration and aspects of tests. How-
ever, Duvall et al. (DUVALL; MATYAS; GLOVER, 2007) advocate that teams should
not only of running automated tests but also of performing static and dynamic
code analyses at every build. This practice is called Continuous Inspection, which
is used as a tool for Continuous Code Quality (CCQ), which is a practice that aims
to continually check and improve (or maintain) the software quality.

Vassallo et. al. (VASSALLO et al., 2018) investigated whether projects using
CI were also performing continuous inspection. The authors studied data from
TravisCI and SonarCloud. SonarCloud

1 is a cloud service based on Sonar-

Qube
2 and is used to continuously inspect the code quality by detecting (for ex-

1https://sonarcloud.io/
2https://www.sonarqube.org/

70

ample) bugs, vulnerabilities, and code smells. The authors find that projects using
TravisCI may not be using CCQ in practice. Freitas (FREITAS, 2019) comple-
mented the work by investigating if the CI adoption is related to a change on the
quality outcomes (from the continuous inspections). The author studied a dataset
that includes both projects that have adopted CI and projects that never adopted
CI to employ empirical tests. The work reveals that adopting CI has little to no
association to improved quality outcomes.

Motivated by the research results that show that CI may not be related to
a improve on quality outcomes (FREITAS, 2019) and that projects that adopt CI
may not be using CCQ in practice. (VASSALLO et al., 2018), we investigate whether
adherence to CI best practices is related to the degree of code quality. Hence, we
empirically study 184 open source projects that use TravisCI and SonarCloud

to evaluate the relationship between the CI best practices and software quality
outcomes. In particular, we address the following research questions:

• RQ1: Does the degree of CI adoption share a relationship with

improved quality outcomes? Existing research has shown that not all
projects using TravisCI fully adhere to the CI best practices (FELIDRÉ

et al., 2019). Therefore, in this RQ, we investigate whether the degree of CI
adherence has an association with the studied quality outcomes. For this
purpose, we analyze the adoption of 4 well-known CI practices (i.e., avoiding
long-running builds; fixing a broken build as soon as possible; controlling
for acceptable test coverage and integrating at least daily). Our main hy-
pothesis is that the better the degree of CI adherence the better might be
the quality outcomes. However, our analyses show that only the practices
of controlling for acceptable test coverage and avoiding long-running builds
share a relationship with the improvement in the studied quality outcomes.

• RQ2: Which practices of CI share a relationship with technical

debt? To better understand which specific practices of CI may share a strong
relationship with improved quality outcomes, we fit a regression model in

71

which the amount of technical debt is the response variable. We use the
amount of technical debt in particular because this metric factors in all of
the other studied metrics (as it is explained in Section 4.2). The project size
(i.e., median_ncloc) metric obtains the most of the explanatory power of our
model (as determined by its proportional �2 of %85).

In the next section (Section 4.2), we explain the design of our empirical study.
The results and discussions are presented in Section 4.3. The threats to the validity
are discussed in Section 4.4. Finally, we draw conclusions and venues for future
work in Section 4.5.

4.2 Empirical Study

In this section, we explain the design of our study. We (i) describe our studied
quality outcomes, (ii) motivate each investigated RQ, and (iii) describe the data
collection process and methodology for each investigated RQ. Our datasets are
available in our online appendix3.

4.2.1 Studied Quality Outcomes (Metrics)

To perform all of our analyses, we collect metrics from SonarCloud and
TravisCI. The metrics that we collect from SonarCloud are the metrics that
we refer to as quality outcomes. We motivate each of the collected metrics below
(the source of the metric is indicated in parentheses).

Project Size or simply “ncloc” (SonarQube). SonarCloud performs
quality inspections through static code analysis (e.g., it detects bugs and code
smells without running the software (EVANS; LAROCHELLE, 2002)) We extract
the project size metric from SonarCloud as a support metric in our experiments.
We normalize our other metrics by the project size. For example, if two distinct

3https://ciqualityresearch.github.io/doctoral_thesis/#study2_datasets

72

projects have the same amount of code smells, but also have a huge difference in
size, the code smells should be analyzed proportionally to the size of the projects.
As for RQ2, we use the Project Size to account for a possible confounding factor
in our regression model (i.e., to avoid the problem of observing spurious correla-
tions solely because the projects differ in size). We measure project size through
the ncloc metric (i.e., number of non-comment lines of code) that is available on
SonarQube.

Bug Density (SonarQube). SonarQube defines several rules that are used
in the static code analyses. The Quality Model of SonarQube divides these rules
into four categories: Bugs, Vulnerabilities, Security Hotspots, and Code Smells.
The rules related to Bugs detect pieces of code that are demonstrably wrong (or
more likely wrong than not). For example, the Bugs category includes rules for
detecting a NullPointerException in the code. In our work, we measure the
Bug Density (SONARSOURCE, 2019) by using the following formula Number of Bugs

ncloc .
Interpretation: The lower the Bug Density the better the quality outcome in a
quality inspection.

Code Smells Density (SonarQube). The rules related to Code Smells de-
tect the pieces of code that are hard to maintain (SONARSOURCE, 2019). Ac-
cording to Martin Fowler and Kent Beck4 (FOWLER, 2018; TUFANO et al., 2015),
code smells are indications that usually represent deeper problems (e.g., a very
long method may harder to maintain or more likely to contain bugs). We mea-
sure the Code Smells Density by using the following formula: Number of Code Smells

ncloc .
Interpretation: The lower the code smells density the better the quality outcome
of a quality inspection.

Duplicated Lines Density (SonarQube). Duplicated Lines represents the
number of lines involved in duplicated code. Duplicated code has been associated
to lower maintainability over the years (RAHMAN; BIRD; DEVANBU, 2012). For ex-
ample, having several duplicated methods may be troublesome, since a developer

4https://martinfowler.com/bliki/CodeSmell.html

73

would probably have to propagate a maintenance change to all of the clones (i.e., if
one clone has been forgotten, a bug would likely occur). We measure the Duplicated
Lines Density through the following formula: Number of Duplicated Lines

ncloc . Interpretation:
The lower the duplicated lines, the better the quality outcome of a quality inspec-
tion.

Technical Debt (SonarQube). Technical debt reflects the implied costs
when developers choose a suboptimal solution to fix a problem without considering
the long terms consequences (SURYANARAYANA; SAMARTHYAM; SHARMA, 2014).
SonarQube provides the technical debt in terms of the required minutes that
would be necessary to fix all the detected Code Smells. We use this metric as the
response variable in our regression model in RQ4. Interpretation: The lower the
Technical Debt the better the quality outcome.

Technical Debt Ratio (SonarQube). This metric is a derivation of the
aforementioned Technical Debt metric. SonarQube provides the Technical Debt
Ratio as a comparable indicator, which can be used to compare different projects
or different versions of the same project. The Technical Debt Ratio is denoted
by the Technical Debt

Development Cost fraction. The numerator (i.e., Technical Debt) is the esti-
mated time (indicated by SonarQube) that would be necessary to fix all the
detected Code Smells. The denominator (i.e., the development cost) is an estima-
tion (by SonarQube) of the required effort to develop the whole source code
of the project. The development effort is computed by multiplying the ncloc of
the project by a cost estimation (expressed in terms of time, e.g., the default cost
value is 0.06 days). Ultimately, the development cost is defined by the following
algebra: DevelopmentCost = Cost of each line ⇥ number of lines. Interpretation:
The lower the Technical Debt Ratio the better the quality outcome in a quality
inspection.

Code Coverage (SonarQube). Code Coverage is the degree to which au-
tomated tests exercise the source code of a program. There are several metrics
to represent code coverage (ELBAUM; GABLE; ROTHERMEL, 2001). For example,

74

statement coverage measures the number of statements that are exercised by au-
tomated tests, whereas branch coverage measures which “program branches” (e.g.,
if statements, loops) have been exercised at least once by the automated tests.
The coverage metrics are often used to indicate whether a software is well-tested
(HILTON; BELL; MARINOV, 2018). Collecting coverage metrics requires (i) running
automated tests from a test suite, (ii) instrumenting the code execution and (iii) ob-
serving the execution flow (as performed by Sizilio et al (SIZíLIO; COSTA; KULESZA,
2019)). Unfortunately, a local instance of SonarQube does not perform such a
measurement process automatically. In addition, following the same approach as
performed on our previous work (Chapter 3) would compromise the scalability of
this study (i.e., the effort to configure, run, and instrument hundreds of projects
would be herculean). Therefore, to compute the Code Coverage metric, we rely on
the SonarCloud platform, which readily provides this metric for many projects
that are hosted on SonarCloud. The Code Coverage metric is especially im-
portant as we strive to understand the relationship between the best practices of
CI and the quality outcomes. Interpretation: The higher the value of the Code
Coverage metric, the better the quality outcome in quality inspection.

Build Duration (Travis-CI). Continuous Integration employs an automated
process to generate software builds. This automated process clones the code repos-
itory into a virtual environment and executes a pipeline of necessary tasks for gen-
erating the builds (such as compiling the code, running the automated tests and
running the static code analyses). A CI pipeline can be customized to include/ex-
clude different tasks depending on the requirements of the project. A duration of
10 minutes to build a project has been considered as an acceptable threshold to
separate an acceptable build duration from a long build duration (BROOKS, 2008a;
HILTON et al., 2017a; GHALEB; COSTA; ZOU, 2019b). We compute the Build Dura-
tion for our analyses, since having long build durations is considered a bad practice
when using CI (FELIDRÉ et al., 2019; GHALEB; COSTA; ZOU, 2019b). Interpretation:
a lower build duration would likely share a relationship with improved quality out-
comes.

75

Required Time to Fix a Build (Travis-CI). Frequently integrating code
while delivering successful builds is a core concept in CI. Indeed, CI dissipates its
purpose if builds are constantly broken in the repository. Therefore, the ability to
quickly fix broken builds is essential in a healthy CI environment (FELIDRÉ et al.,
2019). We collect this metric by computing the duration in seconds between the
time when a build was broken the next successful build. To aggregate this metric
at the project level, we use the median Required Time to Fix a Build. We use to
assess whether the adherence to CI best practices share a strong relationship with
improved quality outcomes. Interpretation: The quicker a team fixes the broken
builds the better should be the quality outcomes.

Build Activity Ratio (Travis-CI). Another good practice in CI is to inte-
grate builds frequently (FELIDRÉ et al., 2019; DUVALL; MATYAS; GLOVER, 2007)
(i.e., at least daily). Integrating builds frequently helps the development team to
identify errors earlier, which is the purpose of CI (BELLER; GOUSIOS; ZAIDMAN,
2016). We compute this metric by using the following formula: CI Active Days

SonarCloud Time Period .
The CI Active Days is the number of days where at least one build was generated
in TravisCI, whereas the SonarCloud Time Period is the number of days of a
project’s historical information available on SonarCloud. We use the Build Ac-
tivity Ratio to assess whether the adherence to CI best practices share a strong
relationship with improved quality outcomes. Interpretation: the higher the Build
Activity Ratio the better should be the quality outcomes.

CCQ Activity Ratio (SonarCloud/Travis-CI). The CCQ Activity Ratio
is a metric inspired by the study from Vassalo et al. (VASSALLO et al., 2018). The
authors observed that although projects were using CI, just a few of them were per-
forming CCQ on SonarCloud. Therefore, if projects that use CI generate many
more builds than the number of builds submitted to quality inspections on Sonar-

Cloud, such projects do not perform a proper CCQ. Hence, we compute the CCQ
Activity Ratio by using the following formula: Number of TravisCI Builds

Number of Builds Checked on SonarCloud .
Interpretation: A CCQ Activity of 1 indicates that there exists one quality check

76

(in a build) for every CI build (which signals a more proper CCQ usage). We
compute the CCQ Activity Ratio for two purposes: (i) to ensure that we analyze
only the projects that perform a proper CCQ (i.e., we filter out projects with a
CCQ Activity Ratio lower than 1) and (ii) as a control variable in our regression
model (in RQ4). Having the CCQ Activity Ratio as a control variable is important
because the higher the CCQ Activity Ratio the higher the likelihood of observed
problems (e.g., a project may report more Technical Debt because it performs a
more intense CCQ). Hence, we keep the CCQ Activity Ratio as a control variable
to ensure that the observed relationships do not occur solely because of a higher
CCQ Activity Ratio in the projects.

4.2.2 Research Questions

The aim of our study is to empirically investigate whether adherence to CI
best practices is related to the degree of quality outcomes. In our study we collect
Continuous Code Quality (CCQ) metrics that are available on the SonarCloud

platform (a online instance of SonarQube). We consider these metrics as the
quality outcomes of our analyses, i.e., our response variables. In this study, we
investigate two exploratory RQs and provide the motivation for each RQ below.

RQ1: Does the degree of CI adoption share a relationship with im-

proved quality outcomes? Motivated by the research results that show that CI
may not be related to a improve on quality outcomes(FREITAS , 2019) and that
projects that adopt CI may not be using CCQ in practice, we further investigate
this lack of relationships may be related to the level of adherence to the CI best
practices (FELIDRÉ et al., 2019; DUVALL; MATYAS; GLOVER, 2007). Recent studies
have shown that not all projects using CI actually employ the CI practices to the
fullest (FELIDRÉ et al., 2019). For example, although CI has been adopted, projects
may not necessarily produce frequent builds. Therefore, it is important to verify
whether the degree of adherence to the CI best practices shares a relationship with
improved quality outcomes.

77

Data collection & approach: In RQ1, we analyze whether the following CI prac-
tices share a significant relationship with improved quality outcomes: (i) integrating
at least daily; (ii) avoiding long-running builds; (iii) fixing a broken build as soon as
possible and (iv) controlling for acceptable test coverage. These investigated prac-
tices are inspired in the study performed by Felidré et al. (FELIDRÉ et al., 2019).
We use the Build Activity Ratio, Build Duration, Required Time to Fix a Broken
Build, and Code Coverage (see Section 4.2.1) to respectively study each of the
aforementioned CI practices.

Figure. 17 shows an overview of the criteria to select the projects for RQ1.
Step 1. We select all projects that have the Test Coverage information available.
This criterion results in 3,053 projects. Step 2. Next, we filter for the projects
that use GitHub. We attempt to locate the respective GitHub repositories of
the projects. In this step, we discard the projects for which we cannot find the
respective (and public) GitHub repository, (the project may use another version
control system or there is no explicit link between SonarCloud and GitHub

for such projects). Step 3. Afterwards, for the projects that we could properly
find the GitHub repository, we verify these projects use TavisCI Steps 2 and 3
ensure that the studied projects use TravisCI and is published as an open source
repository on GitHub. After step 3 we obtain 910 projects.

Step 5. Vassalo et al. (VASSALLO et al., 2018) observed that not all CI projects
hosted on SonarCloud indeed perform CCQ. Therefore, we use the criteria pro-
posed by Vassalo et al. (VASSALLO et al., 2018) to select only the projects that
perform CCQ systematically. First, Vassalo et al. (VASSALLO et al., 2018) state
that at least 20 quality inspections on SonarCloud are required to consider that
a project actively uses SonarCloud. We apply this criterion in our data, which
results in 798 projects. Step 5. Vassalo et al. (VASSALLO et al., 2018) also observed
that projects with a low CCQ Activity Ratio may not be performing quality inspec-
tions properly. The authors define the CCQ Activity Ratio as the following frac-
tion: CQQ_activity_ratio = Number of CI Builds

Number Builds Inspected on SonarCloud (see Section 4.2.1).

