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Concurrent Constraint Programming (CCP) is a simple and powerful model of concurrency 
where processes interact by telling and asking constraints into a global store of partial 
information. Since its inception, CCP has been endowed with declarative semantics where 
processes are interpreted as formulas in a given logic. This allows for the use of logical 
machinery to reason about the behavior of programs and to prove properties of them. 
Nevertheless, the logical characterization of CCP programs exhibits normally a weak level 
of adequacy since proofs in the logical system may not correspond directly to traces of 
the program. In this paper, we study different encodings from CCP into intuitionistic linear 
logic (ILL) and we compare the level of adequacy attained in each. By relying on a focusing 
discipline, we show that it is possible to give a logical characterization to CCP with the 
highest level of adequacy. Moreover, we show how to characterize maximal-parallelism 
semantics for CCP by relying on a multi-focusing discipline for ILL. These results, besides 
giving proof techniques for CCP, entail (safe) optimizations for the execution of CCP 
programs. Finally, we show how to interpret CCP procedure calls as fixed points in ILL, 
thus opening the possibility of reasoning by induction about properties of CCP programs.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Concurrent Constraint Programming (CCP) [44,45] is a simple and powerful model of concurrency based upon the shared-
variables communication model. In this model, agents interact by telling constraints (i.e., formulas in logic) into a shared 
store of partial information and synchronize by asking if a given information can be deduced from the store. Hence, pro-
cesses can be seen as information transducers.

The connection between logic and CCP processes (and constraint systems) has been studied since its inception: in [45]
a losure operator semantics is given to deterministic CCP programs that was later related to the logic of constraints in [38]. 
In [13] a calculus for proving properties of CCP programs is defined where properties are expressed in an enriched logic 
of the constraint system. The works in [42,15] relate operational steps of CCP and its linear variant lcc with derivations 
in intuitionistic linear logic (ILL) [18]. We can also mention the works in [28,13] that give logical semantics to timed 
CCP languages and provide calculi to verify temporal properties of programs. The reader may find a survey of all these 
developments in [36].

The logical foundations of CCP make it an ideal language for the specification of concurrent systems: complex synchro-
nization patterns can be expressed declaratively by means of constraint entailment. Moreover, the dual view of processes as 
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computing agents and as formulas in logic allows for the use of techniques from both process calculi and logic for reasoning 
about the behavior of processes. These features have been extensively used for the specification and verification of systems 
in different applications domains such as biochemical, multimedia interaction, physical/mechanical and mobile systems (see 
e.g. [36]).

Unfortunately, the relation of CCP programs and derivations in logic studied so far exhibits a weak level of adequacy: 
proofs in the logical system may not correspond to an operational derivation. Moreover, different notions of observables 
in CCP cannot be directly (and accurately) traced in the logical system. This paper closes this gap by studying different 
encodings of CCP into ILL and by stating precisely the level of adequacy attained in each. Moreover, we show how different 
forms of focusing in ILL give rise to different forms of concurrent behaviors in CCP. We then strive at establishing the 
foundations to build better proof procedures for the verification of CCP programs and to guide the design of interpreters for 
CCP languages.

We rely on a focusing discipline for ILL [2] (ILLF) and classify actions in CCP as positive or negative, depending on the 
polarity of the outermost connective obtained in their translation as formulas in ILL. The positive actions need to interact 
with the environment, either for choosing a path to follow, or for waiting for a guard (i.e., a constraint) to be available. 
Negative actions do not need any interaction with the context, and can be executed anytime and concurrently, not altering 
the final result of the computation. We prove that it is possible to give an ILL interpretation to CCP with the highest level 
of adequacy, where a focused phase in ILLF corresponds exactly to an operational step in CCP, and vice versa. The results in 
this paper not only extend the ones in [15] (since we present a stronger adequacy result), but also the ones in [20], with a 
better understanding of operational derivability.

The idea of using focusing for ensuring a higher level of adequacy is not at all new. In fact, [29] shows how to use 
focusing, fixed points and delays in order to specify sequential programs: this can be achieved only by using subexponentials 
[12] in linear logic. In this work, we deal with concurrent instead of sequential programs and, differently from [29] and our 
previous work in [31], we do not make use of subexponentials: we interpret CCP processes using pure linear logic. Hence, 
the encodings are more natural and direct, and we can use all the rich and already established meta-theory of ILL to help in 
drawing conclusions about CCP systems. Moreover, we study different notions of observables not considered in [31] (see e.g.
Definition 4.1). In particular, we show that there are CCP computations that cannot be mimicked by the standard encoding 
of processes as ILLF formulas. We recover the one-to-one correspondence between ILLF derivations and CCP computations 
by introducing logical delays. We also study the behavior of non-deterministic processes with blind and guarded choices 
not present in [31].

For representing CCP systems with maximal parallelism semantics, we propose mILL, a multi-focusing proof system for 
ILL. We show that, relying on a multi-focusing discipline, it is possible to accurately represent CCP systems where all the 
enabled actions must be executed at once in a single step. We show also that we can give an ILL characterization to
tccp [14], a timed extension of CCP. In this language, the notion of time is identified with the time needed to tell/ask 
constraints and a maximal parallelism semantics is assumed.

Previous encodings from CCP into ILL [15,31] treat procedure definitions as formulas of the shape ∀�x.p(�x) −◦ B where 
B is the formula representing the body defining the procedure p(·). Such technique allows for mimicking the operational 
behavior of procedure calls (i.e., unfolding the definition) but it is not strong enough to verify properties of infinite compu-
tations. For that, as standardly done, it is needed to include fixpoint operators into the system. For instance, [13] enhances 
the language of properties with a least fixpoint operator, and Scott induction can be used to derive (semantic) properties 
of recursive CCP programs. We hence conclude this paper by encoding procedure calls as fixed point formulas, showing the 
possibility of using induction to prove more interesting properties for CCP programs. Although this idea is already present 
in [42], here we exploit better the use of intuitionistic linear logic with fixed points (μILL) [3].

Our contributions are: (a) we propose alternative semantics to CCP systems, based only on different logical strategies. 
This allows for code optimization procedures based on strong logical grounds. That is logic guiding computation; (b) we put 
to work some already developed proof theory for ILL, giving it a strong computational meaning. That is computation giving 
meaning to logic; and (c) we propose a new logical system (mILL), capable of capturing maximal parallelism and timed 
executions.

The rest of this paper is organized as follows. We start in Section 2 by presenting the base CCP language, determinate-
CCP, with tell, ask, parallel, locality and recursion operators. We then present in Section 3 a focused system for intuitionistic 
linear logic (ILLF). In Section 4 we study different encodings of CCP into ILLF and identify, in each case, the level of adequacy 
attained w.r.t. to a certain kind of observables (outputs). Next, we introduce the indeterminate-CCP language with two kinds 
of choice operators: blind choice (a.k.a. internal choice) and one-step guarded choice. We show that a simple adjustment 
in our encoding suffices to capture such behaviors keeping the highest level of adequacy. The multifocus system mILL is 
introduced in Section 5 as well the adequacy results for the timed CCP language proposed in [14]. In Section 6, we show 
how to interpret procedure calls using fixed points. We also present some examples of properties of CCP programs that 
require the induction principle derived from μILL. Finally, Section 7 concludes the paper.

A preliminary short version of this paper was published in [34]. In this paper we give many more examples and explana-
tions. We also refine several technical details and present full proofs. The new contributions with respect to [34] are: (1) we 
give a better classification of each encoding w.r.t. the level of adequacy attained; (2) we introduce a multifocus system that 
is able to give precise meaning to maximal-parallelism semantics in CCP; (3) we use the multifocus system to encode the 
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timed language in [14]; and, finally, (4) we not only introduce fixpoints to give meaning to procedure calls as in [34] but 
we also show how this encoding can be used to inductively reason about computations in CCP.

2. CCP calculi

Concurrent Constraint Programming (CCP) [44,45] (see [36] for a survey) is a model of concurrency that combines the 
traditional operational view of process calculi with a declarative view based on logic. This allows CCP to benefit from the 
large set of reasoning techniques of both process calculi and logic.

Processes in CCP interact with each other by telling and asking constraints (pieces of information) in a common store 
of partial information. The type of constraints processes may act on is not fixed but parametric in a constraint system. 
Intuitively, a constraint system provides a signature from which constraints can be built from basic tokens (e.g. predicate 
symbols) and variables, and two basic operations: conjunction (∧) and variable hiding (∃). The constraint system defines 
also an entailment relation (��) specifying inter-dependencies between constraints: c �� d means that the information d
can be deduced from the information represented by c. Such systems can be formalized as a Scott information system [46]
as in [45], or they can be built upon a suitable fragment of logic e.g. as in [47,15,28]. Here we shall follow the second 
approach and constraints are seen as formulas in intuitionistic logic [17].

Definition 2.1 (Constraint system). A constraint system is a tuple (C, �) where C is a set of formulas (constraints) built from 
a first-order signature and the grammar

F := true | A | F ∧ F | ∃x.F

where A is an atomic formula. We shall use c, c′, d, d′ , etc, to denote elements of C . Moreover, let � be a set of non-logical 
axioms of the form ∀x.[c ⊃ c′] where all free variables in c and c′ are in x. We say that d entails c, written as d � c, iff the 
sequent �, d −→ c is probable in LJ [17].