78

*HW�SURMHFWV�ZLWK�WHVW�
FRYHUDJH

�����SURMHFWV�

)LQG�*LW+XE�
UHSRVLWRU\

/RRN�IRU�7UDYLV�&,�
EXLOGV�

����SURMHFWV�

6WHS�� 6WHS�� 6WHS��

6WHS��

$W�OHDVW����FKHFNV�RQ�
6RQDU&ORXG���

����SURMHFWV�

5HPRYH�SURMHFWV�WKDW�
GRQ
W�XVH�&&4����

����SURMHFWV�

6WHS��

Figure 17: Overview of RQ3 and RQ4 projects selection.

A CCQ Activity Ratio close to 1 indicates that for each CI build there exists one
SonarCloud build check, which indicates a proper CCQ usage. In step 5, we filter
out the projects with a CCQ Activity Ratio below 1. Finally, 184 projects survive
our project selection criteria.

To analyze each CI practice (e.g., avoiding long-running builds), we identify
the projects that adhere to that practice (e.g., projects with acceptable build
durations) and the projects do not adhere to that practice (e.g., projects with
long build durations). To this end, we use an approach similar to the approach
employed by Ghaleb et al (GHALEB; COSTA; ZOU, 2019b). First, we compute the
median value of each project with respect to a given CI practice. For example,
with respect to the avoiding long-running builds practice, we compute the median
build duration (in seconds) for each project. We generate a distribution of 184
median values of build duration. Afterwards, we use this distribution to generate
the quantiles shown in Table 6. We use the dplyr

5 R package to compute the
5https://www.rdocumentation.org/packages/dplyr/versions/0.7.8

79

Table 6: Explanatory variables expressed in quantiles

Build Duration Time to Fix Coverage CI Build Activity
(sec.) (sec.) (%) (#CIDays

#SonarDays)
Q1 59.0 to 146.0 0.0 to 1048.0 0.00 to 52.65 0.01 to 0.21
Q2 146.5 to 231.0 1052.0 to 2172.0 53.30 to 78.35 0.21 to 0.44
Q3 233.0 to 417.0 2179.0 to 7694.0 79.10 to 89.50 0.44 to 0.73
Q4 428.0 to 3110.0 8289.0 to 490133.0 89.60 to 100.00 0.73 to 1.50

quantiles. We consider the median in our analyses because the median is more
robust against outliers than the mean (LEYS et al., 2013).

The projects for which the median build duration falls under the first quantile
are considered as adhering the avoiding long-running builds practice. Conversely,
the projects for which the build duration falls under the fourth quantile are con-
sidered as not adhering the avoiding long-running builds practice practice. The
projects which fall under the second or third quantiles are excluded from our anal-
yses, since we wish to compare the extreme sides of adherence level for each CI
practice. This same process is repeated for the other CI practices (i.e., integrating
at least daily, fixing a broken build as soon as possible and controlling for acceptable
test coverage). For each CI practice, we interpret the quantiles accordingly. For ex-
ample, while a higher build duration is detrimental, a higher test coverage is indeed
positive. Hence, we adjust our interpretation of adhering and not adhering depend-
ing on the specific analyzed CI practice. To perform the statistical comparisons
between the quantiles, we use MMW tests and Cliff’s delta measurements.

RQ2: Which practices of CI share a relationship with technical debt?

In RQ2, we deepen the analyses performed in RQ1 and investigate which practices
of CI are mostly important with respect to positive/negative quality outcomes. It
is essential to understand which CI practices should be prioritized in case not all CI
practices can be adopted by the team at a certain period in time. For instance, not
all best practices may be adopted (yet) due to cultural or organizational barriers,
e.g., a development team whose build frequency was one build per week may feel

80

an initial friction before shifting to producing hourly builds.

Data collection & approach: We use the same dataset used in RQ1 to address
RQ2. In RQ2, we build a linear regression model to study the importance of each
CI practice with respect to the Technical Debt Ratio (see Section 4.2.1). A linear
regression model fits a linear equation that explains the relationship between a set
of explanatory variables X = x1, ..., xn and a response variable Y . In RQ2, each
studied project is considered an observation. Therefore, the number of observations
in our dataset is 184. To represent the explanatory variables, we use the per-
project median values of each CI practice studied in RQ3 (i.e., avoiding long-
running builds, integrating at least daily, fixing a broken build as soon as possible
and controlling for acceptable test coverage). We also add two confounding variables
in our set of explanatory variables. Our confounding variables are the Project
Size and the CCQ Activity Ratio metrics (see Section 4.2.1). The motivation to
add these confounding variables is explained in Section 4.2.1. As the response
variable, we use the per-project median value of Technical Debt Ratio (explained
in Section 4.2.1). We study the Technical Debt Ratio in our regression model as
this metric factors in all the other quality outcomes. Ultimately, we obtain an
initial setup of 184 observations (i.e, projects) and 6 explanatory variables per
observation. According to Harrell Jr. (JR, 2015), because our ratio of observations
to explanatory variables (i.e., 184

6 = 30) is above 15, we have sufficient degrees of
freedom to fit a linear regression models without running into the risk of overfitting.

Before fitting our linear regression model, we perform a correlation analysis
because correlated variables may impair the ability to understand the relationships
between the explanatory variables and the response variable (JR, 2015). To this
end, we use the varclus function of the rms R package.6 We observe no pair of
explanatory variables within all correlation clusters with a correlation |⇢| > 0.7.
Therefore, we keep all the explanatory variables (JR, 2015). Next, we check for
redundant variables, as they may also distort the shared relationships between the

6https://cran.r-project.org/web/packages/rms/index.html

81

explanatory and response variables (JR, 2015). We use the redun function of the
rms R package to check for redundant variables. We do not observe any redundant
pair of variables between our explanatory variables.

Next, we use the ols function (“ols” stands for Ordinary Least Squares) of the
rms package R package to fit our linear regression model (henceforth referred as
LM). We evaluate the goodness-of-fit of the model by analyzing the R

2 metric.
We also use the validate function of the rms R package to perform a resampling
validation of our model with a number of iterations of B = 1, 000. This validation
is important to show how stable is the fit of our model (JR, 2015).

Finally, we evaluate the explanatory power of our explanatory variables through
the Wald �

2 metric. The higher the �
2 value for a given explanatory variable the

stronger the shared relationship between the explanatory variable and the response
variable (Technical Debt Ratio).

4.3 Results

In this section we explain the approach and findings for each of our research
questions.

RQ1: Does the degree of CI adoption share a relationship

with improved quality outcomes?

Observation–1. Projects with longer build durations tend to have

worse quality outcomes. Long-running builds are undesirable as developers
would waste precious time waiting for the builds. This matter worsen in CI,
where builds are expected to be generated more frequently (GHALEB; COSTA;

ZOU, 2019b). A build duration of 10 minutes is often used as a threshold for de-
termining whether a build has a long duration (BROOKS, 2008a; GHALEB; COSTA;

ZOU, 2019b; HILTON et al., 2017a). Table 7 shows our obtained p � values and

82

Cliff’s deltas when comparing the first and fourth quantiles of Build Durations.
Our results suggest that longer build durations are associated with worse quality
outcomes. We also show violin plots for these comparisons in Fig. 18.

0.
00

0
0.

00
2

0.
00

4

Faster Builds Slower Builds

Bu
gs

 D
en

si
ty

0.
00

0.
10

0.
20

Faster Builds Slower Builds

C
od

e
Sm

el
ls

 D
en

si
ty

0
5

10
15

20

Faster Builds Slower Builds

D
up

lic
at

ed
 L

in
es

 D
en

si
ty

0
2

4
6

8

Faster Builds Slower Builds

Te
ch

ni
ca

l D
eb

ts
 R

at
io

Figure 18: Comparison of CI projects build duration and independent variables

Table 7: Build Duration vs. Quality Outcomes

Metrics Wilcoxon Cliff’s Estimate
Bug Density 0.003349 �0.2896975 (small)
Code Smells Density 0.01462 �0.294896 (small)
Duplicated Lines Density 8.275e� 07 �0.5500945 (large)
Technical Debts Ratio 0.01967 �0.2759924 (small)

Observation–2. The required time to fix broken builds does not share

a strong relationship with the studied quality outcomes. Another CI prac-
tice that we evaluate is the required time to fix a broken build. The CI guidelines
state that a team “should not go home before fixing a broken build” (FOWLER;

FOEMMEL, 2006).

Table 8 shows the obtained p� values and Cliff’s deltas when comparing the
first and fourth quantiles of the Required Time to Fix Broken Builds metric. Our

83

results reveal no apparent relationship between the time required to fix broken
builds and our studied quality outcomes (i.e., all p� values > 0.05). We also show
violin plots for these comparisons in Fig. 19

0.
00

0
0.

00
2

0.
00

4

Faster Fixes Slower Fixes

Bu
gs

 D
en

si
ty

0.
00

0.
10

0.
20

Faster Fixes Slower Fixes

C
od

e
Sm

el
ls

 D
en

si
ty

0
5

10
15

20

Faster Fixes Slower Fixes

D
up

lic
at

ed
 L

in
es

 D
en

si
ty

0
2

4
6

8

Faster Fixes Slower Fixes

Te
ch

ni
ca

l D
eb

ts
 R

at
io

Figure 19: Comparison of CI projects time to fix and independent variables

Table 8: CI Time to Fix vs. Quality Outcomes

Metrics Wilcoxon Cliff’s Estimate
Bug Density 0.3659 �0.08350951 (negligible)
Code Smells Density 0.09904 �0.2040169 (small)
Duplicated Lines Density 0.6525 �0.04756871 (negligible)
Technical Debts Ratio 0.1191 �0.1908034 (small)

Observation–3. A higher test coverage shares a significant relation-

ship with improved quality outcomes. Continuous Integration is intrinsically
related to the best practices of software tests (DUVALL; MATYAS; GLOVER, 2007) (GRANO

et al., 2019) (BELLER; GOUSIOS; ZAIDMAN, 2016). Test coverage is often used to
assess how well an application is tested (GRANO et al., 2019) (HILTON; BELL;

MARINOV, 2018).

84

Table 9 shows the obtained p� values and Cliff’s deltas when comparing the
first and fourth quantiles of Code Coverage. Our results suggest that, in overall,
projects with a higher test coverage share a significant relationship with improved
quality outcomes. We also show violin plots for these comparisons in Fig.20.

0.
00

0
0.

00
2

0.
00

4

Lower Coverage Higher Coverage

Bu
gs

 D
en

si
ty

0.
00

0.
10

0.
20

Lower Coverage Higher Coverage

C
od

e
Sm

el
ls

 D
en

si
ty

0
5

10
15

20

Lower Coverage Higher Coverage

D
up

lic
at

ed
 L

in
es

 D
en

si
ty

0
2

4
6

8
10

14

Lower Coverage Higher Coverage

Te
ch

ni
ca

l D
eb

ts
 R

at
io

Figure 20: Comparison of CI projects coverage and independent variables

Table 9: Coverate Effect

Metrics Wilcoxon Cliff’s Estimate
Bug Density 2.211e� 05 0.4083176 (medium)
Code Smells Density 0.0005421 0.4149338 (medium)
Duplicated Lines Density 0.0001984 0.3903592 (medium)
Technical Debts Ratio 0.0006362 0.4031191 (medium)

Observation–4. The Build Activity Ratio does not share a signifi-

cant relationship with the studied quality outcomes. Building and integrat-
ing code frequently (at least daily) is a core principle of CI (DUVALL; MATYAS;

GLOVER, 2007) (FOWLER; FOEMMEL, 2006). As explained in Section 4.2, we calcu-
late the Build Activity Ratio from our projects’ history available on SonarCloud.
Table 10 shows the obtained p�values and Cliff’s deltas when comparing the first

85

and fourth quantiles of Build Activity Ratio. Our results reveal no apparent re-
lationship between the frequency of builds and the studied quality outcomes. We
also show violin plots for these comparisons in Fig.21.

0.
00

0
0.

00
2

0.
00

4

Lower CI Activity Higher CI Activity

Bu
gs

 D
en

si
ty

0.
00

0.
10

0.
20

Lower CI Activity Higher CI Activity

C
od

e
Sm

el
ls

 D
en

si
ty

0
5

10
15

20

Lower CI Activity Higher CI Activity

D
up

lic
at

ed
 L

in
es

 D
en

si
ty

0
2

4
6

8
10

14

Lower CI Activity Higher CI Activity

Te
ch

ni
ca

l D
eb

ts
 R

at
io

Figure 21: Comparison of CI Build Activity and independent variables

Table 10: CI Build Activity Effect

Metrics Wilcoxon Cliff’s Estimate
Bug Density 0.9074 0.01134216 (negligible)
Code Smells Density 0.8353 0.025519852 (negligible)
Duplicated Lines Density 0.3081 �0.1063327 (negligible)
Technical Debts Ratio 0.615 0.0600189 (negligible)

Discussion: Our results suggest that only Test Coverage and Build Duration
share a strong relationship with the studied quality outcomes (positively in over-
all). It is surprising to observe that the (i) Required Time to Fix Broken Builds
and the (ii) Build Activity Ratio do not share strong relationships with the studied
quality outcomes. Regarding the Required Time to Fix Broken Builds, our obser-
vation may be explained by the fact that not all build breakages on TravisCI

may be important or they may even be noisy (GALLABA et al., 2018). Therefore,

86

despite observing a breakage, developers may not rush to fix them in case the
broken jobs (which are responsible for the breakage) are not really perceived as
important. In fact, TravisCI has a feature called “allowed failures”, which allows
developers to state which jobs are “allowed” to break without influencing the build
outcome. In a future study, we plan to investigate the perceived importance of
build breakages and preemptively warn the development team about important
breakages. As for the lack of a significant relationship between the Build Activity
Ratio and the quality outcomes, this could be explained by the fact that, although
building frequently, the development team might not aggregate quality to every
build (DIGKAS et al., 2018). Therefore, our results suggest an addendum to the
core CI principle of building frequently (DUVALL; MATYAS; GLOVER, 2007). This
addendum would be to not only build frequently, but also strive to aggregate quality
to every build (e.g., by addressing technical debt whenever possible).

RQ2: Which practices of CI share a relationship with

technical debt?

Observation–5. Technical debt is largely explained by the project size.

Table 11 summarizes the results of our model, presenting the model coefficients,
standard errors and statistical significance of each explanatory variable (as indi-
cated by the asterisks). We observe that our model fits well the data (R2 = 0.744

and AdjustedR
2 = 0.734).

Table 11 also shows the overall �2 and the p�value of our model. The Project
Size metric (i.e., median_ncloc) obtains the most of the explanatory power of our
model (as determined by its proportional �2 of %85). As expected, our confound-
ing variable CCQ activity ratio also obtains a significant role (i.e., the more the
performed CCQ, the more the identified Technical Debt). However, the explana-
tory power of the CCQ activity ratio (proportional �2 of %11) is far superseded by
the explanatory power of the Project Size. The explanatory power of our variabels
is expressed in the plot in Fig. 22. Interestingly to note is that, similar to RQ1, our

87

Table 11: Regression Results

Coef S.E. �
2 Prop. �2

Median Coverage �21.718⇤ 12.500 3.0 ⇡1%
Median Build Duration 1.859⇤⇤ 0.861 4.7 ⇡1%
Median Required Time to Fix 0.002 0.005 0.2 ⇡0%
CI Build Activity Ratio �1, 037.885 1,172.193 0.8 ⇡0%
CCQ Activity Ratio 638.799⇤⇤⇤ 111.347 32.9 ⇡11%
Project Size 0.203⇤⇤⇤ 0.013 247.7 ⇡85%
Constant �789.148 1,183.778
R2 0.744
Adjusted R2 0.734
Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

model indicates that the effect of Build Duration and Code Coverage are significant
(although outpowered by the Project Size).

median_ci_time_to_fix
ci_builds_activity

median_coverage
median_ci_time_running

ccq_ratio_activity
median_ncloc

χ2 P

247.7 0.0000
 32.9 0.0000
 4.7 0.0323
 3.0 0.0842
 0.8 0.3772
 0.2 0.6591

0.0 0.2 0.4

Proportion of Overall χ2

Figure 22: Independent variables explanatory power

Discussion: The fact that the project size far supersedes the explanatory power
of the remaining variables, corroborates with the hypothesis that software systems
tend to drop their quality as they grow bigger (HERRAIZ et al., 2013). Therefore,
our results suggest that, unless a deliberate effort is invested to increase the soft-
ware quality (i.e., by deliberately removing the Technical Debt in our case), such
improvement in quality will unlikely be ensured just by the adherence to certain

88

CI practices. In terms of CI practices, our results also suggest that, if not all prac-
tices can be adopted, it is crucial to at least maintain a short build duration and
a significant code coverage (as they have shown some significance in relation to
Technical Debt).

4.4 Threats to the Validity

Construct Validity. The construct threats to validity are concerned with
errors caused by the methods that we use to collect and model our data. For this
study, we rely on data collected from the TravisCI, and SonarCloud APIs.
Especially regarding the metrics collected from SonarCloud, we may have con-
tracted some bias. For example, most probably, all of the studied projects have
used the default values provided by SonarCloud when computing the Technical
Debt metric. Further studies should investigate the impact that optimizing such
default values might have on the quality outcomes.

In addition, although the Code Coverage metric is stored SoarCloud in
the form of percentages, the responsibility for providing this metric relies on the
projects. Therefore, it is challenging to determine whether some projects have
informed the, for example, the branch coverage or the methods coverage. Never-
theless, we believe that our analyses regarding the Code Coverage metrics are still
important given that, universally, the higher the Code Coverage percentage the
better the quality outcome.

Moreover, in many phases of our experiments, it was required to take decisions
regarding thresholds. For example, the utilized CCQ Activity Ratio. Researchers
that replicate our work using different thresholds in different steps may obtain dif-
ferent results. Nevertheless, we strived to always take these decisions by consulting
the existing and highly regarded empirical research.

Internal Validity. Internal threats are concerned with the ability to draw
conclusions regarding the relationship between the explanatory variables (i.e., in

89

our case, the CI best practices) and the response variable (e.g., the metrics ex-
plained in Section4.2.1).

We acknowledge that the metrics to express the CI practices in this study is
not exhaustive. It is always possible to customize and polish the metrics presented
in this study or add extra metrics. We plan to extended and customized the our
metrics in future work.

External Validity. External threats are concerned with the extent to which
we can generalize our results. Although 184 projects, we cannot generalize our
results to other projects with different domains, skill-sets and sizes. We also cannot
generalize our results to corporate settings as the practices enforced in a corporate
setting might differ from those performed in an open source project. Nevertheless,
we strive to perform our analyses applying criterias of highly regarded empirical
research (VASSALLO et al., 2018) (for example, by analyzing projects that perform
CCQ systematically).

4.5 Conclusion

Motivated by the lack of evidence about the relationship between continuous
integration and quality oucomes (FREITAS, 2019), we study the degree of CI
adherence. We investigate the relationship between CI good practices and software
quality. Concerning this aspect, we rely on online data of 184 projects that monitor
their quality using SonarCloud. We set out to compare metrics that represent four
CI good practices (i.e., avoid long-running builds; fix a broken build as soon as
possible; control for acceptable test coverage and integrate at least daily). Our
study compares the collected values of the CI good practices metrics for the best
and worse projects against the quality outcomes. We also create a linear regression
model to estimate the technical debt of projects. The results show that:

• Maintaining a short build duration and a high code coverage are essential to

90

reduce technical debt (see Observations–1, 2, and 5)

• technical debt is largely explained by the project size, outpowering the posi-
tive effects of short build durations and high code coverage (see Observations–
5).

In overall, our results lead us to conclude that, unless a deliberate effort is
invested to increase the software quality (i.e., by deliberately removing the Tech-
nical Debt in our case), such improvement in quality will unlikely be ensured just
by the adherence to certain CI practices.

91

5 Estimating causal effects of

Continuous Integration in

software quality outcomes

5.1 Introduction

Previous works empirically study the relationship between continuous inte-
gration and software outcomes in many aspects. Our last chapters focused on
answering which factors associated with continuous integration may have a sta-
tistically perceptive correlation with quality attributes. Determine the correlation
relationship is essential to give the practitioner an overview of what results come
with CI and in what conditions. However, the results cannot be used to deter-
mine the causation relationship. Mahdavi et al. (DAMGHANI et al., 2012) explain
correlation as a statistical measure that describes the size and direction of a rela-
tionship between two or more variables. However, a change in one variable does
not necessarily cause a difference in the value of the other variable. Regarding our
previous work, we may assume that CI has a association with quality outcomes.
We can not state, however, that CI causes the effect on quality.

Correlation analysis might lead researchers to wrong conclusions if there is no
clear understanding of the data behind it. The sympson’s paradoxes is one example
of how data can suggest contradictory findings according to the perspective given
to it. As Judea (PEARL, 2019) shows, sympson’s paradoxes represents a correlation

92

Table 12: Example of Sympson’s Paradox

Drug No Drug
Total Sample 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)

Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)

that can be observed in the population, but it inverts if we stratify into sub-groups.
This scenario can be observed in the Table 12. It represents a scenario where a total
of 350 patients chose to take the drug, and 350 patients did not take it. It also shows
that the recovery rates of the patients who were given access to the drug. When
we observe the population, the results show that more patients recovered by not
using the drugs. If we observe each gender separately, we can see that both men and
women have better recovering rated by taking the drug. Observing the population,
we conclude that the drug does not improve the recovery rate, but observing the
gender shows otherwise. Although this scenario might appear weird at the first
look, if we understand the history behind the data, we can understand the causal
relationship. In the example, being a woman represents a bias. Women are more
propensity to take the drug, but at the same time, estrogen decreases the drug
effect, i.e., women have their own scenario and must be observed separately. This
example shows how important it is to understand the data behind the correlations
and to study the causal mechanism.

In this matter, this chapter aims to answer whether and how CI causes an effect
on quality. The understanding of the cause-effect relationship is fundamental to
avoid bias when making a decision. Our results suggest, for example, that CI has
a relationship with software quality. The current thesis statement says, however,
that it is not ensured just by the adherence to certain CI practices. What factors or
practices in a CI environment cause the change in the quality is an open question
to be answered statistically.

93

We propose to use the Causal Modeling as the method to infer the causa-
tion relationship. Explaining causal relationship is not trivial. Judea (PEARL,
2019) exposes that scientist was unable to determine mathematical equations to
explain simple facts like “Mud does not cause rain”. The affirmation is evident
to human perception, but how to put this in a theorem and test it mathemati-
cally and statistically? Judea (PEARL, 2019) claim that Causal Modeling permits
scientists to express causal questions formally, codifying their existing knowledge
in both diagrammatic and algebraic forms, and then leveraging data to estimate
the answers. The method is used in other areas, especially social science, and epi-
demiology (WINSHIP, 2007; VANDERWEELE, 2015; MORTON; FRITH, 1995), helping
scientists extract causal relations from associations and deconstruct paradoxes that
have baffled researchers for decades (PEARL, 2019).

The Causal Modeling considers that any causal inferences from observational
studies must ultimately rely on some kind of causal assumptions and gives an
effective language for making those assumptions precise and explicit, so they can
be isolated for deliberation or experimentation and, once validated, integrated with
statistical data (PEARL, 2019).

The literature shows that Causal Modeling is a well-established approach and
widely used in other areas (WINSHIP, 2007; VANDERWEELE, 2015; MORTON;

FRITH, 1995; PEARL, 2019). For the best of our knowledge, all the current works
that statistically investigate the adoption of CI rely on association relationship.
None of them presented a more in-depth study to try to investigate causality. This
chapter presents a study uses the Causal Modeling approach to investigate the
causality between CI and software quality.

In the next section (Section 5.2) we explain the design of our study. The
results and discussions are presented in Section 5.3. The threats to the validity are
discussed in Section 5.4. Finally, we draw conclusions and venues for future work
in Section 5.5.

94

5.2 Study Design

Most of the practitioners adopt CI with the expectation of gaining quality in
software outcomes. However, there is no common sense of what CI causes in the
results. The software development community advocates CI as an excellent tool
for helping the development of software with more quality. However, when and
how that occurs, using the science of empirical studies remains an open matter.
This lack of assay leads the community, among our previous studies presented in
the earlier chapters, to perform multiple studies to test CI relationships in many
contexts.

The current scenario of studies in this area shows that CI has a relationship
with many aspects of software quality. Many assumptions were, however, proven
to be not the absolute truth. Nevertheless, the techniques employed focused on
the seek for associations and not necessarily represent causation relationships. For
example, the first study presented in this thesis shows that CI shares a relationship
with the test ratio growth. However, we keep asking ourselves if CI was the cause
of such growth. To answer this question, we perform a causal study, applying
the method presented by Pearl et al. (PEARL, 1995) (PEARL; GLYMOUR; JEWELL,
2016).

The technique consists of expressing the causal assumptions of the real world
in a DAG that contains the known factors and the causation between them, rep-
resenting how each phenomenon relates to each other with the semantic of cause.
Furthermore, the proposed DAG is tested with data collected from real samples to
estimate the causal effect between observed factors considering its covariants and
confoundings. An overview of the approach shows that we first need to construct
the DAG and represent the relationship between the variables. Furthermore, we
must collect real data to determine if the DAG represents the truth or if it must
be adapted to another scenario. With valid assumptions expressed in the DAG,
we can finally process the theorems presented by Pearl et al. (PEARL; GLYMOUR;

95

JEWELL, 2016) to compute the probabilistic equation that represents the causal
effect between two variables in the graph. How we conduct these steps is expressed
in Fig. 23.

'$*�&RQVWUXFWLRQ 'DWD�'HILQLWLRQ�	�
&ROOHFWLRQ &DXVDO�,QIHUHQFH

6\VWHPDWLF�
/LWHUDWXUH�0DSSLQJ

7KHRU\�$XJPHQW

$VVXPSWLRQV�
'HILQLWLRQ

$VVXPSWLRQV�
7HVWLQJ

,PSRVVLEOH�&DXVDO�
,GHQWLILFDWLRQ

Figure 23: Causal Study Overview

Systematic Literature Mapping: Following the proposal presented by Pearl et
al. (PEARL, 1995), our study must start with the construction of the causal knowl-
edge in the area. In this regard, as illustrated in Fig. 23, we start our process
with the Assumptions Definition. This step focuses on the creation of a bigger
picture of the CI relationships. In other words, we start the study by gathering
information on how practitioners and researchers recognize the CI approach as
to affect software product-related aspects. To collect this knowledge, we first rely
on the assumptions reported in the literature by performing a systematic litera-
ture mapping focused to obtain any causal relationship between CI and software
factors.

The Systematic Mapping performed in this study follows the guidelines pro-
posed by Wohlin et al. (WOHLIN et al., 2012). We first performed the identifi-

cation of research, which is the step that focuses on specifying search strings
and applying them to databases to collect the candidate papers from the litera-
ture. Then we focused on the selection of primary studies and study quality

assessment, using inclusion and exclusion criteria. As the inclusion criterion, we
focused on the selection of papers that exposes a clear intention to evaluate CI
effects. To which regards the exclusion criterion, we exclude the non-peer reviewed
papers. We decided to design a very inclusive criterion since we intended to collect

96

opinions even though it was not statistically evaluated. With the papers selected,
we perform a data extraction and monitoring and data synthesis to prepare
the data to the analyses and to answer the research questions:

• RQ1 - What are the impacts of the Continuous Integration adoption on the
software outcomes?

6HDUFK�4XHU\�
6WULQJ

�$&0��,(((��6FLHQFH�
'LUHFW��6SULQJHU/LQN�DQG�

6FRSXV� ����
8QLTXH�3DSHUV

5HVHDUFKHUV������DQG��

���
6HOHFWHG�3DSHUV

)XOO�5HDGLQJ�DQG�
'DWD�&ROOHFWLRQ

Figure 24: Systematic Mapping process overview

The process executed is expressed in Fig. 24. We first query for candidate
papers on the main digital repositories for the technical literature (ACM1, IEEE2,
Science Direct3, SpringerLink4 and Scopus5). We perform a query using the search
string as follows:

TITLE-ABS-KEY ("continuous integration" AND ("impact" OR "outcome" OR
"evaluation" OR "effect" OR "relationship" OR "influence" OR "importance" OR
"consequence" OR "study"))

The search process results in 479 unique candidate papers. Two researchers
analyze each article by applying the inclusion criteria. At this point, we ensure
that the included documents show an evaluation of CI in any software aspect. We
exclude documents that explicitly introduce any new element in the CI technique
that represents a modification of the practice. If there is no consensus in the in-
clusion between the two readers, a third researcher performs the final judgemnent,

1https://dl.acm.org/
2https://ieeexplore.ieee.org/
3https://www.sciencedirect.com/
4https://link.springer.com/
5https://www.scopus.com/

97

this is the case of 34 of the 479 candidate papers. We compute the Cohen’s Kappa
Coefficients that results in an agreement of 0.7071. After the inclusion criteria ap-
plied to the 479 candidate papers, the process results in 83 papers for full reading
and data collection.

The full reading is a process performed by three researchers. We split the
dataset, so each paper is read once. However, to reduce bias, the results of the
data collection were reviewed and discussed by pairs. Each reading focused on
answering the questions presented and explained in Table13.

Table 13: Questionaire of data collection in the Systematic Mapping

Question Rationale
What are the assump-
tions presented on the
paper?

This question aims to collect each assumption that
expresses the causality of Continuous Integration in
any software aspect.

What are the variables
related to the assump-
tions?

We collect this answer to understand the criterion and
to determine if it is possible to collect the data used
to determine the assumption.

How the assumption was
validated?

This question collects how the assumption was deter-
mined and if it was statistically tested.

How many projects were
involved in the study?

This aim to determine if the study might represent a
significant dataset of observations.

There are open-source
projects involved in the
study?

This question is related to reproducibility aspects and
aims to determine if the assumption can be extended
to open source projects.

The study is based on
domain-specific projects
area? Which one?

This question is also related to reproducibility aspects
and aims to determine if the assumption can be ex-
tended to other areas or if it is exclusive to an specific
domain.

Does the study have the
potential for replication?

In this question we determine if the study has clear
potential for replication considering the reproducibil-
ity to another projects datasets.

The resulting data of the collection was furthermore encoded to assumptions
and analyzed by a pair of researchers. In some cases, we might join assumptions in

98

a more general concept, i.e., some papers may conclude similar assumptions with
different but comparable theories. In such cases, the pair of researchers decide if
it expresses the same assumption and can, consequently, joined together.

Theory Augment: One of the main contributions of our systematic literature
mapping is an overview of assumptions related to CI adoption. The resulting data
shows every possible relationship between CI and aspects of software presented in
the included papers. Despite the broad outlook provided by that, our study focuses
on investigating the relationship between two factors, i.e., continuous integration
and its effects on automated tests. The study presented in this chapter enhances
the correlation already expressed by our first analysis shown in Chapter 3.

To which regards the effect of CI on automated tests, we use the domain
knowledge of the assumptions resulted from the systematic mapping to derive a
causal theory about this relationship. The theory represents the assumptions that
might lead to an impact on the automated tests, considering the factors produced
in the systematic mapping. To construct the theory, we consider the factors that
are impacted by CI and enrich the knowledge with assumptions on how these
factors might also affect on automated tests, resulting in a representation of how
CI affect automated tests among its covariants. This theory is further expressed
in a DAG that will be analyzed with the causal inference technique.