CCP processes. In the spirit of process calculi (see e.g. [6,27]), the language of processes in CCP is given by a small number 
of primitive operators or combinators. Usually, a CCP language features the following operators: a tell operator to add new 
information (constraints) to the store; an ask operator querying if a constraint can be deduced from the store; parallel 
composition combining processes concurrently; a local (also known as hiding or restriction) introducing local variables, 
thus restricting the interface a process can use to interact with others; finally, infinite computations are obtained by means 
of recursion.

Some forms of non-determinism are also allowed in CCP by adding a choice operator. For the moment, we introduce the 
syntax for the deterministic calculus and later we deal with non-deterministic behavior.

Definition 2.2 (Syntax of deterministic CCP). Processes are built from constraints in the underlying constraint system as fol-
lows:

P , Q ::= tell(c) | ask c then P | P ‖ Q | (local x) P | p(x)

The process tell(c) adds c to the current store d producing the new store d ∧ c. The process ask c then P evolves into P
if the current store entails c. Otherwise, the process remains blocked until enough information is added to the store. This 
provides a powerful synchronization mechanism based on entailment of constraints.

The process P ‖ Q represents the parallel (interleaved) execution of P and Q , i.e., P and Q running in parallel and 
possibly communicating via the shared store.

The process (local x) P behaves as P and binds the variable x to be local to it.
Given a process definition p(y) �= P , where all free variables of P are in the set of pairwise distinct variables y, the 

process p(x) evolves into P [x/y].
CCP programs take the form D.P where D is a set of process definitions and P is a process. It is assumed that every 

process name p(·) has a unique definition in D.
The structural operational semantics (SOS) of CCP is given by the transition relation γ −→ γ ′ satisfying the rules in 

Fig. 1. Here we follow the semantics presented in [15] where the local variables created by the program appear explicitly 
in the transition system. More precisely, a configuration γ is a triple of the form (X; �; c), where c is a constraint (a logical 
formula specifying the store), � is a multiset of processes, and X is a set of hidden (local) variables of c and �. The multiset 
� = P1, P2, . . . , Pn represents the process P1 ‖ P2... ‖ Pn . We shall indistinguishably use both notations to denote parallel 
composition of processes.

Processes are quotiented by a structural congruence relation ∼= satisfying: (1) P ∼= Q if they differ only by a renaming of 
bound variables (alpha-conversion); (2) P ‖ Q ∼= Q ‖ P ; and (3) P ‖ (Q ‖ R) ∼= (P ‖ Q ) ‖ R . Furthermore, � = {P1, ..., Pn} ∼=
{P ′1, ..., P ′n} = �′ iff Pi ∼= P ′i for all 1 ≤ i ≤ n. Finally, (X; �; c) ∼= (X ′; �′; c′) iff X = X ′ , � ∼= �′ and c ≡� c′ (i.e., c �� c′ and 
c′ �� c).

Rules RT and RC are self-explanatory. Rule REQUIV says that structurally congruent processes have the same derivations. 
Rule RL adds the variable x to the set of variables X when the free-variable condition is satisfied. In other case, Rule REQUIV
can be used to apply alpha conversion. Finally, rule RA says that the process Q = ask c then P evolves into P if the current 
store d entails c.
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(X;�; c)∼= (X ′;�′; c′)−→ (Y ′;�′;d′)∼= (Y ;�;d)

(X;�; c)−→ (Y ;�;d)
REQUIV

(X; tell(c),�;d)−→ (X;�; c ∧ d)
RT

d �� c

〈X;ask c then P ,�;d〉 −→ 〈X; P ,�;d〉 RA

x /∈ fv(X,�,d)

(X; (local x) P ,�;d)−→ (X ∪ {x}; P ,�;d)
RL

p(x)
�= P

(X; p(y),�;d)−→ (X; P [y/x],�;d)
RC

Fig. 1. Operational semantics of CCP. fv(�,d) means fv(�)∪ fv(d). fv(X,�,d) means fv(�,d)∪ X .

Negative Phase

ϒ : �;�⇒� �R
ϒ : �;�⇒ G

ϒ : �;�,1⇒ G
1L

ϒ : �;�, F ⇒ G

ϒ : �;�⇒ F � G
�R

ϒ : �;�, F , H ⇒ G

ϒ : �;�, F ⊗ H ⇒ G
⊗L

ϒ : �;�⇒ F ϒ : �;�⇒ G

ϒ : �;�⇒ F & G
& R

ϒ : �;�⇒ G{y/x}
ϒ : �;�⇒∀x.G

∀R
ϒ : �;�, F {y/x}⇒ G

ϒ : �;�,∃x.F ⇒ G
∃L

ϒ : �;�, F ⇒ G ϒ : �;�, H ⇒ G

ϒ : �;�, F ⊕ H ⇒ G
⊕L

ϒ, F : �;�⇒ G

ϒ : �;�, ! F ⇒ G
!L

Positive Phase

ϒ : �1; ·→ [H] ϒ : �1; ·→ [G]
ϒ : �1,�2; ·→ [H ⊗ G] ⊗R

ϒ : �1; ·→ [F ] ϒ : �1, [H]; · → G

ϒ : �1,�2, [F � H]; · → G
�L

ϒ : �; ·→ [G{t/x}]
ϒ : �; ·→ [∃x.G] ∃R

ϒ : �, [F {t/x}]; · → G

ϒ : �, [∀x.F ]; ·→ G
∀L

ϒ : �, [Fi ]; ·→ G

ϒ : �, [F1 & F2]; · → G
& Li

ϒ : �; ·→ [Gi ]
ϒ : �; ·→ [G1 ⊕ G2]

⊕Ri

ϒ : ·; · ⇒ G

ϒ : ·; · → [!G] !R

ϒ : ·; ·→ [1] 1R
ϒ : �; ·→ [A] I R given A ∈ (� ∪ϒ) and (� ⊆ {A})

Structural Rules

ϒ : �, Na;�⇒ G

ϒ : �;�, Na ⇒ G
store

ϒ : �; ·→ [P ]
ϒ : �; · ⇒ P

D R
ϒ, F : �, [F ]; ·→ G

ϒ, F : �; · ⇒ G
D LC

ϒ : �, [N]; ·→ G

ϒ : �, N; · ⇒ G
D LL

ϒ : �; P ⇒ F

ϒ : �, [P ]; ·→ F
RL

ϒ : �; · ⇒ N

ϒ : �; ·→ [N] R R

Fig. 2. Focused proof system for ILLF. A is an atomic formula; P is a positive formula; N is a negative formula; and Na is a negative or atomic formula. 
Variable y in ∀R and ∃L rules does not occur elsewhere.

We conclude with the notion of observables that will play a central role in the adequacy theorems in Section 4.

Definition 2.3 (Observables). Let −→∗ be the reflexive and transitive closure of −→. If (X; �; d) −→∗ (X ′; �′; d′) and 
∃X ′.d′ �� c we write (X; �; d) ⇓c . If X = ∅ and d = true we simply write � ⇓c .

Intuitively, if P is a process then P ⇓c says that P outputs c under input true.
The next section introduces the logical framework we shall use for giving a declarative meaning to CCP processes.

3. ILLF: a focused system for intuitionistic linear logic

Focusing [2] is a discipline on proofs aiming at reducing the non-determinism during proof search. Focused proofs can 
be interpreted as the normal form proofs. The focused intuitionistic linear logic system (ILLF) is depicted in Fig. 2.

ILL connectives are separated into two classes, the negative: �, & , �, ∀ and the positive: ⊗, ⊕, ∃, !, 1. The polarity of 
non-atomic formulas is inherited from its outermost connective and positive bias is assigned to atomic formulas. It is worth 
noticing that, although the bias assigned to atoms does not interfere with provability [24], it changes considerably the shape 
of proofs (see [40]). In the present work, it is extremely important, for the sake of guaranteeing the high level of adequacy, 
that atoms have a positive behavior.
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Constraints Processes

�true = 1
�A = ! A
�F1 ∧ F2 = �F1 ⊗�F1

�∃x.F = ∃x.� F
�∀x.[c ⊃ c′] = ∀x.[�c−◦�c′]

L[[tell(c)]] = �c
L[[P ‖ Q ]] = L[[P ]] ⊗L[[Q ]]
L[[ask c then P ]] = �c �L[[P ]]
L[[(local x) P ]] = ∃x.L[[P ]]
L[[p(y)]] = p(y)

L[[p(x)
�= P ]] = ∀x.p(x) �L[[P ]]

Fig. 3. Interpretation of constraints, non-logical axioms (of the constraint system), CCP processes and process definitions as ILL formulas. A is an atomic 
formula.

Observe, in Fig. 2, that the negative connectives have invertible right rules, while the positive connectives have invertible 
left rules. This separation induces a two phase proof construction: a negative, where no backtracking on the selection of 
inference rules is necessary, and a positive, where choices within inference rules can lead to failures for which one may 
need to backtrack.

We separate the left context of sequents in ILLF in three: the set ϒ will always denote the unbounded context, containing 
only banged formulas; � is a linear context containing only negative or atomic formulas; and � is a general linear context. 
We will differentiate focused and unfocused sequents by using different arrow symbols: “⇒” for unfocused and “→” for 
focused. In this way, ILLF contains four types of sequents:

i. ϒ : �; � ⇒ G is an unfocused sequent.
ii. ϒ : �; · ⇒ G is an unfocused sequent representing the end of a negative phase.

iii. ϒ : �; · →[F ] is a sequent focused on the right.
iv. ϒ : �, [F ]; · → G is a sequent focused on the left.

In the negative phase, sequents have the shape (i) above and all the negative formulas on the right and all the positive 
non-atomic formulas on the left are introduced. Also, atomic and negative formulas on the left are moved to the left linear 
context � using the store rule. When this phase ends, sequents have the form (ii).

The positive phase begins by choosing, via one of the decide rules D LL , D LC or D R , a formula on which to focus, enabling 
sequents of the forms (iii) or (iv). Rules are then applied on the focused formula until either an axiom is reached (in which 
case the proof ends), the right promotion rule !R is applied (and focusing will be lost) or a negative subformula on the 
right or a positive subformula on the left is derived (and the proof switches to the negative phase again). This means that 
focused proofs can be seen (bottom-up) as a sequence of alternations between negative and positive phases. We will call a 
focused phase a positive phase followed by a negative one.

Rules for intuitionistic linear logic (ILL) are the same as in ILLF, but not considering focusing, and the structural rules 
being substituted by the usual bang left rules (dereliction, contraction and weakening). Sequents in ILL will be denoted by 
� � C .

4. From CCP processes to ILLF formulas

It is well known [15,31] that processes in CCP can be interpreted as formulas in ILL. It turns out, though, that there are 
several ways of proposing such an interpretation. And, quite interestingly, these possible different approaches can lead to 
different logical and computational behaviors, as we shall see in this section.

Any interpretation of a system into another must be adequate, in the sense that there must be a 1–1 relation between the 
sets of interpreted objects with the set of their interpretations. The level of adequacy can then determine how tight are those 
systems. Following [30], we will classify our interpretations of CCP processes as ILL formulas into two levels of adequacy:

• FCP (full completeness of proofs) claims that processes outputting an observable are in 1–1 correspondence with the 
corresponding completed proofs.

• FCD (full completeness of derivations) claims that one step of computation (in CCP) should correspond to one step of 
logical reasoning.

While one step of computation is rigidly determined by the operation semantics of the CCP system considered, one step 
of logical reasoning depends strongly on the logical framework chosen. In ILL, one step of logical reasoning means one 
application of a logical rule; in ILLF it means one focused phase; and in mILL (see Section 5) it means one multi-focused 
phase.

The logical interpretation of CCP is defined with the aid of a function L[ [·] ] defined in Fig. 3. Function � maps constraints 
(Definition 2.1) into ILL formulas. Recall that the store in CCP is monotonic, i.e., constraints cannot be removed. Hence, 
atomic constraints (A in Fig. 3) are marked with a bang. In the case of processes, as expected, parallel composition is 
identified with multiplicative conjunction and ask processes correspond to linear implication. Non-logical axioms of the 
form ∀x.[c ⊃ c′] will be translated as ∀x.[�c −◦�c′]. Moreover, process definitions are (universally quantified) implications 
to allow the unfolding of its body.
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In what follows we call p in ∀x.p(x) �L[ [P ] ] the head of the formula while c in �c �L[ [P ] ] the guard of the formula. 
Note that those formulas result from the encoding of process definitions and ask processes respectively.

The following result states that the interpretation L[ [·] ] is adequate.

Theorem 4.1 (Adequacy – ILL [15]). Let P be a process, � be a set of process definitions and � be a set of non-logical axioms. Then, for 
any constraint c, P ⇓c iff there is a proof of the sequent !L[ [�] ], !��, L[ [P ] ] ��c⊗� in ILL.1 The level of adequacy is FCP.

The low level of adequacy of this interpretation implies that there may be logical steps not corresponding to any op-
erational step and vice versa. For instance, consider the case where the last rule applied on a proof of an ILL sequent 
is −◦L

π1
�1, F � d

π2
�2 ��c

�1,�2,�c � F � d
�L

Note that π2 could contain sub-derivations that have nothing to do with the proof of the guard c. For instance, processes 
definitions could be unfolded or other processes could be executed. This would correspond, operationally, to the act of 
triggering an ask process ask c then P with no guarantee that its guard c will be derivable only from the set of non-logical 
axioms � and the current store. In other words, it may be the case that �c will be later produced by a process Q such 
that L[ [Q ] ] ∈ �2, for example. Observe that this is not allowed by CCP’s operational semantics (see rule RA in Fig. 1).

On what follows, we will show, step-by-step, how the encoding (and, later on, the logical system) can be enhanced 
for having a better level of adequacy w.r.t. concurrent computations. The importance of this discussion is not only proof-
theoretical: we will be able to use all linear logic’s rich theory in order to propose better computational strategies in CCP 
languages.

A simple inspection on Fig. 3 shows that the fragment of ILL needed for encoding CCP processes and processes definitions 
is given by the following grammar for guards/goals G , processes P and processes definitions P D .

CCP Grammar G := 1 | ! A | G ⊗ G | ∃x.G
P := G | P ⊗ P | P & P | G � P | ∃x.P | p(t)
P D := ∀x.p(x)� P ,

where A is an atomic formula (constraint) in C and p is also atomic but p /∈ C . The process corresponding to the formula 
P & P is the non-deterministic choice, that will be introduced in Section 4.4.

Note that, due to this syntax, we will only use the negative rules 1L , ⊗L, ∃L, !L, �R and the positive rules ⊗R , �L, ∃R , !R , 
& L, ∀L . The formulas also have special forms and behavior, as described bellow.

• Formulas on the right (guards/goals G, heads p). The correspondent logical fragment of the encoding have strictly positive
formulas on the right. There are three cases to consider.
– The formula on the right is the head p of a process definition, i.e., it is positive and atomic.
– The main connective in the goal is not !. Hence, the connective should be 1, ⊗ or ∃. In all theses cases focusing 

cannot be lost on the right, and the focused formula will be entirely decomposed into formulas of the shape 1 or ! A.
– Focusing on a goal of the form ! A is only possible if the linear context is empty (see rule !R in Fig. 2). This means that 

only the theory ��, the encoding of constraints and procedure calls can be in the context, since they are classical, 
i.e., formulas proceeded by !. Lemma 4.1 bellow shows that the encoding of procedure calls cannot be used in the 
proof of A.

• Formulas on the left (programs P ). On the other hand, it is possible to have positive or negative formulas on the left.
– Positive formulas on the left (that cannot be focused) come from the interpretation of one of the actions: tell, parallel 

composition and locality that do not need any interaction with the context. We call these actions negative. As an 
example, the parallel composition P ‖ Q is translated as L[ [Q ] ] ⊗ L[ [P ] ]. Notice that ⊗ is a positive connective, 
decomposing it on the left side of a sequent will be done in a negative phase. As another example, the formula 
∃x. ! A1 ⊗ ! A2, resulting from the encoding of tell(∃x.A1 ∧ A2), can be entirely decomposed in a negative phase using 
the rules ⊗L , ∃L and !L .

– Negative formulas on the left (that can be chosen for focusing) come from one of the actions: ask, non-deterministic 
choice (see Definition 4.3) and procedure calls. They do need to interact with the environment, either for choos-
ing a path to follow (in non-deterministic choices), or waiting for a guard to be available (in asks or procedure 
calls). We call these actions positive. Consider, for example, the formula �c � L[ [P ] ] resulting from the encoding of 
ask c then P . Note that � is negative, hence decomposing this formula on the left side of a sequent will be done in 
a positive phase.

1 The top (�) erases the formulas corresponding to processes that were not executed. We will denote by !L[ [�] ] the mapping of !L[ [·] ] to elements in 
� and by !�� the mapping of !� to elements in �.
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The following theorem is an immediate corollary of Theorem 4.1, since ILLF is complete w.r.t. ILL [2].

Theorem 4.2 (Adequacy – ILLF). Let P be a process, � be a set of process definitions and � be a set of non-logical axioms. Then, for 
any constraint c,

P ⇓c iff there is a proof of the sequent L[[�]],�� : ·;L[[P ]] ⇒�c⊗�
in ILLF. The level of adequacy is FCP.

Although we did not yet enhance the level of adequacy, the use of focusing introduce some improvements when com-
pared to ILL. More precisely, the next lemma shows the shape of derivations in a proof involving goals: such formulas are 
derivable from other guards (i.e., the encoding of constraints) and non-logical axioms in � only. Actually, the result is even 
stronger: there is no proof of a guard G if a process definition is chosen to be focused on.