DAG Construction: The causal inference presented by Pearl et al. (PEARL;

GLYMOUR; JEWELL, 2016) is based on a graphical representation, an DAG, of
the relationship among factors that represents the behavior of the real world. To
estimate the causal effect, we must apply the theorems presented by the authors
to determine a probabilistic equation. In our context, the real-world relationship
is obtained by the results of the systematic mapping as collected assumptions. As
we have shown in the previous section, we enhance the collected assumptions with
the knowledge that links CI and its covariants that might also lead to an impact
on automated tests. At this point in the process, we construct a DAG that must
represent our theoretical assumptions and, hopefully, the real world.

99

Data Definition & Collection: Construct a valid dag is a premise in the causal
theory proposed by Pearl et al. (PEARL; GLYMOUR; JEWELL, 2016). It means
that our assumptions must represent a valid relationship between the variables in
the real-world. At this point in the process, we have a DAG constructed by the
theory. However, we cannot proceed to the analysis without validating if that DAG
consists of an acceptable representation of the data. Thus, we define the variables
to represent each factor in our dag and collect the corresponding data to validate
our dag.

Nevertheless, our DAG may represent some variables that might be difficult
or impossible to measure. For example, it would be improbable to find a variable
feasible to collect, and that might represent the pressure that a team is subjugated
at some period of data. Although we can find a way to express that factor, it most
challenging to have it for all the projects. Thus, we define the common data that
we can collect for all projects and disregard the others. Although we do not collect
some variables it is still very important to the causal theory, i.e., the variables that
we do not expect to collect remains at the model, we only set them as unobserved
and this is crucial to compute if the causal effect still possible to compute.

To perform our analyses we consider the same project dataset presented in the
first study of this thesis. We analyze two groups of projects: (i) 82 open source
projects that have adopted CI at some point of their lifetime (CI projects) and (ii)
82 open source projects that have never adopted CI during their lifetime (NOCI
projects). Accordingly, we also collect the 12 months historical data before the
adoption of CI and 12 months after the adoption of CI for each of our CI projects
and the data corresponding to the proportional period in the NOCI projects (Sec-
tion 3.2.2). In this case, however, we encode our variables to represent dichotomy
events, i.e., binary variables. For example, if the test ratio increases from one ver-
sion to another, it will receive one. Conversely, if the test ratio does no increase, it
will receive zero. The dichotomy events represent if some phenomena occur. For
instance, if within versions the variable X causes Y , both must receive 1 because

100

both events occur.

Considering the collected variables, we further test the validity of our model. A
valid model represents only associations that hold a semantic link with the data. In
other words, every causal assumption in the DAG must express correlated data in
the real-world. In this regard, we build a correlation matrix between the variables
using the Spearman Correlation Coefficients Test (MYERS; SIROIS, 2004). Every
association in the DAG that is not supported by the p-value in the correlation
tests must be excluded, and the DAG must be reconstructed.

As the variable definition and the data collection is a process that depends
on the DAG construction, i.e., we mostly need to draw our assumptions before
performing our analyses, we present the collected data and the rationale further
in the results section.

Causal Inference: To check if our DAG can lead to an estimated value of causal-
ity between the exposure and the outcome, we apply the do-calculus method pre-
sented by Pearl et al. (PEARL, 1995) and implemented by the causaleffect6 R
package. The method consists of a set of inference rules, which can be used to
express the interventional probability distribution using only observational distri-
butions (TIKKA; KARVANEN, 2018). As the algorithm implemented in do-calculus
is considered to be complete, so there are only two possible returns of its execution:
it will return a conditional probabilistic equation that represents the causal effect
between the exposure and the outcome. If the causal effect could not be estimated,
otherwise, it will return an error.

In a complete and fully observed model, the causal effect will always be identi-
fiable. Nevertheless, we might have unobserved variables that we decide to do not
collect. In such cases, it is possible that causal effect cannot be identifiable and we
must come back to the model Data Definition & Collection and probably to the
Dag Construction. If the Causal Inference is possible, we use our data to compute
the conditional probability to represent the causal effect.

6https://cran.r-project.org/web/packages/causaleffect/index.html

101

5.3 Results

In this section, we will present the results of our study according to the plan-
ning explained in the previous section. Here we show the results of the systematic
mapping as the assumptions that represent the overviews of the CI causality ex-
pressed in the Literature. Furthermore, we show the resulting theory that maps
the causality between CI and automated tests. Finally, we analyze our theory to
estimate the causal effect between CI and automated tests.

5.3.1 Mapping Causal Assumptions

One of the main contributions of this work is the overview of the assumptions
established about CI and its causality. The main focus of this subsection is to
determine and draw a broader image of how the community, including researchers
and practitioners, considers the CI causality. The first question aimed to be an-
swered in the systematic mapping is to determine what are the impacts of the

Continuous Integration adoption on the software outcomes? As shown
in previous section, in order to answer this inquiry, we map all the assumptions
in our canditate papers about factors that CI might impact on. The resul of this
investigation can be summarized in the Fig.25.

Fig.25 represents all the causality assumptions, direct or indirect, that we
found following the systematic mapping process. We draw a graph to present an
overview of the results that represent the causality landscape; however, that is
not our DAG yet. We will cover the DAG development in further sections. Nev-
ertheless, the causal analysis with DAG requires an understanding of real-world
relationships. The Appendix A presents a summarized view of the relationships.
The % represents a direct relationship between the variables and the & an indi-
rect relationship. Additionally, to explain the rationale behind the assumptions,
we provide a swift description of each relation in the graph to provide shared
knowledge to researchers that may enhance our study in the near future.

102

AutomatedTests

CI

BuildDuration

WorkExposition
IntegrationFrequency

BuildStability

CommitswithNegativeSentiment
CCQ

PullRequestsSubmissions

CommitSize

CommitFrequency

IssueDetection

DifficultiesofIntegration
DevelopersConfidence

TestCoverageStability

ManualEffort

CodeQuality

DocumentationQuality

DevelopmentIterationsSize

MultipleEnvironmetTesting

SoftwareQuality

TestQuality

TeamPressure

TeamMotivation

DeploymentEfficiency

ReleasesCycles
SoftwareMonitoring

TeamCommunication

TeamProductivity

PullRequestsIntegrationTime

IntegrationQueue

DifficultiesofBuildFailuresTroubleshooting

Magnetism

PullRequestsIntegration

IssuesResolution

TeamWork

CodeReviewPerformance

PullRequestsDeliveryTime

PullRequestsClosingRate

Stickness

DeveloperSatisfaction

Refactoring

Feedback

DevelopmentShortCutsDistractFlow

SoftwareStability

StakeholderSatisfaction

Figure 25: Systematic Mapping assumptions overview

103

CI % AutomatedTests : Among our first study (Chapter 3), where we in-
vestigate the relationship between CI and the volume of tests in an application,
other studies also investigated this question. Johnson et al. (JOHNSON; EKSTEDT,
2016) proposed a theory which states that CI increases the effort on test devel-
opment and consequently improve the automated tests. Gupta et al. (GUPTA et

al., 2017a) performed a survey and found that, in terms of testing, after some (ex-
pected) initial adjustments, the amount (and potentially the quality) of automated
tests seems to increase. Additionally, multiple cases studies (STÅHL; BOSCH, 2013;
YUKSEL et al., 2009; WILSON, 2009), applied to different contexts, found that there
is a relationship between continuous integration and the increase of automated
tests. Our first study complements the previous and related work by introducing
a broader approach with substantial projects dataset and introducing statistical
methods to compare CI and automated test evolution.

CI & ManualEffort • AutomatedTests & ManualEffort : Pinto et al.
(PINTO et al., 2018) performed a survey with 158 CI users, and, among other
conclusions, the authors expressed that adopting CI helps to automate manual
steps on the development. Additionally, the theory proposed by Johnson et al.
(JOHNSON; EKSTEDT, 2016) argues that manual effort also decreases an effect on
the increase in automated testing.

CI % SoftwareQuality • CI % CodeQuality • CI % TestQuality •
CI % DocumentationQuality : With respect to software quality, studies have
proposed the assumptions that represent a positive relationship between CI and
the gaining of quality in software aspects (PINTO et al., 2018; KAYNAK; ÇILDEN;

AYDIN, 2019; WILSON, 2009). More specifically, to which regards the code quality,
the results of the survey presented by Pinto et al. (PINTO et al., 2018) improves
software quality in various aspects, including by improving the quality of code.
Embury et al. (EMBURY; PAGE, 2018) and Hilton et al. (HILTON et al., 2017b) also
validated this assumption in a case study with students and a survey, respectively.
The work of Pinto et al. (PINTO et al., 2018), also studied the software quality

104

in a more specific concern, including the assessment of Documentation Quality
and stating that CI improves the software in this aspect. The assumption that CI
also improves the test quality also appears in the survey proposed by Pinto et al.
(PINTO et al., 2018) and (HILTON et al., 2017b).

BuildDuration & CodeQuality •TestCoverageStability % CodeQual-

ity • IntegrationFrequency % CodeQuality : Regarding the impact of CI in
the Code Quality, additionally to works that studied the direct relationship, some
works investigated the effect through its covariances. Our second study (Chapter
4), where we explore the degree of CI adoption and code quality, shows that Build
Duration shares a negative effect on the Code Quality, i.e., longer builds are related
to worse code quality in terms of issues in SonarCloud. The same study also shows
that maintaining a high Test Coverage Stability is likely to be associated with an
increase in Code Quality. Furthermore, although our research concludes that code
quality is not related to Integration Frequency, the work proposed by Rahman
et al. (RAHMAN; ROY, 2017) shows a significant relationship between Integration
Frequency and the quality of code reviews. This relationship might be expressed as
an enhancement on the code quality control process and, consequently, influence
the code quality.

CI % DevelopersConfidence • AutomatedTests % DevelopersConfi-

dence • DevelopersConfidence & IntegrationFrequency • CI % Work-

Exposition • WorkExposition & DevelopersConfidence : Developers Confi-
dence is the degree of how secure the developers feel to contribute by coding in a
project. Multiple surveys evidentiate that CI may improve the Developers Confi-
dence (PINTO et al., 2018; SU et al., 2013; HILTON et al., 2017b, 2016c). This assump-
tion might relate to the interview results shown by Mårtensson et al. (MÅRTENS-

SON; STÅHL; BOSCH, 2017) that the increase in the degree of automated tests
also leads to an improvement in the Developers Confidence and, consequently, in-
creases the Integration Frequency. Adversely, these assumptions contradict what is
exposed by the interviews presented by Debbiche et al (DEBBICHE; DIENÉR; SVENS-

105

SON, 2014), which shows that CI may also increase the Work Exposition, i.e., CI
developers are worried about integrating low-quality code that could be questioned
by experts and managers. Thus, the authors conclude that Work Exposition may
reduce Developers’ Confidence.

CI & DevelopmentIterationsSize • CI & ReleasesCycles •: Pinto et
al. (PINTO et al., 2018) show that practitioners believe that CI faster development
cycle. This assumption relates to the survey proposed by Hilton et al. (HILTON

et al., 2017b), which concludes that CI allows faster iterations and shorter releases
cycles (KAYNAK; ÇILDEN; AYDIN, 2019; HILTON et al., 2016c; LAUKKANEN et al.,
2018).

CI % SoftwareStability • CI % TestCoverageStability • CI % Is-

sueDetection • AutomatedTests % IssueDetection • IssueDetection %
SoftwareStability• CI % IssuesResolution : One of the most benefits advo-
cated by CI practitioners is that it helps in building more stable projects. Our
first study, presented in Chapter3 shows that this stability is related to an con-
sistent testing and test coverage stability. Lai et al. (LAI; LEU, 2015) relate this
phenomenon with the fact that CI help to reduce various risk (e.e., testing, inte-
gration, communication, quality, and productivity risks). Yuksel et al. (YUKSEL

et al., 2009) presented a case study that complies with this assumption, mostly
relating the stability with a consistent presence of automated tests. Additionally,
the early and more efficient issue detection is one of the most advocated benefits
of CI adoption (PINTO et al., 2018; KAYNAK; ÇILDEN; AYDIN, 2019; HILTON et

al., 2017b; VASILESCU et al., 2015b; HILTON et al., 2016c; AMRIT; MEIJBERG, 2017;
KOCHHAR et al., 2019; MELLEGARD et al., 2018; STÅHL; BOSCH, 2013), causing an
improvement in the software stability. Finally, according to Beller et al. (BELLER;

GOUSIOS; ZAIDMAN, 2017a), testing is the single most important reason for in-
tegration to break, sharing a direct relationship of improvement between issue
detection. This improvement of the issue detection process is also followed by a re-
lationship among CI and an improvement in the issue resolution process (RAHMAN

106

et al., 2018; GUPTA et al., 2017a; ZAYTSEV; MORRISON, 2013).

CCQ % IssueDetection • CCQ & BuildStability • AutomatedTests

% CCQ : Adversely to what presented before, where Beller et al. (BELLER;

GOUSIOS; ZAIDMAN, 2017a) considers that improving issue detection may improve
software stability, some may consider that detection more issues will lead to more
instability on the build. In other words, detecting issues only improves software
stability if there is an effort to fix those issues. This aspect is evident by the as-
sumptions proposed by Zampetti et al. (ZAMPETTI et al., 2017), which says that
Continuous Code Quality (CCQ) improves the issue detection, which is explained
by the new verification rules attached to the build pipeline and that will raise
more errors. However, according to the authors, this leads to a decrease in soft-
ware stability, mostly because with more rules the builds will break more often.
This point of view shows that CCQ must be followed by a continuous refacoring
environment (VASSALLO; PALOMBA; GALL, 2018) and, as shown in Chapter4, with
a high disciplined CI environment (e.g., by performing efficient testing) in order
to perceive its benefits.

CI % TeamProductivity • CI % DeploymentEfficiency • CI % Pull-

RequestsDeliveryTime • CI & PullRequestsIntegrationTime • CI %
PullRequestsClosingRate • CI % PullRequestsSubmissions • CI % Pull-

RequestsIntegration • IntegrationFrequency % PullRequestsIntegration

• PullRequestsSubmissions & BuildStability : Another impact of CI that is
perceived by practitioners and researchers is related to the productivity of the
project. According to the literature, CI is related to an increase in team per-
formance in various ways (KAYNAK; ÇILDEN; AYDIN, 2019; HILTON et al., 2017b;
VASILESCU et al., 2015b; STÅHL; BOSCH, 2013; ZAYTSEV; MORRISON, 2013). Sur-
prisely, this productivity was reported as negativelly related to the degree of au-
tomated tests in a project (GREN, 2017). It was also reported as an aspect that
leads to an improvement in the deployment efficiency (SU et al., 2013; HILTON et

al., 2017b). More specifically, multiple works investigate the productivity regarding

107

aspects related to Pull Requests. Bernardo et al. (BERNARDO; COSTA; KULESZA,
2018b) show that CI is related to an increase in the pull request delivery time,
i.e., delivering slowly after the adoption. Despite this, the author, among other
reports (YU et al., 2016; HILTON et al., 2016c), shows that the pull request inte-
gration time is reduced (BERNARDO; COSTA; KULESZA, 2018b), meaning that CI
integrates pull requests quickly even though it is delivered slowly to the releases.
Additionally, the improvement trend is also perceptive when considering pull re-
quests closing rate (GUPTA et al., 2017a). Conclusively, CI projects receive and
integrate more pull requests (BERNARDO; COSTA; KULESZA, 2018b; VASILESCU et

al., 2015b). When considering the indirect effects, the increased integration fre-
quency also relates to an increase in the pull requests integration (ZAMPETTI et

al., 2019). Finally, when perceived an increase in the pull requests submissions, it
might cause some significant build instability (RAUSCH et al., 2017).