Lemma 4.1. Let G be a guard, G be a set of atomic guards, � be a set of process definitions and � be a set of non-logical axioms. Then 
L[ [�] ], G, �� : ·; · → [G] has a proof in ILLF if and only if G, �� : ·; · → [G] is provable in ILLF. Moreover, if ∀x.p(x) � L[ [P ] ] ∈
L[ [�] ] then the following sequent is not provable

L[[�]],G,�� : [∀x.p(x) � L[[P ]]]; ·→ G

Proof. Consider a proof of L[ [�] ], G, �� : ·; · →[G]. Note that all the formulas in G are strictly positive and the connectives 
∃ and ⊗ (on the right) do not lose focus. Hence, we end up either with a sequent L[ [�] ], G, �� : ·; · → [1] (that finishes 
immediately) or with a derivation of the shape

π
L[[�]],G,�� : ·; · ⇒ A

L[[�]],G,�� : ·; · → [! A] !R
The derivation π then either continues by focusing on A or on some formula in L[ [�] ], G or ��. Assume that ∀x.p(x) �
L[ [P ] ] ∈L[ [�] ] is chosen for focusing. Since ∀ and −◦ are negative, focus will not be lost and π must have the shape

L[[�]],G,�� : [L[[P ]]]; ·→ G L[[�]],G,�� : ·; · → [p(t)]
L[[�]],G,�� : [∀x.p(x)� L[[P ]]]; ·→ G

∀L,−◦L

L[[�]],G,�� : ·; · ⇒ G
D LC

But the sequent L[ [�] ], G, �� : ·; · → [p(t)] is not provable since p is atomic, positive and not a constraint. That is, focus 
cannot be lost and the proof cannot finish with the initial axiom, since p is not in L[ [�] ] ∪ G ∪��. �

Now let us explain why, even with focusing, we do not obtain an adequacy at the FCD level. Let P = ask c then P ′ . 
Hence focusing on L[ [P ] ] would produce the derivation

π1
ϒ : �, [L[[P ′]]]; · → G

π2
ϒ : ·; ·→ [�c]

ϒ : �, [�c � L[[P ′]]]; · → G
∀L,�L

ϒ : �; · ⇒ G
D L

Observe that c is a guard, hence �c will be decomposed entirely into subformulas of the shape 1 and ! A. From Lemma 4.1
we know that the proof of ! A must proceed by using constraints and non-logical axioms only, matching exactly the seman-
tics given by rule RA. However, note that L[ [P ′] ] is also focused on the left. Operationally, this means that, if P ′ is a positive 
action (i.e., an ask), P ′ has to be executed immediately, which is not enforced by CCP’s operational semantics. This will be 
analyzed in the next section.

Another important aspect to consider is the use of non-logical axioms. Although this is not an operational step in 
CCP, focusing on such axioms counts as a focused step in ILLF. However, observe that focusing over a non-logical axiom 
necessarily produces a derivation of the following type

π1
ϒ : ·; ·→ [�c]

π2
ϒ,Ad : �; · ⇒ G

ϒ : �;�d⇒ G

ϒ : �, [�d]; · → G
Rl

ϒ : �, [∀x.� c−◦�d]; ·→ G
∀L,−◦L

where π1 is the proof of �c from the classical formulas in ϒ , and Ad is the multi-set of atomic subformulas of �d. If G is 
not atomic and the last rule applied in π2 is D R , then � must be empty, G will be completely decomposed into its atomic 
subformulas and the derivation above can be transformed into
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. . .

π1
ϒ : ·; ·→ [�c]

π2
ϒ,Ad : ·; · ⇒ A

ϒ : ·;�d⇒ A

ϒ : [�d]; ·→ A
Rl

ϒ : [�c −◦�d]; ·→ A
−◦L

ϒ : ·; · ⇒ A
D LC

. . .

ϒ : ·; ·→ [G]
ϒ : ·; · ⇒ G

D R

where A is an atomic subformula of G . That is, non-logical axioms permute up, and it is always possible to apply them at 
the top of proofs. The same happens if any left rule is applied in π2. Hence we can mimic, in logic, the same behavior of 
using non-logical axioms only for entailing constraints.

From now on, we shall assume that non-logical axioms are applied just before the leafs of proofs and we will not count 
this step in our adequacy theorems.

4.1. Maximal derivations and interleaving in ask agents

In this section we show how to obtain the highest level of adequacy when considering standard derivations in the 
operational semantics of CCP.

Example 4.1 (Traces, proofs and focusing). Consider the CCP process

P = tell(a∧ b) ‖ ask a then ask b then tell(ok) ‖
ask b then ask a then tell(ok′)

We denote the two external ask agents in P as A1 and A2 respectively. The operational semantics dictates that there are 
three possible transitions leading to the final store d = a ∧ b ∧ ok∧ ok′ . All such transitions start with the negative action 
tell(a ∧ b):

Trace 1 : 〈∅; P ;true〉 −→ 〈∅; A1 ‖ A2;a∧ b〉 −→ 〈∅;ask b then tell(ok) ‖ A2;a∧ b〉
−→ 〈∅; tell(ok) ‖ A2;a∧ b〉 −→ 〈∅; A2;a∧ b ∧ ok〉 −→∗ 〈∅; ·;d〉 �−→

Trace 2 : 〈∅; P ;true〉 −→ 〈∅; A1 ‖ A2;a∧ b〉 −→ 〈∅; A1 ‖ ask a then tell(ok′);a∧ b〉
−→ 〈∅; A1 ‖ tell(ok′);a∧ b〉 −→ 〈∅; A1;a∧ b ∧ ok′〉 −→∗ 〈∅; ·;d〉 �−→

Trace 3 : 〈∅; P ;true〉 −→ 〈∅; A1 ‖ A2;a∧ b〉 −→ 〈∅;ask b then tell(ok) ‖ A2;a∧ b〉
−→ 〈∅;ask b then tell(ok) ‖ ask a then tell(ok′);a∧ b〉
−→ 〈∅; tell(ok) ‖ ask a then tell(ok′);a∧ b〉 −→ 〈∅; tell(ok) ‖ tell(ok′);a∧ b〉
−→∗ 〈∅; ·;d〉

Trace 1 and Trace 2 correspond exactly to a different focused proof of the sequent L[ [P ] ] −→ L[ [d] ]: one focusing 
first on L[ [A1] ] and the other focusing first on L[ [A2] ]. On the other hand, Trace 3 corresponds to an interleaved execution 
of A1 and A2. We note that such a trace does not have any correspondent derivation in the ILLF system. In fact, since �
is a negative connective, focusing on L[ [A1] ] will decompose the formula �a ��b ��ok producing the focused formula 
�b ��ok, which is still negative. Hence focusing cannot be lost and the inner ask has to be triggered.

Remark 4.1. This last example shows something really interesting: although the formulas A ⊗ B −◦ C and A −◦ B −◦ C
are logically equivalent, they are operationally different when concurrent computations are considered. In fact, if we allow 
processes to consume constraints [15], an interleaving execution as the one in Trace 3 may not output the constraint ok, 
since agents may compete for the same resources.

On looking for a 1–1 correspondence between proofs in ILLF and operational steps, one has two options: (1) to force 
the operational semantics to execute at once nested ask agents, thus ruling out behaviors as the one in Trace 3 above; or 
(2) to introduce the so called logical delays in the encoding of L[ [·] ], allowing ILLF derivations to mimic Trace 3. In the 
following we explore option (1) and in Section 4.2 we explore (2).

Next definition introduces an operational rule that allows executing at once nested ask processes. The use of this rule 
gives rise to what we call maximal derivations. Since the language we are dealing with is deterministic, it is not difficult to 
show that the new semantics coincides with the one in Section 2.3 (Theorem 4.3).

Definition 4.1 (Standard and maximal derivations and observables). A derivation in CCP using the relation −→ as in Fig. 1 is 
called standard. The maximal transition relation � is a standard derivation obtained by replacing the rules RA and RC with 
the rules RAM and RCM, respectively
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d �� c1 ∧ ...∧ cn 	

(X; P ,�;d) � (X; Q ,�;d)
RAM

p(x)
�= P d �� (c1 ∧ ...∧ cn)[y/x] 	

(X; p(y),�;d)−→ (X; Q [y/x],�;d)
RCM

where the side condition 	 means that P is a process of the shape:

ask c1 then ask c2 then ...ask cn then Q (1)

and Q is not an ask agent. In RCM, if P is not an ask agent then n = 0 and the side condition d �� (c1∧ ... ∧cn)[y/x] become 
the trivial assertion d �� true. We define the observables of a process under the � relation, denoted by (X; �; d) �c , 
similarly as in Definition 2.3.

Intuitively, in a standard derivation of the shape γ −→ γ ′ , interleaved executions of ask agents are allowed as in
Trace 3 of Example 4.1. On the contrary, in a maximal derivation γ � γ ′ , an ask having the form of Equation (1) above 
has to wait until all the guards c1, ... , cn can be entailed from the store. Then, it executes Q in one step (as in Trace 1
and Trace 2 of Example 4.1).

The next theorem relates the outputs obtained by the standard and the maximal semantics.