CI % IntegrationQueue • BuildDuration % IntegrationQueue • Inte-

grationFrequency % CodeReviewPerformance • CI % CodeReviewPer-

formance • CI % Refactoring : In addition to the previous assumptions about
CI and the aspects of team performance, we might consider the side effect that CI
may also cause an increase in integration queue (YU et al., 2016). In other words,
projects with long builds may cause team performance loss since the developers
tend to wait until the build to pass to progress with their work (BROOKS, 2008b).
The integration frequency is also considered to be related to code review perfor-
mance, i.e., the most frequent are the integrations, and consequently, the higher the
degree of CI, the better the process of code review (RAHMAN; ROY, 2017; YU et al.,
2015). Analog to that, CI is considered to improve the code refactorings (YUKSEL

et al., 2009).

CI % BuildStability • IntegrationFrequency % BuildStability • Com-

mitSize & BuildStability : The mapping of the literature assumptions shows
multiple references to the fact that CI may affect build stability. It is possible to
perceive that this factor is related to CI in many ways. Some studies reported

108

that there are perceptions that CI increases the build stability (HILTON et al.,
2017b, 2016c), just like an increase in the integration frequency is also perceived to
be associated with this factor (HILTON et al., 2016c). Notwithstanding, it is crucial
to notice that we have many covariants that are improved by CI, and that impacts
negativelly to build stability. For example, among other examples aforementioned,
big commits are likely to be associated with instability on build (LAUKKANEN;

MÄNTYLÄ, 2015).

CI % CommitSize • CI % CommitFrequency • CommitFrequency

% CommitSize • CommitFrequency % DifficultiesofIntegration • Diffi-

cultiesofIntegration & IntegrationFrequency • CommitSize % Integra-

tionFrequency • CommitSize % Refactoring • CommitSize % Develop-

erSatisfaction • CommitSize % DifficultiesofBuildFailuresTroubleshoot-

ing : As observed above, commit size is also a key concept that is associated with
CI and its covariances. Small commits are considered to be a good practice in soft-
ware development, although it is hard to define this metric. Rahman et al. (RAH-

MAN et al., 2018) perceived that CI projects are associated with big commits and
alto to an increase in the project commit frequency. In parallel, Laukkanen et al.
(LAUKKANEN; MÄNTYLÄ, 2015) show that low commit frequency may be related to
the big commits that might lead to difficulties of integration, which, consequently,
leads to low integration frequency (MÅRTENSSON; HAMMARSTRÖM; BOSCH, 2017).
Complementary, projects with small commits are associated with higher integra-
tion frequency (STARON et al., 2018), projects with more code refactorings, devel-
oper satisfaction, and a decrease of build failures troubleshooting (LAUKKANEN;

MÄNTYLÄ, 2015).

CI % TeamCommunication • CI % TeamWork • CI % Stakehold-

erSatisfaction • CI % TeamPressure • CI & Magnetism • CI & Stick-

ness : CI is directly linked to agile teams and has been used as a tool to support
some of the best practices of agile development. Team communication is crucial
to the agile process, and CI is observed to be associated with an increase in that

109

aspect. CI is seen by practitioners as a methodology that helps to improve team
communication and team Work (KAYNAK; ÇILDEN; AYDIN, 2019; STÅHL; BOSCH,
2013; RAHMAN et al., 2018). Additionally, it is recognized to improve stakeholders’
satisfaction (FERREIRA; COHEN, 2008). However, CI might adversely increase the
team pressure to deliver more often and with more quality (DEBBICHE; DIENÉR;

SVENSSON, 2014). Yet it may be related to the magnetism and stickiness of de-
velopers, meaning that it can be related to the fact that the project attracts and
retains fewer developers (GUPTA et al., 2017b).

CI % SoftwareMonitoring • CI & DifficultiesofBuildFailuresTrou-

bleshooting • CI % MultipleEnvironmetTesting : The overview of the CI
practice shows that it goes beyond the build system; it includes a set of practices
and premisses that must be observed. However, the tooling around CI is crucial
to the success of the practice. This aspect must bring automation to its fullest.
Regarding this automation, additionally to the previous assumptions, practition-
ers claim that CI improve the software monitoring (KAYNAK; ÇILDEN; AYDIN,
2019; EMBURY; PAGE, 2018). And, conversely, to what conclude Laukkanen et al.
(LAUKKANEN; MÄNTYLÄ, 2015), with success on the monitoring, it might lead to a
decrease in the difficulties of build failures troubleshooting. The tooling associated
with the CI environment also might facilitate the multiple environment testing,
which may be a complex setup without the proper intruments (PINTO et al., 2018;
HILTON et al., 2017b; BELLER; GOUSIOS; ZAIDMAN, 2017a; ZAYTSEV; MORRISON,
2013).

CI & BuildDuration • BuildDuration & TeamMotivation • Build-

Duration & Feedback • BuildDuration & IntegrationFrequency • Build-

Duration & CommitFrequency •BuildDuration % DistractFlow •Build-

Duration & Refactoring • Finally, despite the clear evidence that CI is far more
than only a build system tooling, it is obvious that CI has an intrinsic relationship
with builds. Yuksel et al. (YUKSEL et al., 2009) presented evidence in a case study
that CI may improve builds and decrease the build duration if it is properly con-

110

figured. However, this relationship with build duration might consider many other
variables, and this may not always be true. It might depend on the proper build
configuration, the project size, and the volume of test cases (GHALEB; COSTA; ZOU,
2019a). Nevertheless, keeping the build faster is a good practice. In fact, a long
build duration may share a relationship with a low team motivation (DEBBICHE;

DIENÉR; SVENSSON, 2014; WIDDER et al., 2019b; LAUKKANEN; MÄNTYLÄ, 2015)
and to an impediment on feedback and to integration frequency (LAUKKANEN;

MÄNTYLÄ, 2015). Additionally, long build duration may impact to a decrease in
team productivity (HILTON et al., 2017b; BROOKS, 2008b) and might lead devel-
opers to commit less frequent (LAUKKANEN; MÄNTYLÄ, 2015) and to implement
more shortcuts (i.e., workarounds) (LAUKKANEN; MÄNTYLÄ, 2015). Finally, long
build duration difficulties the code refacoring (BROOKS, 2008b) and also distract
the developer’s focus (LAUKKANEN; MÄNTYLÄ, 2015).

This section presented an overview of CI and its relationship with multiple
software aspects. We draw a broad scenario with all the hypothesis on how CI might
impact on software. In the next sections, we focus on the relationship between CI
and automated tests to present a theory about how CI may cause an improvement
o the volume of tests.

5.3.2 On the continuous integration effect in Automated

Tests, an causal theory

The previous section provides a broad overview of the relationships between
CI and factors on software development. The literature shows that many research
works have been studying CI and its benefits, however, many of the results are
based only on the practitioner’s perception and some does not provide statistical
tests or substantial dataset analysis to test the findings statistically. However, we
consider the dataset of hypotheses presented in the literature as a true represen-
tation of real-world knowledge, even though we know that some assumptions hold
only for specific domains or scenarios.

111

In this chapter, we dive deeper into a specific association between CI and au-
tomated tests. with the expectation of finding a causal relationship between them.
Our previous study (Chapter3) shows that CI shares a small relationship with an
increase in the test volume in projects that have adopted CI. Notwithstanding,
our first study disregards the complex relationships among CI presented by our
systematic mapping. A causal inference should consider that covariants and con-
founding might represent bias and any correlation may lead to a wrong inference
of causal relationship.

To perform our causal analysis, we must first consider how CI is correlated to
automated tests. For that, we consider not only the assumptions presented before.
We further increase it with theory assumptions. In this section, the theory means
that we considered every association between CI and the factors presented in the
systematic mapping study increased with new relationships that may represent
the truth and is absent from the review. Figure 26 shows how we encode our
theory. Grey arrows represent the assumptions founded in the literature, while
green arrows were introduced to complete the causal relationships with wisdom
knowledge. We keep from the systematic mapping only the assumptions that might
affect automated tests. Tables 14 and 15 provides the rationale behind each edge
on the graph.

As Figure 26 represents a causal theory, and every causal effect must hold a
correlation between the variables, testing the assumptions to obtain a valid DAG
is crucial. Moreover, we must collect real-world data to check if our DAG might
represent the truth. It would be necessary, therefore to determine variables that
may represent each one of our factors.

In our data collection, we do not propose to collect data for all of our variables.
Consider, for example, that it would be improbable to find a scalable manner to
represent how frequently projects perform integration if it is related to projects
that do not use CI. Defining the integration frequency on CI projects might be
consensus using Travis CI API but improbable to NOCI projects. As the approach

112

Table 14: Theory Assumptions

Assumption rationale
Complex Changes (+-) Automated

Tests

Complex changes may be hard to test and

may decrease the test volume

Developers Experience (++) Auto-

mated Tests

Core developers, the ones that contribute

frequently, may be more test-driven than

sporadic developers and may increase the

test volume

CCQ (++) Automated Tests As much as the project checks for quality,

it may check also for tests (e.g., coverage

check)

Integration Frequency (++) Auto-

mated Tests

The integration frequency is an degree of

CI activity and more active periods may in-

crease Automated Tests

Issues Resolution (++) Automated

Tests

Solving an issue may include new test-case

to ensure the issue fixing

Project Activity (++) Automated

Tests

More code activity on the project may rep-

resent more developers coding and conse-

quently more tests being developed

Project Age (++) Automated Tests We consider that increasing tests is a trend

over the time

Project Size (+-) Automated Tests Big projects are hard to test may difficult

the test to co-evolve with production code

Pull Requests Integration (++)

Automated Tests

Pull Requests politcy may include tetsts ver-

ification and may increase test volume

Team Size (++) Automated Tests Big teams may include more test policies and

may increase test volume

Time Pressure (+-) Automated

Tests

Time pressure may decrease the effort on

tests due to priority to deliver production

code

Project Activity (++) Integration

Frequency

More coding activity on the project may in-

crease the integration frequency

CCQ (++) Code Quality More quality checks may increase the code

quality

Automated Tests (++) Issue De-

tection

Automated tests tend to detect issues early

and may increase the number of issue detec-

tion

CI (++) CCQ CI enable the integration with CCQ tools

and may increase the frequency of quality

checks

Project Age (+-) Commit Fre-

quency

Old projects tend to have fewer commits

Commit Frequency (++) Project

Activity

More commits may cause more coding activ-

ity

Issue Detection (+-) Build Stability More issue detection may cause more insta-

bility on the builds

CI (++) Integration Frequency CI increases the integration frequency

113

Table 15: SLR Assumptions

Assumption rationale
CI (++) Automated Tests CI increases the volume of tests

Complex Changes (+-) Build Sta-

bility

Complex changes has more potential to

break builds

CI (++) Build Stability CI increase build stability, i.e., builds tend

to break less with CI

Developers Experience (++) Build

Stability

Experienced Developers commits break less

builds

CCQ (+-) Build Stability CCQ tools increase the build checks which

increase build breakage

CCQ (++) Issue Detection CCQ tools increase the build checks with

new issue types

Integration Frequency (++) Build

Stability

As projects integrate more frequently, it in-

creases the build stability

Build Duration (+-) Integration

Frequency

Long builds decreases integration frequency

CI (++) Issues Resolution CI helps team to fix more issues and early

Project Age (+-) Project Activity As project age the coding activity decreases

Project Age (++) Build Stability As project age the build stability increases

Project Size (++) Build Duration Bigger projects tend to have longer build du-

ration

Team Size (++) Build Duration Projects with bigger teams tend to have

longer build duration

Build Duration (+-) Commit Fre-

quency

Long build duration decreases the commit

frequency since the devs tend to wait the

build to pass

CI (+-) Build Duration CI decrease build duration

Build Duration (+-) Code Quality Longer build duration generates low code

quality

CI (++) Pull Requests Integration CI increases the number of pull requests in-

tegration

Integration Frequency (++) Pull

Requests Integration

More integration frequency also cause more

pull requests integration

Team Size (++) Commit Fre-

quency

Projects with bigger teams tend to have

more frequency of commits

Team Size (+-) Build Stability Projects with bigger teams tend to have

more buils instability

Time Pressure (+-) CCQ Teams tend to not do code quality checks on

time pressuring

114

ComplexChanges

DevelopersExperience

CCQ

IntegrationFrequency

IssuesResolution

ProjectActivity

ProjectAge

ProjectSize

PullRequestsIntegration

TeamSize

TimePressure

AutomatedTests
CI

CommitFrequency

IssueDetection

BuildDuration

CodeQuality

BuildStability Relationship
SLR

THEORY

Figure 26: Causal theory of CI effect on the Automated Tests

proposed by Pearl et al. (PEARL; GLYMOUR; JEWELL, 2016), through the theo-
rems of backdoor and front-door adjustment, shows that it is possible to determine
causal effect even with unobserved variables, so we decide to collect only the vari-
ables that are feasible to collect for all projects. Thus, we mark TimePressure,
BuildDuration, BuildStability, CCQ, IntegrationFrequency, CodeQuality, IssueDe-
tection, and IssuesResolution as unobserved. If some of these are proven to be
indispensable to the causal inference, we might come back and refactor our defini-
tions. Table 16 shows the remaining variables used to instrument the data of our
DAG and to perform our analyses.

Even though we chose to not observe some variables due to the unfeasibility
of data collection, our DAG is considered by our analyses as the representation of
the truth. Therefore, we further need to test the associations with the collected

115

Table 16: Theory Factors Variables

Factor variable
Automated Tests Test ratio in the end of the period

CI CI / NOCI period (Binary variable that represents if the project was

using CI during the period)

Commit Fre-

quency

commits in the period

Complex

Changes

Median code chrun of the commits in the period

Developer Expe-

rience

To compute the experience, we attach a score for each contributor in the

project, which is the number of commits that each one made during

the overall period (i.e., two years). This metric computes the overall

experience attached to the version which represents the sum of all dev

experience scores

Project Activity Total code frequency, in terms of commits, in the period

Project Age Repository age, in months, at the end of the period

Project Size CLOC at the end of the period

Pull Requests In-

tegration

of Pull Requests integrated during the period

Team Size # total of contributors in the version

data.

Our data collection considers the settings proposed in the first study of this the-
sis (Chapter3). Thus, we collect data of two years for 82 CI and 82 NOCI projects
considering monthly versions. In the causal analysis proposed in this chapter, we
encode the variables as binary, i.e., dichotomic zero or one. One represents an
increase of that variable when compared to the previous version and zero other-
wise. For example, if the project activity increases from one version to another,
and the automated test ratio decreases, it would be represented a pair of 1 and 0,
respectively.

Finally, we perform a spearman correlation tests, implemented by the function

116

rcorr of the Hmisc7 R package, to generate a matrix of correlation p-values between
our variables.

pro
jec
t_a
ge

tes
t_r
ati
o

is_
cip
eri
od

is_
cip
roj
ec
t

me
dia
n_
ch
an
ge
s_
co
mp
lex
ity

tot
al_
ve
rsi
on
_a
ctiv
ity

pro
jec
t_s
ize

co
mm
it_
fre
qu
en
cy

pu
ll_r
eq
ue
sts
_in
teg
rat
in

ve
rsi
on
_o
ve
rra
l_e
xp
eri
en
ce

tea
m_
siz
e

project_age

test_ratio

is_ciperiod

is_ciproject

median_changes_complexity

total_version_activity

project_size

commit_frequency

pull_requests_integratin

version_overral_experience

team_size

0 0.2 0.6
Value

0
20

40
60

80

Color Key
and Histogram

C
ou
nt

Figure 27: Correlation tests between theory factors

Figure 27 shows that our assumptions holds statistically significant correla-
tions. However, the variable ProjectAge shows non-significant p-value to reject
the null hypothesis. One explanation for that might be the fact that we consider
only two years of data on the activity period of the projects. It may not represent
enough period for the projects to be affected by time issues. Consequently, we
discard all edges relate to Project Age from our theory since it does not carry a
relationship to the real-world collected data. Figure 28 draws out a theory contain-
ing the remaining causal assumption and disregarding the rejected assumptions.
In the next section, we check if the DAG is suitable to perform causal inferences.

7https://www.rdocumentation.org/packages/Hmisc/versions/4.3-0/topics/rcorr

117

ComplexChanges

DevelopersExperience

CCQ

IntegrationFrequency

IssuesResolution

ProjectActivity

ProjectSize

PullRequestsIntegration

TeamSize

TimePressure

AutomatedTests

CI

CommitFrequency

IssueDetection

BuildDuration

CodeQuality

BuildStability

Relationship
SLR

THEORY

Figure 28: Final theory DAG after the correltion data rejection

118

5.3.3 Causal Inference

In this section, we provide an analysis of the total causal effect of CI in the
automated tests. As an important aspect of the analysis and fundamental to the
application of the theorems proposed by Pearl et al. (PEARL; GLYMOUR; JEWELL,
2016), we first identify the open paths, causal and biasing, between the exposure
and the outcome. We use the function ggdag_paths from the ggdag8 R package to
compute the open paths and draw the graph as shown in Figure 29. As illustrated
in the figure, our DAG contains six open paths between CI and automated tests, all
causal paths, and none biasing paths. Surprisingly, despite the apparent complexity
of the relationships in the DAG, we do not need to adjust for any variable to express
the causal effect. This is also manifested by the result of the ggdag_adjustment_set,
also from the ggdag R package, which computes the minimal adjustment set as an
empty set for our scenario.

CI

AutomatedTests

BuildDuration

CI

CommitFrequency IntegrationFrequency

ProjectActivity

PullRequestsIntegration

AutomatedTests

BuildDuration

CI

CommitFrequency

ProjectActivity

AutomatedTests

BuildDuration

CI

IntegrationFrequency

AutomatedTests

BuildDuration

CI

CommitFrequency IntegrationFrequency

ProjectActivity

AutomatedTests

BuildDuration

CI

IntegrationFrequency

PullRequestsIntegration

AutomatedTests

4 5 6

1 2 3

4 5 6 7 4 5 6 7 4 5 6 7

4.0

4.5

5.0

5.5

6.0

4.0

4.5

5.0

5.5

6.0

x

y

path

a open path

Figure 29: Final theory DAG after the correltion data rejection

Computing the causal effect consists in the discovery of the conditional prob-
8https://cran.r-project.org/web/packages/ggdag/index.html

119

ability equation that explains the occurrence of the outcome phenomena. Pearl et
al. (PEARL; GLYMOUR; JEWELL, 2016) proposed the do-calculus function that com-
prehends the estimation using the proposed theorems (i.e., applying the front-door
and the backdoor adjustment). The do-calculus will return an error if the causal
effect might not be estimated and will return the probability function otherwise.
To compute the do-calculus theorems, we rely on function causal.effect from the
causaleffect9 R the package. The function outcomes the following equation when
we provide our DAG and asks for the causal effect of CI in the AutomatesTests:

X

CC,DE,PS,TS,CF,PRI,PA

P (AutomatedTests|CC,DE, PS, TS, CI, CF, PRI, PA)

P (PA|TS,CF)

P (PRI|CI)

P (CF |TS)

P (TS)

P (PS)

P (DE)

P (CC)

(5.1)

We shorten the terms in the equation as CC (ComplexChanges), DE (Devel-
opersExperience), PS (ProjectSize), TS (TeamSize), CF (CommitFrequency), PRI
(PullRequestsIntegration) and PA (ProjectActivity). The fact that do-calculus re-
turned the equation represents that the causal effect may be estimated. However,
this is not the best equation possible since the package does not simplify the result
and it computed the backdoor criterion considering unnecessary data adjustment.
As our exposure variable CI is exogenous, we can follow the backdoor adjustment

9https://cran.r-project.org/web/packages/causaleffect/vignettes/causaleffect.pdf

120

criterion with the empty set to the adjustment formula, and we can estimate it as
a univariate regression. Thus, our equation can be expressed as the probability of
the joint distribution like followed:

P (AutomatedTest|CI) (5.2)

Computing our conditional probability, the effect of CI on the automated tests
results in 0.5465769. This result shows that adopting CI expresses nearly 54%
of probability to consequently cause an increase in the test ratio of the project
versions. As a complement to the understanding of this value, we can filter our
dataset to select the events where continuous integration was not present, i.e.,
NOCI periods. In such cases, the probability of having an increase in test ratio,
even though there is no continuous integration associated, is nearly 32%. We argue
that an improvement of nearly 22% is a considerable effect, given our context.

According to Pearl (PEARL; GLYMOUR; JEWELL, 2016), causation studies go
beyond the statistics as it allows to uncover workings of the world that traditional
statistics methods alone cannot. Our previous results show that CI is indeed as-
sociated with improvements in the test ratio, for that we compare two samples,
CI and NOCI projects. In this chapter, we enhance our analyses by introducing
the causal perspective and showing how the real-world variables interact between
them and constructing a causal model that leads us to conclude that, considering
the goodness of our model, CI causes a positive and substantial impact on the test
ratio of projects.

5.4 Threats to the Validity

Construct Validity. The construct threats to validity are concerned with
errors caused by the methods that we use to collect and model our data. For

121

this study, we rely on data collected from the GitHub APIs. We propose a set
of variables to represent each aspect that CI might impact, these variables may
have multiple interpretations, and many were not represented in our definitions.
To minimize this bias, we ensure in our analyses that our variables are really
correlated with their possible cause, meaning that our specification is feasible.
To the variables that do not hold the correlation, i.e., the causal effect was not
expressed in the data, we discard the relationship.

Internal Validity. Internal threats are concerned with the ability to draw
conclusions regarding the relationship between the exposure variable (i.e., in our
case, the CI adoption) and the outcome variable (e.g., the automated tests volume).
We acknowledge that the associations resulting in the systematic mapping might
not be complete to express the CI and all its effects. Although we perform a
systematic approach to gather all information in the literature, we acknowledge
that some assumptions might not be represented either because we miss some
paper or because there are open questions to be answered by the community. In
future works, we plan to extend our systematic mapping, including Snowballing
papers, and enhance our DAG with more knowledge.

External Validity. External threats are concerned with the extent to which
we can generalize our results. We cannot generalize our results to other projects
with different domains, skill-sets and sizes. We also cannot generalize our results to
private companies settings as the practices enforced in a corporate setting might
differ from those performed in an open source project. Nevertheless, we collected
a consistent dataset that is representative to the open-source community.

5.5 Conclusion

In this thesis, our previous works invested in the relationship between CI and
software quality. The essence of these works investigates how CI is observed to be
associated with some software quality aspects. Our first results show that CI has a

122

association with quality outcomes. However, despite the meaningful contribution
that helps researchers and practitioners to understand this relationship, we can
not state that CI causes better quality. The reason for this limitation is that our
previous work does not observe the power of covariances and confoundings on the
CI and quality associations.

The work presented in this chapter is designed to complement the results
gathered before. In this case, we perform a wider outlook on the CI environment
to observe the factors outcoming from it and the interrelationship between these
factors. In this chapter, we present a pioneering study that goes beyond the corre-
lation tests to investigate the estimated causal effect of CI adoption and its impact
on automated tests. Thereby, we apply a causal inference using directed acyclic
graphs and probabilistic methods to determine the causal effect of CI in automated
tests. We highlight the following results:

• We perform a Systematic Mapping that helps researchers and developers to
understand CI and its effects in a broader view. Our results show that the
relationship between CI and software factors is not always straightforward,
and there is a lack of empirical research studies that explain some aspects.

• Despite the CI adoption trade-offs, our causal modeling shows that it is
likely to be associated with improvements in software quality. Additionally,
it employs a considerable positive causal effect on the volume of automated
tests (nearly 54% of probability).

Overall, our results lead us to conclude that, considering the scenario of our
theory, CI causes an enhancement on the quality with a high likelihood to cause
an increase in the volume of automated tests.

123

6 Related Research

In this chapter, we position our work with respect to the related research.
We discuss the works about CI with regarding of Continuous Code Inspection

& Software Quality in CI (Section 6.1) and Software Test Evolution &

Coverage in CI (Section 6.2).

6.1 Continuous Code Inspection & Software Qual-

ity in CI

Hilton et al. (HILTON et al., 2016b) analyzed 34, 544 open source projects
from GitHub to understand which CI tools are mostly used by developers. They
analyzed 1, 529, 291 builds from the mostly used CI tools to better understand
how developer use CI. They observe that CI helps projects to release new versions
more often and the overall percentage of projects using CI continues to grow. Our
research differs from the work by Hilton et al. (HILTON et al., 2016b), since our
focus is to understand the relationship between CI and quality outcomes.

Vasilescu et al. (VASILESCU et al., 2015a) studied the quality and productivity
outcomes regarding CI on GitHub. The authors analyzed the code quality (e.g.,
number of bug reports raised in a project each month) and team productivity (e.g.,
efficiency on pull requests integrations). Their findings reveal that CI improves the
productivity without reducing code quality. Vassallo et al. (VASSALLO et al., 2018)
investigated a core principle behind CI, the Continuous Code Quality, which in-

124

cludes automated testing and automated code inspection. Their results reveal a
strong dichotomy between theory and practice: developers do not perform contin-
uous inspection. Instead, developers control the code quality only at the end of a
sprint and, most of times, only on the release branch. Our work addresses quality
by analyzing trends in test code. We use the test size (n_test_loc) to study the
test ratio metric, which is the number of lines of code of automated tests over
the total lines of the analyzed system. We use the test ratio overtime to discover
trends. We compare the test ratio trends between CI and NOCI projects (Chap-
ter 3). We also complement the observations regarding quality and CI by studying
the relationship between CI and CCQ (Chapter 4).

Felidré et al. (FELIDRÉ et al., 2019) inspected 1,270 open-source projects that
use TravisCI to quantitatively study how frequently CI has been misused. Felidré
et al. (FELIDRÉ et al., 2019) study projects that perform (i) infrequent commits,
(ii) poor test coverage, (iii) slow fix of broken builds, and (iv) long-running builds.
Marcilio et al. (MARCILIO et al., 2019) studied whether the code violations reported
by projects on SonarCube tool were indeed fixed over time. They analyze two
open-source projects (Eclipse and Apache), and two Brazilian companies: the Fed-
eral Court of Accounts (TCU) and the Federal Police (PF) and observe a low
resolution rate of code violations (only 13%) in all studied organizations. We also
study code violations (e.g., bugs and code smells). However, inspired by the work
of Felidré et al. (FELIDRÉ et al., 2019), we research how the adherence to the CI best
practices are related to software quality outcomes (i.e., code violations metrics).

6.2 Software Test Evolution & Coverage in CI

Code coverage is the degree to which the source code of a program is executed
by automated tests. The larger the coverage the more of the source code is exercised
by the tests and the greater the possibility of finding a latent problem. There are
several metrics to represent code coverage (ELBAUM; GABLE; ROTHERMEL, 2001),

125

such as statement coverage and branch coverage. Statement coverage represents
the ratio of statements that are executed by automated tests over the total number
of statements in the program. Branch coverage measures which possible program
branches (e.g., if statements, loops) have been executed at least once during the
tests. Collecting coverage metrics requires running automated tests from a test
suite, instrumenting the code execution and observing the execution flow.

Code coverage metrics are often used to identify whether an application is
well-tested. Hilton et al. (HILTON; BELL; MARINOV, 2018) performed a large-scale
evaluation of code coverage in 7,816 builds of 47 projects written in popular lan-
guages including Java, Python, and Scala. The authors observed that the lines
which are covered vary widely in a project even when the overall coverage appears
to remain the same. However, the experiments of Hilton et al. (HILTON; BELL;

MARINOV, 2018) considered only the last 250 commits of the projects when an-
alyzing code coverage. The 250 last commits may not substantially represent the
evolution of code coverage overtime. Complementing the prior work, our study
aims to investigate the relationship shared by CI and the code coverage evolution
in a time window of 2 years. Studying 2 years of code coverage allows us to provide
a wider overview of the test evolution.

Zaidman et. al. (ZAIDMAN et al., 2008, 2011) studied whether the produc-
tion code and the accompanying test code co-evolve. They investigated the ver-
sioning system, code coverage reports and code size-metrics of software projects.
The findings reveal that the test code within the source code tends to increase
with increasing coverage. Our research complements the study performed by Zaid-
man (ZAIDMAN et al., 2008, 2011) and colleagues by investigating the relationship
that is shared between test code evolution and the adoption of CI.

Grano et al. (GRANO et al., 2019) highlight the importance of test evolution
in software engineering and emphasize that test evolution is one of the central
concerns in projects that have adopted CI. Their research advocates that having
a previous knowledge about branch coverage (which can be achieved with test-

126

data generation tools) can help developers to select the subset of classes that
must be tested and/or addressed by the test-case generation. Their work built
and evaluated machine learning models to predict the achievable branch coverage
by test-data generation tools. The authors studied 79 factors belonging to four
different categories that might be correlated with branch coverage. Our work also
aims to evaluate the code coverage of CI projects. However, instead of predicting
a possible branch coverage for a specific software version, we study the impact of
adopting CI on the test coverage of software projects.

Beller et al. (BELLER; GOUSIOS; ZAIDMAN, 2016) investigated the central role
that testing has in CI. The authors found that testing is the most important reason
as to why CI builds fail. Their observations suggest that the selected programming
language has a strong influence on the number of (i) executed tests, (ii) the time to
run the tests, and (iii) the test failure proneness. Finally, the authors advocate that
testing in CI must not be a surrogate for running tests in the IDE itself. Similarly
to Beller et al. (BELLER; GOUSIOS; ZAIDMAN, 2016), we study test metrics in CI
context. However, instead of studying the number of tests per CI build, we analyze
how test ratio and coverage evolve when adopting CI. In addition, we also compare
CI and NOCI projects to better understand the impact of CI on the test ratio and
coverage.

Labuschagne et al. (LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017) investi-
gated the costs and benefits of automated regression testing in CI and identified
how developers solved the failures that were encountered. The failures were then
classified as (i) a flaky test, (ii) a bug in the system under test, or (iii) a broken
or obsolete test. The authors found that 18% of the test suite executions have
failed and 13% of the failures were flaky. A total of 74% of the non-flaky fail-
ures were caused by a bug in the system under test; the remaining 26% were due
to incorrect or obsolete tests. Labuschagne et al. (LABUSCHAGNE; INOZEMTSEVA;

HOLMES, 2017) mentioned that the test code grew faster than the production
code in a CI environment. Differently from our work, their experiments stud-

127

ied the test code evolution in terms of medians only. In addition, Labuschagne
et al. (LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017) did not empirically study
whether the faster growth of test code and coverage may share a relationship with
the adoption of CI. Our work complements Labuschagne et al. (LABUSCHAGNE;

INOZEMTSEVA; HOLMES, 2017) work by empirically investigating the shared rela-
tionship between the adoption of CI and the evolution of test ratio and coverage.