Theorem 4.3. Let P be a process. Then, for any constraint c,

(X; P ; e)⇓c if and only if (X; P ; e) �c

Proof. The (⇐) part of the proof is immediate since � is a particular scheduling for a −→ derivation. As for the (⇒) 
part, assume that (X1; �1; e1) ⇓c , i.e., there is a derivation of the shape (X1; �1; e1) −→ · · · −→ (Xm; �m; em) such that 
∃Xm.em �� c. We note that the store evolves monotonically, i.e., ei �� e j for all j ≤ i. Moreover, ask agents query the store 
without affecting it (Rule RA). Consider a process R = ask c1 then ask c2 then ...ask cn then Q in a given configuration 
in the derivation above. We know that R can add information to the store iff Q is executed. This happens iff there is a 
configuration γk with store ek entailing the last guard of R (i.e., ek �� cn). By monotonicity and Rule RA, it must be the case 
that ek �� (c1 ∧ ... ∧ cn). We conclude by noticing that there is a (maximal) derivation using RAM ending in the store em . 
Such derivation differs from the standard derivation in that it delays the execution of R until the store ek is produced. The 
same argumentation follows for procedure calls and the rule RCM. �
Remark 4.2. Interestingly enough, the theorem above reflects a well-known proof theoretical result: negative rules permute 
down with positive rules, meaning that all negative actions can be done before the positive ones.

We can now state a stronger adequacy result, restricted to maximal derivations.

Theorem 4.4 (Strong adequacy – maximal derivations). Let P be a process, � be a set of process definitions and � be a set of non-
logical axioms. Then, for any constraint c,

P �c iff there is a proof of the sequent L[[�]],�� : ·;L[[P ]] ⇒�c⊗�
in ILLF. Moreover, the level of adequacy is FCD.

Proof. The result follows immediately from Remark 4.2, since positive and negative actions in CCP with maximal deriva-
tions correspond exactly to positive and negative phases in the logical system. In particular, observe that, in the process 
ask c then P , the only possibility of L[ [P ] ] being a negative formula is when P is also an ask. The same with procedure 
calls. �
4.2. Interleaving and delays

Interleaving executions as the one in Trace 3 can be handled in a focused system by means of the so called logical 
delays [29].

Definition 4.2. The positive and negative delay operators δ+(·), δ−(·) are defined as δ+(F ) = F ⊗ 1 and δ−(F ) = 1 −◦ F
respectively.

Observe that δ+(F ) ≡ δ−(F ) ≡ F , hence delays can be used in order to replace a formula with a provably equivalent 
formula of a given polarity. We define the encoding L[ [·] ]+ as L[ [·] ] but replacing the following cases:

L[[ask c then P ]]+ = �c � δ+(L[[P ]]+)

L[[p(x)
�= P ]]+ = ∀x.p(x) � δ+(L[[P ]]+)

The use of the encoding above forces the focusing phase to end. In this case, we can have a stronger adequacy theorem 
for the whole CCP system.
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Theorem 4.5 (Strong adequacy – standard derivations). Let P be a process, � be a set of process definitions and � be a set of non-
logical axioms. Then, for any constraint c,

P ⇓c iff there is a proof of the sequent L[[�]]+,�� : ·;L[[P ]]+ ⇒�c⊗�
in ILLF. The adequacy level is FCD.

Proof. By straightforward case analysis. To illustrate, consider the derivation

L[[�]],�� : ·;L[[P ]] ⇒ G

L[[�]],�� : ·; δ+(L[[P ]])⇒ G
⊗L,1L

L[[�]],�� : [δ+(L[[P ]])]; ·→ G
R L L[[�]],�� : ·; · → [�c]

L[[�]],�� : [�c � δ+(L[[P ]]+)]; ·→ G
∀L,−◦L

L[[�]],�� : ·; · ⇒ G
D LC

Observe that the positive formula δ+(L[ [P ] ]+) forces the end of the positive phase on the left premise. �
Remark 4.3. Observe that Theorem 4.4 gives a canonical trace to CCP successful computations via focusing. In this case, the 
guards of nested ask agents are evaluated at once to decide whether the process continues blocked or not. On the other 
hand, Theorem 4.5 shows that derivation in logic have a one-to-one correspondence with traces of a computation in a CCP 
program.

4.3. A closer view to negative actions

So far we have shown that the focus discipline and the use of delays allow us to have a one-to-one correspondence 
between CCP positive actions (i.e., ask agents and procedure calls) and ILLF positive phases. In this section we show in 
detail the behavior of negative actions as well.

Recall that negative actions are those that do not need to interact with the environment, i.e., parallel composition, local 
and tell processes in CCP. From the logical point of view, the formulas resulting in ILL from the encoding of those processes 
are all introduced (in any order) in a negative phase since the rules governing them are all invertible (⊗L , ∃L, !L ).

We thus have two sources of don’t care non-determinism that may separate derivations in CCP and the corresponding 
derivations in ILLF:

1. Let P = tell(c) ‖ ask c then Q ‖ tell(d). P may proceed by adding c to the store, then reducing the ask agent to Q and 
finally adding d to the store. The ILLF derivations for L[ [P ] ] starts with a negative phase decomposing �c and �d. Then 
it focuses on the encoding of the ask agent to produce Q . In other words, the focusing discipline forces to postpone the 
execution of the ask agent after introducing both c and d.

2. The operational semantics stores c in tell(c) to the current store d producing c ∧ d in one step. The encoding �c may 
use several application of the negative rules ⊗L , ∃L, !L until the atomic subformulas of c are stored into the context.

There are at least two options for having also a match between negative actions in CCP and derivations in ILLF.

(i) Propose a new semantics that eagerly executes all the negative actions (in a parallel composition) and then works on 
positive actions. It is not difficult then proving an adequacy result similar to Theorem 4.3 for such semantics. For that, 
note that if ask c then P can exhibit a transition on a store d then it can do the same on a stronger store d′ (i.e., 
d′ �� d).

(ii) Introduce negative delays in the encoding of tells and local processes. Hence they must be introduced in a positive 
(focused) phase and the only negative actions will be the steps needed to store the constraints in the context. In this 
way, we have a perfect match between polarity changes in ILLF and operational steps.

We shall explore in detail the alternative (ii) in Section 5 where we analyze a timed extension of CCP. In that language, 
the logical adequacy cannot be established without forcing all the actions to be positive.

4.4. Indeterminate CCP languages

Non-determinism is introduced in CCP by means of the choice operator.

Definition 4.3 (Indeterminate CCP). Indeterminate CCP processes are obtained by adding 
∑

Pi to the syntax in Definition 2.2.

I
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〈x;∑
I

P i ,�; c〉 −→ 〈x; Pi ,�; c〉 RBCH
〈x; Pi ,�; c〉 −→ 〈x′;�′; c′〉
〈x;∑

I
P i ,�; c〉 −→ 〈x′;�′; c′〉 RGCH

(a) Blind Choice (b) One-step guarded choice

Fig. 4. Operational rules for the non-deterministic choice.

The process 
∑

I
P i chooses one of the P j for execution. The choice of one of the processes precludes the others from 

execution. When |I| = 2, we shall write P1 + P2 instead of 
∑

I
P i .

We can give at least two possible interpretations of the non-deterministic choice as shown in Fig. 4. The Rule RBCH
corresponds to the blind (or internal) choice (BC ). This rule says that a process Pi is chosen for execution regardless 
whether the process Pi can evolve or not. The local choice fragment of indeterminate CCP enjoys interesting properties as 
confluence, i.e., the output of a process is independent of the scheduling policy of the parallel operator [16].

In the Rule RGCH, the chosen process Pi must not block, i.e., it must exhibit at least one transition. Since the only 
blocking agent in Syntax 2.2 is the ask agent, this kind of non-deterministic choice is usually written as a summation of ask 
agents as in 

∑
i

ask ci then Pi . Thus, the rule for one-step guarded choice (GC ) can be read as: Pi is chosen for execution 

whenever its guard ci can be entailed from the current store. We note that a BC can be seen also as a GC where the guard 
ci = true for all i.

The logical clauses representing blind and guarded choice are, respectively:

L[[∑
I

P i]]BC = & I (δ
+(L[[Pi]])) L[[∑

I
P i]]GC = & IL[[Pi]]

Observe that we capture well the behavior of choosing one process from the choices we have. At the same time, forcing 
formulas to be positive in the BC case implies that the chosen process will not block in the positive phase. On the other 
hand, Pi being a negative formula in the case GC , assures that the choice will be triggered only if the guard can be inferred 
from the context (store) and non-logical axioms. Hence, we continue having a neat logical control corresponding to the 
operational semantics, and results in Theorems 4.4 and 4.5 remain valid for indeterminate CCP.

Theorem 4.6 (Adequacy for indeterminate CCP). Let P be a process from Definition 4.3, � be a set of process definitions and � be a 
set of non-logical axioms. Then, for any constraint c:

• P �c iff there is a proof of the sequent L[ [�] ], �� : ·; L[ [P ] ] ⇒�c⊗�
• P ⇓c iff there is a proof of the sequent L[ [�] ]+, �� : ·; L[ [P ] ]+ ⇒�c⊗�

Moreover, the level of adequacy in both cases is FCD.