Zhao et al. (ZHAO et al., 2017) studied open-source projects that have adopted
Travis-CI. The authors found that the number of tests per build has likely increased
after the adoption of Travis-CI. Complementary to the work of Zhao et al. (ZHAO

et al., 2017), we study the impact of adopting CI on the test ratio and coverage
metrics. We also perform comparisons between the time periods before and after
the adoption of CI for our test metrics (as opposed to Zhao et al. (ZHAO et al.,
2017)). Finally, we also analyze the test ratio and coverage growth in order to
better understand if the test ratio and coverage have been increasing/decreasing
since the period before the adoption of CI.

The aforementioned research has focused on better understanding the relation-
ship between CI and tests. However, to the best of our knowledge, we are the first
to investigate the evolution of tests by (i) comparing CI and NOCI projects; and
(ii) comparing the period before the adoption of CI against the period after adop-
tion the CI. We also complement the existing research by focusing on identifying
the trends of test code ratio and test coverage evolutions in both NOCI and CI
projects.

128

7 Conclusions

The potential benefits of adopting CI have brought the attention of researchers
to study its advantages empirically. Previous research has studied the impact of
adopting CI in diverse aspects of software development (BERNARDO; COSTA;

KULESZA, 2018a; VASILESCU et al., 2015a; ZHAO et al., 2017; HILTON et al., 2017a;
LABUSCHAGNE; INOZEMTSEVA; HOLMES, 2017). Vasilescu et al. (VASILESCU et

al., 2015a) studied the quality and productivity outcomes with respect to CI on
GitHub projects. The authors found that CI improves productivity without an
observable diminishment in code quality. However, Vassallo et al. (VASSALLO et

al., 2018) investigated a core principle behind CI, the Continuous Code Quality,
and revealed a strong dichotomy between theory and practice, i.e., developers do
not perform the continuous inspection. Instead, developers that use CI tend to
control for quality only at the end of a sprint and, most of the times, only on the
release branch. Such research work provides valuable insight into the impact of CI
adoption in software quality outcomes.

Despite the valuable advancements, there are still many assumptions in the
community that remains empirically unexplored. Most decisions are made in com-
mon sense that the results are positive, but there is still an unclear idea of the
trade-offs and the real impact on the quality outcomes. Our work empirically in-
vestigates the software quality outcomes and their relationship with the adoption
of CI. In the remainder of this chapter, we outline the contributions of this thesis
and disclose promising venues for future work.

129

7.1 Contributions and Findings

This thesis aims at studing the relationship between continuous integration
and its impacts on software qualities outcomes. We run two empirical studies that
aim to answer the following open questions: (i) Does the adoption of CI share a
relationship with the evolution of test code? (ii) The adherence to CI best practices
is related to the degree of code quality? The results show that CI might have
association with quality improvement, open space to investigate if these association
might be caused by CI adoption. To answer this, we present a pioneering study
that goes beyond the correlation tests to investigate the estimated causal effect
of CI adoption and its impact on automated tests. Thereby, we apply a causal
inference using directed acyclic graphs and probabilistic methods to determine the
causal effect of CI in automated tests.

Below, we reiterate the main findings of this thesis:

• CI projects have more projects with a rising test ratio trend. We found that
33 out of 82 (40.2%) CI projects have a rising test ratio trend, while only 14
out of 82 (17%) NOCI projects have a rising test ratio trend – (Chapter 3).

• We observe that the adoption of CI is associated with a consistent increase
of test ratio (MWW p � value = 2.908e � 10 and a small Cliff’s delta =

�0.1612838), while NOCI have a negligible change on the test ratio overtime
(MWW p� value = 0.0001842 and a negligible Cliff’s delta = �0.09270482)
– (Chapter 3).

• Our results reveal that CI projects likely obtain a higher test ratio growth
than NOCI projects. – (Chapter 3)

• Our analysis shows statistical evidences that most of the analyzed CI projects
tend to increase or maintain the test coverage (9 out of 10 projects), while
NOCI projects have a different tendency (5 out of 10 projects increase or

130

maintain the test coverage). In fact, NOCI projects have more projects de-
creasing the coverage (5 projects) when compared to CI projects (1 project)
– (Chapter 3).

• Our mixed-effect models reveal that test ratio is largely explained by the
project inherent context rather than by code or process factors – (Chapter 3).

• Although the project size expresses the most powerful explanation power on
the technical debt, our study shows that maintaining a short build duration
and high code coverage is also important to reduce the technical debt. –
(Chapter 4).

• Technical debt is largely explained by the project size, outpowering the pos-
itive effects of short build durations and high code coverage – (Chapter 4).

• Our systematic mapping study shows that the relationship between CI and
software factors is not always straightforward, and there is a lack of empirical
researches to explain some aspects.

• Despite the CI adoption trade-offs, our causal modeling shows that it is
likely to be associated with improvements in software quality. Additionally,
it employs a considerable positive causal effect on the volume of automated
tests (nearly 54% of probability).

Our main findings suggest that, although continuous integration can be em-
pirically associated with some improvements in software quality (e.g., healthier
test code evolution and a decrease of technical debts), this quality will unlikely
be associated just by the adherence to certain CI practices. The quality outcome
still depends on the effort to adhere to process good practices. Additionally, our
causal analysis shows that CI affects software quality (expecifically on the auto-
mated tests volume) by multiple pathways, which are aligned with first resutls.
Furthermore, this causal pathways lead us to conclude that CI indeed causes an
improvement on automated tests.

131

Bibliography

AMRIT, C.; MEIJBERG, Y. Effectiveness of test driven development and
continuous integration–a case study. IT professional, IEEE, 2017.

aO, K. V. R. P. et al. On the interplay between non-functional requirements and
builds on continuous integration. In: Proceedings of the 14th International Confer-
ence on Mining Software Repositories. [s.n.], 2017. (MSR ’17), p. 479–482. ISBN
978-1-5386-1544-7. Disponível em: <https://doi.org/10.1109/MSR.2017.33>.

BELLER, M.; GOUSIOS, G.; ZAIDMAN, A. Oops, my tests broke the build: An
analysis of travis ci builds with github. [S.l.], 2016.

BELLER, M.; GOUSIOS, G.; ZAIDMAN, A. Oops, my tests broke the build: An
explorative analysis of travis ci with github. In: IEEE. 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). [S.l.], 2017. p.
356–367.

BELLER, M.; GOUSIOS, G.; ZAIDMAN, A. Travistorrent: synthesizing travis
CI and github for full-stack research on continuous integration. In: Proceedings of
the 14th International Conference on Mining Software Repositories, MSR 2017,
Buenos Aires, Argentina, May 20-28, 2017. [S.l.: s.n.], 2017. p. 447–450.

BERNARDO, J. H.; COSTA, D. A. da; KULESZA, U. Studying the impact of
adopting continuous integration on the delivery time of pull requests. In: IEEE.
2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). [S.l.], 2018. p. 131–141.

BERNARDO, J. H.; COSTA, D. A. da; KULESZA, U. Studying the impact of
adopting continuous integration on the delivery time of pull requests. In: IEEE.
2018 IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR). [S.l.], 2018. p. 131–141.

BERNDT, D. J.; CLIFFORD, J. Using dynamic time warping to find patterns
in time series. In: SEATTLE, WA. KDD workshop. [S.l.], 1994. v. 10, n. 16, p.
359–370.

132

BROOKS, G. Team pace keeping build times down. In: IEEE. Agile 2008
Conference. [S.l.], 2008. p. 294–297.

BROOKS, G. Team pace keeping build times down. In: IEEE. Agile 2008
Conference. [S.l.], 2008. p. 294–297.

CHOW, T.; CAO, D.-B. A survey study of critical success factors in agile software
projects. Journal of systems and software, Elsevier, v. 81, n. 6, p. 961–971, 2008.

CROWSTON, K.; ANNABI, H.; HOWISON, J. Defining open source software
project success. ICIS 2003 Proceedings, p. 28, 2003.

DAMGHANI, B. M. et al. The misleading value of measured correlation. Wilmott,
Wiley Online Library, v. 2012, n. 62, p. 64–73, 2012.

DEBBICHE, A.; DIENÉR, M.; SVENSSON, R. B. Challenges when adopting
continuous integration: A case study. In: SPRINGER. International Conference
on Product-Focused Software Process Improvement. [S.l.], 2014. p. 17–32.

DIGKAS, G. et al. How do developers fix issues and pay back technical debt in
the apache ecosystem? In: 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). [S.l.: s.n.], 2018. p. 153–163.

DOMINGOS, P. M. A few useful things to know about machine learning.
Commun. acm, v. 55, n. 10, p. 78–87, 2012.

DUVALL, P. M.; MATYAS, S.; GLOVER, A. Continuous integration: improving
software quality and reducing risk. [S.l.]: Pearson Education, 2007.

ELBAUM, S.; GABLE, D.; ROTHERMEL, G. The impact of software evolution
on code coverage information. In: IEEE COMPUTER SOCIETY. Proceedings of
the IEEE International Conference on Software Maintenance (ICSM’01). [S.l.],
2001. p. 170.

EMBURY, S. M.; PAGE, C. Effect of continuous integration on build health
in undergraduate team projects. In: SPRINGER. International Workshop on
Software Engineering Aspects of Continuous Development and New Paradigms of
Software Production and Deployment. [S.l.], 2018. p. 169–183.

EVANS, D.; LAROCHELLE, D. Improving security using extensible lightweight
static analysis. IEEE software, IEEE, v. 19, n. 1, p. 42–51, 2002.

FELIDRÉ, W. et al. Continuous integration theater. arXiv preprint
arXiv:1907.01602, 2019.

133

FERREIRA, C.; COHEN, J. Agile systems development and stakeholder
satisfaction: a south african empirical study. In: Proceedings of the 2008 annual
research conference of the South African Institute of Computer Scientists and
Information Technologists on IT research in developing countries: riding the wave
of technology. [S.l.: s.n.], 2008. p. 48–55.

FOWLER, M. Refactoring: improving the design of existing code. [S.l.]:
Addison-Wesley Professional, 2018.

FOWLER, M.; FOEMMEL, M. Continuous integration. Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, v. 122, p. 14, 2006.

FREITAS, G. On the Continuous Code Quality Outcomes of Continuous
Integration: An Empirical Study. Dissertação (Mestrado) — Universidade Federal
do Rio Grande do Norte, Natal, 2019. Unpublished.

GALLABA, K. et al. Noise and heterogeneity in historical build data: an empirical
study of travis ci. In: ACM. Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. [S.l.], 2018. p. 87–97.

GHALEB, T. A.; COSTA, D. A. D.; ZOU, Y. An empirical study of the long
duration of continuous integration builds. Empirical Software Engineering,
Springer, v. 24, n. 4, p. 2102–2139, 2019.

GHALEB, T. A.; COSTA, D. A. da; ZOU, Y. An empirical study of the long
duration of continuous integration builds. Empirical Software Engineering,
Springer, p. 1–38, 2019.

GRANO, G. et al. Branch coverage prediction in automated testing. Journal of
Software: Evolution and Process, Wiley Online Library, p. e2158, 2019.

GREENLAND, S.; PEARL, J. Causal diagrams. International encyclopedia of
statistical science, Springer, p. 208–216, 2011.

GREN, L. The links between agile practices, interpersonal conflict, and perceived
productivity. In: Proceedings of the 21st International Conference on Evaluation
and Assessment in Software Engineering. [S.l.: s.n.], 2017. p. 292–297.

GUPTA, Y. et al. The impact of the adoption of continuous integration on
developer attraction and retention. In: IEEE. 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). [S.l.], 2017. p. 491–494.

GUPTA, Y. et al. The impact of the adoption of continuous integration on
developer attraction and retention. In: IEEE. 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). [S.l.], 2017. p. 491–494.

134

HERRAIZ, I. et al. The evolution of the laws of software evolution: A discussion
based on a systematic literature review. ACM Computing Surveys (CSUR), ACM,
v. 46, n. 2, p. 28, 2013.

HILTON, M.; BELL, J.; MARINOV, D. A large-scale study of test coverage
evolution. In: ACM. Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. [S.l.], 2018. p. 53–63.

HILTON, M. et al. Trade-offs in continuous integration: assurance, security, and
flexibility. In: ACM. Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. [S.l.], 2017. p. 197–207.

HILTON, M. et al. Trade-offs in continuous integration: assurance, security, and
flexibility. In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering. [S.l.: s.n.], 2017. p. 197–207.

HILTON, M. et al. Usage, costs, and benefits of continuous integration in
open-source projects. In: Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. [S.l.: s.n.], 2016. (ASE 2016), p.
426–437. ISBN 978-1-4503-3845-5.

HILTON, M. et al. Usage, costs, and benefits of continuous integration in
open-source projects. In: KHURSHID, S.; LO, D.; APEL, S. (Ed.). ASE 2016
- Proceedings of the 31st IEEE/ACM International Conference on Automated
Software Engineering. [S.l.]: Association for Computing Machinery, Inc, 2016.
(ASE 2016 - Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering), p. 426–437.

HILTON, M. et al. Usage, costs, and benefits of continuous integration in
open-source projects. In: IEEE. 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE). [S.l.], 2016. p. 426–437.

HUMPHREY, W. S. Characterizing the software process: a maturity framework.
IEEE software, IEEE, v. 5, n. 2, p. 73–79, 1988.

JOHNSON, P.; EKSTEDT, M. The tarpit–a general theory of software
engineering. Information and Software Technology, Elsevier, v. 70, p. 181–203,
2016.

JR, F. E. H. Regression modeling strategies: with applications to linear models,
logistic and ordinal regression, and survival analysis. [S.l.]: Springer, 2015.

JULIAN, J. F. Extending the linear model with R: Generalized linear, mixed
effects and nonparametric regression models. [S.l.]: CRC press, 2016.

135

KAYNAK, İ. K.; ÇILDEN, E.; AYDIN, S. Software quality improvement practices
in continuous integration. In: SPRINGER. European Conference on Software
Process Improvement. [S.l.], 2019. p. 507–517.

KNIGHT, J. C. Safety critical systems: challenges and directions. In: ACM.
Proceedings of the 24th international conference on software engineering. [S.l.],
2002. p. 547–550.

KOCHHAR, P. S. et al. Moving from closed to open source: Observations from
six transitioned projects to github. IEEE Transactions on Software Engineering,
IEEE, 2019.

LABUSCHAGNE, A.; INOZEMTSEVA, L.; HOLMES, R. Measuring the cost
of regression testing in practice: a study of java projects using continuous
integration. In: ACM. Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering. [S.l.], 2017. p. 821–830.

LAI, S.-T.; LEU, F.-Y. Applying continuous integration for reducing web
applications development risks. In: IEEE. 2015 10th International Conference
on Broadband and Wireless Computing, Communication and Applications
(BWCCA). [S.l.], 2015. p. 386–391.

LAUKKANEN, E.; MÄNTYLÄ, M. Build waiting time in continuous integration–
an initial interdisciplinary literature review. In: IEEE. 2015 IEEE/ACM 2nd
International Workshop on Rapid Continuous Software Engineering. [S.l.], 2015.
p. 1–4.

LAUKKANEN, E. et al. Comparison of release engineering practices in a large
mature company and a startup. Empirical Software Engineering, Springer, v. 23,
n. 6, p. 3535–3577, 2018.

LEYS, C. et al. Detecting outliers: Do not use standard deviation around the
mean, use absolute deviation around the median. Journal of Experimental Social
Psychology, Elsevier, v. 49, n. 4, p. 764–766, 2013.

LUZ, W. P.; PINTO, G.; BONIFÁCIO, R. Building a collaborative culture: a
grounded theory of well succeeded devops adoption in practice. In: Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM 2018, Oulu, Finland, October 11-12, 2018. [S.l.: s.n.],
2018. p. 6:1–6:10.

MACBETH, G.; RAZUMIEJCZYK, E.; LEDESMA, R. D. Cliff’s delta calculator:
A non-parametric effect size program for two groups of observations. Universitas
Psychologica, Pontificia Universidad Javeriana, v. 10, n. 2, p. 545–555, 2011.

136

MALAIYA, Y. K. et al. Software reliability growth with test coverage. IEEE
Transactions on Reliability, IEEE, v. 51, n. 4, p. 420–426, 2002.

MARCILIO, D. et al. Are static analysis violations really fixed?: A closer look at
realistic usage of sonarqube. In: Proceedings of the 27th International Conference
on Program Comprehension. Piscataway, NJ, USA: IEEE Press, 2019. (ICPC
’19), p. 209–219. Disponível em: <https://doi.org/10.1109/ICPC.2019.00040>.

MÅRTENSSON, T.; HAMMARSTRÖM, P.; BOSCH, J. Continuous integration
is not about build systems. In: IEEE. 2017 43rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). [S.l.], 2017. p. 1–9.

MÅRTENSSON, T.; STÅHL, D.; BOSCH, J. Continuous integration impediments
in large-scale industry projects. In: IEEE. 2017 IEEE International Conference
on Software Architecture (ICSA). [S.l.], 2017. p. 169–178.

MÅRTENSSON, T.; STÅHL, D.; BOSCH, J. Test activities in the continuous
integration and delivery pipeline. Journal of Software: Evolution and Process,
Wiley Online Library, p. e2153, 2019.

MELLEGARD, N. et al. Contrasting big bang with continuous integration
through defect reports. IEEE Software, IEEE, 2018.

MEYER, M. Continuous integration and its tools. IEEE software, IEEE, v. 31,
n. 3, p. 14–16, 2014.

MILLIGAN, G. W.; COOPER, M. C. An examination of procedures for
determining the number of clusters in a data set. Psychometrika, Springer, v. 50,
n. 2, p. 159–179, 1985.

MORTON, J.; FRITH, U. Causal modeling: A structural approach to
developmental psychopathology. John Wiley & Sons, 1995.

MYERS, L.; SIROIS, M. J. Spearman correlation coefficients, differences between.
Encyclopedia of statistical sciences, Wiley Online Library, v. 12, 2004.

PEARL, J. Causal diagrams for empirical research. Biometrika, Oxford University
Press, v. 82, n. 4, p. 669–688, 1995.

PEARL, J. The seven tools of causal inference, with reflections on machine
learning. Commun. ACM, v. 62, n. 3, p. 54–60, 2019.

PEARL, J.; GLYMOUR, M.; JEWELL, N. P. Causal inference in statistics: A
primer. [S.l.]: John Wiley & Sons, 2016.

137

PERRY, D. E.; PORTER, A. A.; VOTTA, L. G. Empirical studies of software
engineering: a roadmap. In: ACM. Proceedings of the conference on The future of
Software engineering. [S.l.], 2000. p. 345–355.

PINTO, G. et al. Work practices and challenges in continuous integration: A
survey with travis ci users. Software: Practice and Experience, Wiley Online
Library, v. 48, n. 12, p. 2223–2236, 2018.

PINTO, G.; REBOUÇAS, M.; CASTOR, F. Inadequate testing, time pressure,
and (over) confidence: A tale of continuous integration users. In: 10th IEEE/ACM
International Workshop on Cooperative and Human Aspects of Software
Engineering, CHASE@ICSE 2017, Buenos Aires, Argentina, May 23, 2017. [S.l.:
s.n.], 2017. p. 74–77.

RAHMAN, A. et al. Characterizing the influence of continuous integration:
Empirical results from 250+ open source and proprietary projects. In: Proceedings
of the 4th ACM SIGSOFT International Workshop on Software Analytics. [S.l.:
s.n.], 2018. p. 8–14.

RAHMAN, F.; BIRD, C.; DEVANBU, P. Clones: What is that smell? Empirical
Software Engineering, Springer, v. 17, n. 4-5, p. 503–530, 2012.

RAHMAN, M. M.; ROY, C. K. Impact of continuous integration on code reviews.
In: IEEE. 2017 IEEE/ACM 14th International Conference on Mining Software
Repositories (MSR). [S.l.], 2017. p. 499–502.

RAUSCH, T. et al. An empirical analysis of build failures in the continuous
integration workflows of java-based open-source software. In: IEEE. 2017
IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR). [S.l.], 2017. p. 345–355.

REEL, J. S. Critical success factors in software projects. IEEE software, IEEE,
v. 16, n. 3, p. 18–23, 1999.

ROMANO, J. et al. Appropriate statistics for ordinal level data: Should we really
be using t-test and cohen’sd for evaluating group differences on the nsse and other
surveys. In: annual meeting of the Florida Association of Institutional Research.
[S.l.: s.n.], 2006. p. 1–33.

SALVADOR, S.; CHAN, P. Toward accurate dynamic time warping in linear time
and space. Intelligent Data Analysis, IOS Press, v. 11, n. 5, p. 561–580, 2007.

SHACHTER, R. D. Probabilistic inference and influence diagrams. Operations
research, INFORMS, v. 36, n. 4, p. 589–604, 1988.

138

SIZíLIO, G.; COSTA, D. A. da; KULESZA, U. An empirical study of the
relationship between continuous integration and test code evolution. In:
Proceedings of the 35th International Conferenceon Software Maintenance and
Evolution. New York, NY, USA: IEEE, 2019. (ICSME ’19).

SOMMERVILLE, I. Software engineering 9th edition. ISBN-10137035152, 2011.

SONARSOURCE. SonarQube 7.9 Documentation. 2019. https://docs.
sonarqube.org/latest/. Accessed: 2019-08-21.

STÅHL, D.; BOSCH, J. Experienced benefits of continuous integration in
industry software product development: A case study. In: The 12th IASTED
International Conference on Software Engineering. [S.l.: s.n.], 2013. p. 736–743.

STARON, M. et al. Measurement and impact factors of speed of reviews and
integration in continuous software engineering. Foundations of Computing and
Decision Sciences, Sciendo, v. 43, n. 4, p. 281–303, 2018.

STOLBERG, S. Enabling agile testing through continuous integration. In: IEEE.
Agile Conference, 2009. AGILE’09. [S.l.], 2009. p. 369–374.

SU, T. et al. Continuous integration for web-based software infrastructures:
Lessons learned on the webinos project. In: SPRINGER. Haifa Verification
Conference. [S.l.], 2013. p. 145–150.

SURYANARAYANA, G.; SAMARTHYAM, G.; SHARMA, T. Refactoring for
software design smells: managing technical debt. [S.l.]: Morgan Kaufmann, 2014.

TEXTOR, J. Drawing and analyzing causal dags with dagitty. arXiv preprint
arXiv:1508.04633, 2015.

TIBSHIRANI, R.; WALTHER, G.; HASTIE, T. Estimating the number of
clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), Wiley Online Library, v. 63, n. 2, p. 411–423,
2001.

TIKKA, S.; KARVANEN, J. Identifying causal effects with the r package
causaleffect. arXiv preprint arXiv:1806.07161, 2018.

TUFANO, M. et al. When and why your code starts to smell bad. In:
IEEE PRESS. Proceedings of the 37th International Conference on Software
Engineering-Volume 1. [S.l.], 2015. p. 403–414.

139

VANDEKERCKHOVE, J.; MATZKE, D.; WAGENMAKERS, E.-J. Model
comparison and the principle. In: The Oxford handbook of computational and
mathematical psychology. [S.l.]: Oxford Library of Psychology, 2015. v. 300.

VANDERWEELE, T. Explanation in causal inference: methods for mediation and
interaction. [S.l.]: Oxford University Press, 2015.

VASILESCU, B. et al. Continuous integration in a social-coding world: Empirical
evidence from github. In: Proceedings of the 2014 IEEE International Conference
on Software Maintenance and Evolution. Washington, DC, USA: IEEE Computer
Society, 2014. (ICSME ’14), p. 401–405. ISBN 978-1-4799-6146-7.

VASILESCU, B. et al. Quality and productivity outcomes relating to continuous
integration in github. In: ACM. Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. [S.l.], 2015. p. 805–816.

VASILESCU, B. et al. Quality and productivity outcomes relating to continuous
integration in github. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. [S.l.: s.n.], 2015. p. 805–816.

VASSALLO, C. et al. Continuous code quality: are we (really) doing that?
In: ACM. Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering. [S.l.], 2018. p. 790–795.

VASSALLO, C.; PALOMBA, F.; GALL, H. C. Continuous refactoring in ci: A
preliminary study on the perceived advantages and barriers. In: IEEE. 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
[S.l.], 2018. p. 564–568.

WIDDER, D. G. et al. A conceptual replication of continuous integration pain
points in the context of travis ci. In: ACM. Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. [S.l.], 2019. p. 647–658.

WIDDER, D. G. et al. A conceptual replication of continuous integration pain
points in the context of travis ci. In: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. [S.l.: s.n.], 2019. p. 647–658.

WILKS, D. Statistical Methods in the Atmospheric Sciences. Elsevier
Science, 2011. (Academic Press). ISBN 9780123850225. Disponível em:
<https://books.google.com.br/books?id=IJuCVtQ0ySIC>.

140

WILSON, J. Agile testing: The power of continuous integration builds and agile
development. 2009.

WINSHIP, C. Counterfactuals and causal inference: Methods and principles for
social research. [S.l.]: Cambridge University Press, 2007.

WOHLIN, C. et al. Experimentation in software engineering. [S.l.]: Springer
Science & Business Media, 2012.

YU, Y. et al. Wait for it: Determinants of pull request evaluation latency on
github. In: IEEE. 2015 IEEE/ACM 12th working conference on mining software
repositories. [S.l.], 2015. p. 367–371.

YU, Y. et al. Determinants of pull-based development in the context of continuous
integration. Science China Information Sciences, Springer, v. 59, n. 8, p. 080104,
2016.

YUKSEL, H. M. et al. Using continuous integration and automated test
techniques for a robust c4isr system. In: IEEE. 2009 24th International
Symposium on Computer and Information Sciences. [S.l.], 2009. p. 743–748.

ZAIDMAN, A. et al. Mining software repositories to study co-evolution of
production & test code. In: IEEE. 2008 1st international conference on software
testing, verification, and validation. [S.l.], 2008. p. 220–229.

ZAIDMAN, A. et al. Studying the co-evolution of production and test code in
open source and industrial developer test processes through repository mining.
Empirical Software Engineering, Springer, v. 16, n. 3, p. 325–364, 2011.

ZAMPETTI, F. et al. A study on the interplay between pull request review
and continuous integration builds. In: IEEE. 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER). [S.l.],
2019. p. 38–48.

ZAMPETTI, F. et al. How open source projects use static code analysis tools in
continuous integration pipelines. In: IEEE. 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). [S.l.], 2017. p. 334–344.

ZAYTSEV, Y. V.; MORRISON, A. Increasing quality and managing complexity
in neuroinformatics software development with continuous integration. Frontiers
in neuroinformatics, Frontiers, v. 6, p. 31, 2013.

ZHANG, Y. et al. One size does not fit all: an empirical study of containerized
continuous deployment workflows. In: Proceedings of the 2018 ACM Joint

141

Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. [S.l.: s.n.], 2018. p. 295–306.

ZHAO, Y. et al. The impact of continuous integration on other software
development practices: a large-scale empirical study. In: IEEE PRESS.
Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering. [S.l.], 2017. p. 60–71.

142

8 Appendix A

Table 17: Assumptions

Facor I Factor II Factor II

Automated Tests CCQ %
Automated Tests Developers Confidence %
Automated Tests Issue Detection %
Automated Tests Manual Effort &
Automated Tests Team Productivity &
Big Travis Conf Size Build Duration %
Build Duration Code Quality &
Build Duration Commit Frequency &
Build Duration Development ShortCuts %
Build Duration Distract Flow %
Build Duration Feedback &
Build Duration Integration Frequency &
Build Duration Integration Queue %
Build Duration Refactoring &
Build Duration Team Motivation &
Build Duration Team Productivity &
Build Stability Commits with Negative

Sentiment
&

CCQ Build Stability &

143

CCQ Issue Detection %
CI Automated Tests %
CI Build Duration &
CI Build Stability %
CI Code Quality %
CI Code Review Perfor-

mance
%

CI Commit Frequency %
CI Commit Size %
CI Deployment Efficiency %
CI Developers Confidence %
CI Development Iterations

Size
&

CI Difficulties of Build Fail-
ures Troubleshooting

%

CI Difficulties of Build Fail-
ures Troubleshooting

&

CI Documentation Quality %
CI Integration Queue %
CI Issue Detection %
CI Issues Resolution %
CI Magnetism %
CI Magnetism &
CI Manual Effort &
CI Multiple Environmet

Testing
%

CI Pull Requests Closing
Rate

%

144

CI Pull Requests Delivery
Time

%

CI Pull Requests Integra-
tion

%

CI Pull Requests Integra-
tion Time

&

CI Pull Requests Submis-
sions

%

CI Refactoring %
CI Releases Cycles &
CI Software Monitoring %
CI Software Quality %
CI Software Stability %
CI Stakeholder Satisfaction %
CI Stickness &
CI Team Communication %
CI Team Pressure %
CI Team Pressure &
CI Team Productivity %
CI Team Productivity &
CI Team Work %
CI Test Coverage Stability %
CI Test Quality %
CI Work Exposition %
Commit Frequency Commit Size -%
Commit Frequency Difficulties of Integra-

tion
-%

Commit Size Build Stability &
Commit Size Developer Satisfaction &

145

Commit Size Difficulties of Build Fail-
ures Troubleshooting

%

Commit Size Integration Frequency -%
Commit Size Refactoring &
Commits Mentioning CI Commits with Negative

Sentiment
&

Commits with Negative
Sentiment

Build Stability &

Complex Changes Build Stability &
Complex Setup of Tools Build Stability &
Complex Setup of Tools CCQ &
Complex Setup of Tools Difficulties of Build Fail-

ures Troubleshooting
%

Core Developers Build Stability %
Developers Confidence Integration Frequency %
Developers Popularity Build Stability %
Difficulties of Integra-
tion

Integration Frequency &

Integration Frequency Build Stability %
Integration Frequency Code Quality %
Integration Frequency Code Review Perfor-

mance
%

Integration Frequency Pull Requests Integra-
tion

%

Issue Detection Software Stability %
Lack of Proper Tools Build Stability &
LEAN Feedback %
LEAN Test Coverage Stability %
Local Testing Build Stability %

146

Modeling CI Architec-
ture

Complex Setup of Tools &

Project Age Build Stability &
Project Age Project Activity &
Project Age Team Productivity &
Project Age Team Size Stability %
Project Planning Integration Frequency %
Project Size Build Duration %
Properly Build Configu-
ration

Build Duration &

Pull Request Size Code Review Perfor-
mance

-%

Pull Requests Submis-
sions

Build Stability &

Pull Requests with Suc-
cessfull Builds

Pull Requests Integra-
tion

%

Quick Interaction Code Review Perfor-
mance

%

Scepticism Integration Frequency &
Screening Submissions Gating Performance %
Team Size Build Duration %
Team Size Build Stability &
Team Size Commit Frequency %
Test Case Density Build Duration %
Test Coverage Stability Code Quality %
Time Pressure CCQ &
Work Exposition Developers Confidence &