Negative actions. The discussion on Section 4.3 takes a new perspective in the case of guarded choices. Note that GC processes 
are affected by the scheduling policy of the parallel operator. This means that, in general, GC processes are not confluent in 
the sense of [16]. Take for instance the process P = tell(c) ‖ Q where Q = ask true then Q 1+ ask c then Q 2. If Q is first 
chosen for execution, the only alternative for Q is to execute Q 1. On the contrary, if tell(c) is first executed, Q may chose 
both Q 1 or Q 2.

Alternatives (i) and (ii) proposed in Section 4.3 (in order to exhibit an adequacy result between ILLF and both negative 
and positive actions) are also applicable in the context of indeterminate CCP. The semantic approach in (i) is valid since 
augmenting the store enables more choices in a GC process (i.e., an alternative cannot be discarded by considering a stronger 
store); on the other hand, by adding negative delays as in (ii), we can recover a one-to-one correspondence between both 
positive and negative actions in indeterminate CCP and ILLF.

5. Maximal parallelism and multi-focusing

The reduction relations −→ (Definition 2.3) and � (Definition 4.1) define interleaving semantics for the parallel operator. 
This means that, in a configuration of the shape γ = 〈X; P1 ‖ · · · ‖ Pn; d〉, if γ −→ γ ′ , then only one of the Pi exhibits a 
transition (and the other processes remain the same).

In this section, we show how to capture maximal parallelism in CCP using the so called maximal multi-focusing discipline 
in ILL. By maximal parallelism we mean that all the enabled processes are executed at the same time. As we shall see, this 
kind of semantics is needed for characterizing timed CCP processes [14]. Finally, we establish adequate ILL characterizations 
to the systems mentioned above.

5.1. Multi-focused ILL

We start by presenting mILL, a multi-focused system for ILL, which is an extension of the system mLJF introduced in [40]
or the restriction to the positive intuitionistic case of the system presented in [5].
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Positive Phase

ϒ : �1; ·→ [P ] ϒ : �2; ·→ [Q ]
ϒ : �1,�2; ·→ [P ⊗ Q ] ⊗r

ϒ : �,�, [Ni ]; · → P

ϒ : �,�, [N1 & N2]; ·→ P
& Li

ϒ : �1; ·→ [P ] ϒ : �2,�, [N]; ·→ Q

ϒ : �1,�2,�, [P −◦ N]; ·→ Q
−◦l

ϒ : �; ·→ [Pi ]
ϒ : �; ·→ [P1 ⊕ P2] ⊗Ri

ϒ : �; ·→ [P {t/x}]
ϒ : �; ·→ [∃xP ] ∃r

ϒ : �,�, [N{t/x}]; · → P

ϒ : �,�, [∀xN]; · → P
∀l

ϒ : ·; · ⇒ N

ϒ : ·; ·→ [!N] !R ϒ : ·; · → [1] 1R

ϒ : �; ·→ [A] I R given A ∈ (� ∪ϒ) and (� ⊆ {A})

Structural Rules

ϒ : �, [ϒ∗,�]; ·→ P

ϒ : �,�; · ⇒ P
mD L

ϒ : �; ·→ [P ]
ϒ : �; · ⇒ Pu

mD R

ϒ : �;�⇒ P

ϒ : �, [↑�]; ·→ P
mRL

ϒ : �; · ⇒ N

ϒ : �; ·→ [↓ N] mR R

ϒ : �,�;�⇒ R

ϒ : �;�,↓�⇒ R
storeN

ϒ : �, A;�⇒ R

ϒ : �;�, Aa ⇒ R
storeA

Fig. 5. mILL system. Here A is atomic, P , Q positive, N negative, Pu represents either a negative formula of the kind ↑ P or a positive formula and Aa is 
either atomic or a formula of the kind ↑ A. ϒ∗ represents a multiset of arbitrary numbers of copies of formulas in ϒ . In mDL , ϒ∗ ∪� is non-empty.

The system mILL has two kinds of formulas:

P , Q := A | 1 | P ⊗ Q | P ⊕ Q | ∃x.P (x) | !N | ↓ N
M, N := � | M & N | P −◦ N | ∀x.N(x) | ↑ P

where P , Q are positive while M, N are negative formulas. The symbols ↑ and ↓ mark the changing of polarities. The syntax 
for contexts is the following

� :=�, N ϒ := · |� � :=ϒ, A � := [�] � :=ϒ, P

The intuition is the following: �, ϒ, � are sets that contain negative formulas, where � is non-empty and � may also have 
atomic formulas; � is a non-empty set of focused negative formulas, and � is any set of formulas.

There are three kind of sequents in mILL:

• the sequent ϒ : �; � ⇒ R is unfocused;
• the sequent ϒ : �, [�]; · → R is multi-focused on the left;
• the sequent ϒ : �; · →[R] is focused on the right.

The negative phase in mILL is the same as in ILL. The rest of the rules for mILL are similar to the ones presented in Fig. 2, 
now considering possibly multi-focused contexts (Fig. 5). The only difference is the way of triggering the release rules: the 
positive phase ends only when all the focused formulas are marked with arrows. This means that the focusing persists up 
to the point that every focused formula reaches a negative formula, and the focusing is released at once to all of them.

Theorem 5.1. mILL is sound and complete with respect to ILL.

Proof. The proof is standard: just note that erasing the ↑ and ↓ arrows and the context � and restricting � to a singleton 
in mD L , mILL collapses to ILLF. �
5.2. Maximal multi-focusing

The following are adapted versions of definitions in [10,9].

Definition 5.1. The proofs �1 and �2 of the same mILL sequent are locally permutable equivalent, written �1 ∼ �2, if each 
can be rewritten to the other using intra-phase permutations, that is, permutations inside a phase step. �1 and �2 are 
permutable equivalent, written �1 ≈ �2, if they are locally permutable equivalent and each can be rewritten to the other 
using inter-phase permutations, i.e., permutations of rules in different phase steps.
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Observe that, since all negative rules are invertible, they permute over any other rule. This means that the whole negative 
phase collapse to one step, modulo local permutations. Non-locally permutable equivalent proofs, on the other hand, require 
considering permutations of entire phases.

Example 5.1. Let A, B, C, D (positive) atomic formulas and suppose that ϒ : �1, �2, A −◦ (↑ B), C −◦ (↑ D); · ⇒ R is provable 
with derivation �1

ϒ : �1; ·→ [A] I R

ϒ : �′2; ·→ [C] I R

π
ϒ : �′′2 , B, D; · ⇒ R

ϒ : �′′2 , B, [↑ D]; ·→ R
mR L

ϒ : �2, B, [C −◦ (↑ D)]; ·→ R
−◦L

ϒ : �2, C −◦ (↑ D), B; · ⇒ R
mD L

ϒ : �2, C −◦ (↑ D), [↑ B]; ·→ R
mR L

ϒ : �1,�2, C −◦ (↑ D), [A −◦ (↑ B)]; ·→ R
−◦L

ϒ : �1,�2, A −◦ (↑ B), C −◦ (↑ D); · ⇒ R
mD L

The derivation �2 below is also a proof of ϒ : �1, �2, A −◦ (↑ B), C −◦ (↑ D); · ⇒ R and �1 ≈�2:

ϒ : �′2; ·→ [C] I R

ϒ : �1; ·→ [A] I R

π
ϒ : �′′2 , D, B; · ⇒ R

ϒ : �′′2 , D, [↑ B]; ·→ R
mR L

ϒ : �1,�
′′
2 , D, [A −◦ (↑ B)]; ·→ R

−◦L

ϒ : �1,�
′′
2 , A −◦ (↑ B), D; · ⇒ R

mD L

ϒ : �1, ,�
′′
2 , A −◦ (↑ B), [↑ D]; ·→ R

mR L

ϒ : �1,�2, A −◦ (↑ B), [C −◦ (↑ D)]; ·→ R
−◦L

ϒ : �1,�2, A −◦ (↑ B), C −◦ (↑ D); · ⇒ R
mD L

Observe that we have exchanged the order of application of the implication left rule, hence performing inter-phase steps.

Definition 5.2. If a proof � in mILL ends with an instance of mD L , let foci(�) be defined as the multiset of focused 
formulas in the premise of that instance. We say that this instance of mD L is maximal if and only if, for every �′ ≈ �, 
foci(�′) ⊆ foci(�). A proof in mILL is maximal if and only if every instance of mD L in it is maximal.

In Example 5.1, �1 and �2 are permutable equivalent to the following maximal multi-focused proof

ϒ : �1; ·→ [A] I R
ϒ : �′2; ·→ [C] I R

π
ϒ : �′′2 , B, D; · ⇒ R

ϒ : �′′2 , [↑ B,↑ D]; ·→ R
mR L

ϒ : �2, [C −◦ (↑ D),↑ B]; ·→ R
−◦L

ϒ : �1,�2, [C −◦ (↑ D), A −◦ (↑ B)]; ·→ R
−◦L

ϒ : �1,�2, C −◦ (↑ D), A −◦ (↑ B); · ⇒ R
mD L

Note that �1 and �2 are also permutable equivalent to the maximal multi-focused proof where C −◦ (↑ D) is reduced first. 
But these maximal proofs are locally permutable equivalent: the inter-phase permutations are now intra-phase permuta-
tions.

As in [2], we call a neighboring pair of phases, with the bottom phase positive and the top phase negative, a bipole.

Theorem 5.2. Every provable sequent in mILL has a maximal proof. Moreover, restricted to the CCP Grammar (see Section 4) any 
two maximal multi-focused proofs of the same sequent are locally permutable equivalent.

Proof. Consider two neighboring bipoles in mILL. If the positive phase of the top bipole permutes with the negative phase 
of the bottom bipole, then, in an unfocused form, we can perform the permutation and merge the two bipoles. This is 
done by uniting their positive and negative phases, thus obtaining another (multi-)focused proof. This operation obviously 
terminates, giving rise to a maximal multi-focused proof. For the unicity result, if we restrict the formulas so that they fall 
into the CCP Grammar, then the proof is the same as done for MALL in [10]. While the unicity should also hold for the 
whole mILL system, proving this result is out of the scope of this paper. �
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(X; P ; c)∼= (X ′; P ′; c′)−→ (Y ′; Q ′;d′)∼= (Y ; Q ;d)

(X; P ; c)−→ (Y ; Q ;d)
REQUIV

(X; tell(c);d)−→ (X; stop; c ∧ d)
RT

d �� ci

〈X;∑
i∈I

ask ci then Pi;d〉 −→ 〈X; Pi;d〉 RA

p(x)
�= P

(X; p(y);d)−→ (X; P [�y/�x];d)
RC

(X; P ;d)−→ (X ∪ �x1; P ′;d ∧ c1) (X; Q ;d)−→ (X ∪ �x2; Q ′;d∧ c2) �x1 ∩ �x2 = ∅
(X; P ‖ Q ;d)−→ (X ∪ �x1 ∪ �x2; P ′ ‖ Q ′;d∧ c1 ∧ c2)

RP1

(X; P ;d)−→ (X ∪ �x1; P ′;d∧ c1) (X; Q ;d) �−→
(X; P ‖ Q ;d)−→ (X ∪ �x1; P ′ ‖ Q ;d∧ c1)

RP2

Fig. 6. Operational semantics of tccp.

5.3. Timed CCP processes

Reactive systems (see e.g., [4]) are those that react continuously with their environment at a rate controlled by the 
environment. For example, a controller or a signal-processing system, receives a stimulus (input) from the environment, 
computes an output and then waits for the next interaction with the environment. Temporal extensions of CCP has been 
proposed [43,28,4,37] in order to specify and verify reactive systems combining the elegant computation model of CCP with 
ideas from the paradigm of Synchronous Languages [4].

The tccp process calculus [14] is an orthogonal timed non-deterministic extension of CCP. In this language, time is 
identified with the time needed to ask and tell information to the store.

Definition 5.3 (tccp processes). Processes are built from constraints in the underlying constraint system as follows2:

P , Q ::= stop | tell(c) |
∑

i∈I

ask ci then Pi | P ‖ Q | (local x) P | p(x)

The operational semantics is defined in Fig. 6. Similar to Section 2, processes are quotiented by a structural congruence 
relation ∼= satisfying alpha conversion and commutativity and associativity on parallel composition.

We define the congruence relation on configurations as we did in Section 2 (C1) but with an extra ingredient (C2) that 
will be clarified soon:

C1 (X; P ; c) ∼= (X ′; P ′; c′) iff X = X ′ , P ∼= P ′ and c ≡� c′ .
C2 (X; (local x) P ; c) ∼= (X ∪ {x}; P ; c) if x /∈ fv(X, c)

In Fig. 6, a transition of the form (X; P ; c) −→ (Y ; Q ; d) must be understood as “the process P evolves in one time-unit
to Q and produces the new store d”. Processes in tccp, as in CCP, are monotonic, i.e., in the above derivation it must be 
the case that d �� c and X ⊆ Y .

The process stop represents inaction and there is no a transition from it. Rules RT and RA are similar to those in 
Section 2, but the transition must be also understood as a temporal evolution. For instance, RT says that the process tell(c)
makes available c to the store only in the next time-unit. Rule RC can be explained similarly.

The novelty with respect to the system in Fig. 1 comes from the rules for local processes and parallel composition.
Recall that in CCP, we identified the multiset of processes � = {P1, ..., Pn} with the parallel composition P1 ‖ · · · ‖ Pn . In

tccp, all the enabled processes must be executed at the same time during a time-unit. Hence, rules RP1 and RP2 model the 
parallel composition operator in terms of maximal parallelism: the process P ‖ Q executes, in one time-unit, all the enabled 
actions in P and Q .

Regarding the rule for the local operator, it was defined in [14] as follows:

(P ; c ∧ ∃x.d)−→ (P ′; c′ ∧ ∃x.d)

((local x; c) P ;d)−→ ((local x; c′) P ′;d ∧ ∃x.c′) (2)

Here d is the global store and c is the local store containing the information that P accumulates on x. Since the local 
process cannot observe the information about x in d, the premise of this rule hides this information by using existential 
quantification. Moreover, since the other processes cannot observe the information about x produced by P (i.e., c′), the rule 

2 We do not consider the process now c then P else Q that executes P if c can be entailed and Q otherwise. The reason is that such operator lacks 
of a proper proof theoretic semantics: the reduction to Q amounts to showing that there is no proof of c.
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hides it by existentially quantifying x in c′ before adding it to the global store d. Observe also that this rule says that the 
process (local x; c) P takes one time-unit to perform an action if P also takes one time-unit.

Let Q = (local x) P and consider the rule RL in Fig. 1. Such rule follows the approach in [15] where local processes simply 
create a fresh variables (as ∃L does in logic). If we were to use the rule RL (in Fig. 1) for tccp, then it would “consume” 
a time-unit in order to create the fresh variable. This does not correspond to the behavior of local processes in tccp as 
dictated by rule in Equation (2). For fixing that, we embed in the structural rule C2 the action of creating the local variable 
as a “silent” action (i.e., an action that does not consume a time-unit). Therefore, P is the only responsible for the time 
passing in (local x) P .

We define the tccp observables as we did for CCP.

Definition 5.4. If (X0; P0; d0) −→ (X1; P1; d1) −→ · · · −→ (Xn; Pn; dn) we write (X0; P0; d0) −→n (Xn; Pn; dn). If there exists 
n ≥ 0 such that (X; �; d) −→n (X ′; �′; d′) and ∃X ′.d′ �� c we write (X; �; d) ⇓n

c . If X = ∅ and d = true we simply write 
� ⇓n

c .

5.4. Maximal parallelism in tccp and maximal multi-focusing

In order to accurately mimic the maximal parallelism semantics in tccp, we need all the actions to be positive, as 
alternative (ii) in Section 4.3 suggests. The only negative action should be the introduction of the eingnevariables for local 
processes and the action of storing the atoms in �c to the context. More precisely, we define � as in Fig. 3 and T [ [·] ] as 
follows:

T [[tell(c)]] = ↑ �c
T [[P ‖ Q ]] = ↓∗ (T [[P ]])⊗↓∗ (T [[Q ]])

T [[∑
i∈I

ask ci then Pi]] = & I (�ci �↑ (↓∗ T [[Pi]])
T [[(local x) P ]] = ∃x.(↓∗ T [[P ]])
T [[p(x)

�= P ]] = ∀x.p(x) �↑ (↓∗ T [[P ]])
T [[p(y)]] = ↑ p(y)

where ↓∗ denotes a possible presence of ↓, depending on the polarity of the subformulas, that is, if F is positive then 
↓∗ F = F , otherwise ↓∗ F =↓ F . For example, P = (local x) tell(c) ‖ ask d then tell(a) is encoded as

(∃x. ↓ (↑�c))⊗↓ (�d−◦ (↑�a))

Observe that the negative phase will apply eagerly the existential and the tensor rule, as well as store the negative formulas 
↑�c and (�d −◦ (↑�a)) in the negative linear context. Those formulas can be chosen later in a multi-focusing step.

The assignment of arrows intuitively says that immediate subformulas of a formula with positive main connective should 
be positive. Similarly for negative connectives. The arrows then mark the change of polarity. Although the syntax of formulas 
seems a little bit more complicated, the rules of mILL are simple enough: one only loses focusing if all focused formulas are 
marked with an arrow. This is the trigger for changing from positive to negative polarities.

The following theorem shows that passing from a negative to a positive phase in a maximal multi-focused proof in mILL 
corresponds exactly to the change of a time-unit in the operational semantics.

Theorem 5.3 (Adequacy for tccp). Let P be a tccp process, � be a set of process definitions and � be a set of non-logical axioms. 
Then, for any constraint c, P ⇓n

c iff there is a maximal multi-focused proof of the sequent T [ [�] ], �� : ·; T [ [P ] ] ⇒�c ⊗� in mILL. 
Moreover, the level of adequacy is FCD, and hence a time unit execution corresponds to a maximal multi-focusing step.

Proof. Suppose P = P1 ‖ · · · ‖ Pn . Hence T [ [P ] ] =↓∗ T [ [P1] ] ⊗ · · ·⊗ ↓∗ T [ [Pn] ] will be decomposed into ↓∗ T [ [P1] ], · · · , ↓∗
T [ [Pn] ] in the negative phase. If T [ [Pi] ] is marked with ↓ for some i, then T [ [Pi] ] is negative and it will be stored using 
the storeN rule. Otherwise, T [ [Pi] ] is positive and it will continue to be decomposed until a formula marked with ↓ is 
reached. Note this always eventually happens for any T [ [Pi] ]. At the end of this process, the linear general context will 
be empty and a positive phase should start. Since the proof is maximally multi-focused, it should follow by choosing the 
maximal set of formulas to be focused on the left. This will correspond exactly to choosing a maximal set of processes that 
can be executed in parallel in one time unit. �
6. Fixed points: procedure calls and a richer language of properties

In this section we explain how procedure calls can be seen as fixed points as in [13], but giving it a new insight under 
the focusing discipline. We will call μILL the logic ILL with a fixed point operator μ and the unfolding rule

ϒ : �, [B(μB)t]; ·→ G

ϒ : �, [μBt]; ·→ G
unfold
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In [3] there is a deep discussion about fixed points, focusing, termination and the admissibility of the rule above. Since 
here we will use fixed points in a very simple way (e.g., as in [39,29]), we will avoid all these technicalities. Assuming that 
p(x) �= P , the encoding L[ [·] ]μ is the same as L[ [·] ]+ (see Section 4.2) but

L[[p(t)]]μ =μ(λp.λx.δ+(L[[P ]]μ))t

The base grammar for guards/goals G and processes P now is the following

G := 1 | A | !G | G ⊗ G | ∃x.G

P := G | P ⊗ P | P & P | ∀x.G � P | ∃x.P |μBt

Observe that the application of the rule unfold matches exactly the behavior of focusing on ∀x.p(x) � δ+(L[ [P ] ]+) in our 
previous encodings. More precisely, the derivation

ϒ : �; δ+(L[[P ]]+{t/x})⇒ G

ϒ : �, [δ+(L[[P ]]+{t/x})]; ·→ G
Rl

ϒ : p(t); ·→ [p(t)] I R

ϒ : �, p(t), [∀x.p(x)−◦ δ+(L[[P ]]+)]; ·→ G
∀L,�L

now becomes

ϒ : �; δ+(L[[P ]]μ{μ(λp.λx.δ+(L[[P ]]μ))/p}{t/x})⇒ G

ϒ : �, [δ+(L[[P ]]μ{μ(λp.λx.δ+(L[[P ]]μ))/p}{t/x})]; ·→ G
R L

ϒ : �, [μ(λp.λx.δ+(L[[P ]]μ))t]; ·→ G
unfold

since

(λp.λx.δ+(L[[P ]]μ))(μ(λp.λx.δ+(L[[P ]]μ)))t =β

δ+(L[[P ]]μ{μ(λp.λx.δ+(L[[P ]]μ))/p}{t/x})
The following adequacy theorem is then straightforward.

Theorem 6.1 (Adequacy – fixed points). Let P be a process and � be a set of non-logical axioms. Then, for any constraint c,

P ⇓c iff �� : ·;L[[P ]]μ⇒�c⊗� is provable in μILL.

The discussion of the levels of adequacy is the same as done in the precedent sections.

Verification of (infinite) processes. It is easy to extend the simple unfolding setting presented here by adding the rules for 
equality and least and/or greatest fixed points. The resulting system would be just an adaptation, for the intuitionistic case 
and with the exponential !, of the system μMALL presented in [3]. This allows for the verification of properties inside the 
logical system. We will illustrate this by adding the least fixed point in order to prove some simple properties by induction.

The rules for the least fixed point μ are

ϒ : �;�, St ⇒ G · : ·; Sx⇒ B Sx

ϒ : �;�,μBt ⇒ G
μL

ϒ : �; ·→ [B(μB)t]
ϒ : �; ·→ [μBt] μR

In the above rules, x are fresh variables, t are terms and S is a closed formula of the same type as B , called the invariant.
Consider a Herbrand constraint system [45], where constraints are equalities on terms. Let 0 (zero) be a constant, suc

be a function (successor) and consider the following process definitions:

nat(x)
def= ask x= 0 then tell(true)+

ask ∃x′.x= suc(x′) then (local x′) tell(x= suc(x′)) ‖ nat(x′)
plus(x, y, z)

def= ask x= 0 then tell(y = z)+
ask ∃x′.x= suc(x′) then (local x′, z′)

tell(x= suc(x′)) ‖ plus(x′, y, z′) ‖ tell(z= suc(z′))
As expected, by unfolding, we can prove the sequent below:

ϒ : · ⇒ ∀y, z.(L[[nat(y)]]μ −◦L[[nat(z)]]μ −◦L[[plus(0, y, z)]]μ −◦ y = z)

However, proving the sequent

ϒ : · ⇒ ∀x, z.(L[[nat(x)]]μ −◦L[[nat(z)]]μ −◦L[[plus(x,0, z)]]μ −◦ x= z)

requires induction. A simple inspection shows that the invariant S , needed in rule μL is



62 C. Olarte, E. Pimentel / Theoretical Computer Science 685 (2017) 46–64
λp.λx, y, z.∀z′.(plus(x,0, z′)−◦ x= z′)

Note that the right hand side of the sequents above does not correspond to a guard (G) as defined in the previous sec-
tions. In fact, it does not correspond to the encoding of any process, since the rule μL clearly does not have any operational 
counterpart: it is used only for verification purposes.

7. Concluding remarks

In this work, we have analyzed different encodings from CCP into intuitionistic linear logic, determining the level of 
adequacy in each case. We showed that, by using a focusing discipline, we have a complete control of concurrent processes 
via logic, closing for good the connection between proof theory and CCP calculi.

The encodings proposed here are simpler than the ones presented in [31]. In fact, here we do not make use of subex-
ponentials [12], and we show that focusing is responsible, alone, for the strongest possible level of adequacy. However, 
it is not possible to deal with other CCP languages such as epistemic and spatial extensions [21] using only focusing, for 
that, the subexponentials are needed. Also, differently from [31], here we have explored different aspects of computation. In 
particular, we dealt with non-determinism and we showed how to control the traces due to the interleaving of processes. 
We also studied in a greater detail how the synchronization of agents can be better controlled, as well as how to deal 
with procedure calls via fixed points. Our encodings thus open the possibility of using induction for the verification of CCP 
programs.

Linear CCP (lcc) [15] is a CCP language where constraints are build from the fragment !, ∃, ⊗, 1 of ILL. Ask agents 
(interpreted as linear implications) can consume information when querying the store: if the current store is d, the linear 
ask agent ask c then P executes P on the store e if d �� c[�t/�x] ⊗e (in lcc, the free variables �x in c are implicitly universally 
quantified). Note that even without the choice operator, lcc is non-deterministic since there may be several constraints that 
satisfy the condition d �� c[�t/�x] ⊗ e (see also discussion on the most general choice in [19]).

The results presented here extend straightforwardly to lcc when synchronization constraints, i.e., linear atomic constraints 
without non-logical axioms [41], are considered. The problem of handling lcc with non-logical axioms in our encoding is 
the following. Consider an atomic linear constraint c and the formula F = c −◦L[ [P ] ] corresponding to the encoding of the 
linear ask process ask c then P . If we decide to focus on F , the atom c must be already in the context and the proof must 
end immediately. This means that the non-logical axioms of the constraint system cannot be used.3 Of course, one could 
prove the possibility of applying such axioms before the focusing phase, but this would then break the adequacy results. 
The simplest way we know for adequately specifying, with the highest level of adequacy, linear constraints systems with 
non-logical axioms is by using subexponentials to mark processes, constraints, and processes definitions, as done in [31].

Since the constraint system in CCP behaves classically, one may wonder whether the same results in this paper may be 
achieved by using (focused) intuitionistic logic (LJ). In the case of indeterminate CCP, it is clear that one source of linearity 
is needed to avoid, due to contraction, the possibility of observing both P and Q in the non-deterministic choice P + Q . In 
the case of the deterministic language, a FCP (full completeness of proofs) result can be stated. However, focusing in LJ is 
not enough to show a FCD (full completeness of derivations) result. Firstly, in our encodings, the linear context stores the 
processes (not yet executed) and the classical context stores the constraints already added (i.e., it encodes the CCP store). 
Such distinction is not possible in LJ. Secondly, in a LJ derivation, the same implication may appear twice as the main 
formula. This would correspond to execute twice the same ask agent. Finally, it would be impossible to prove that the use 
of non-logical axioms permutes up in a derivation (see discussion after Lemma 4.1).

We plan to use the logical semantics presented here to derive optimization procedures for CCP interpreters. In particular, 
our characterization of positive and negative actions in CCP may allow us to “sequentialize” part of the code. This is useful to 
reduce the number of suspended threads in an execution of a CCP-program. We also plan to generate specifications for the 
system Bedwyr (http :/ /slimmer.gforge .inria .fr /bedwyr/) based on the fixpoint interpretation of procedure calls in Section 6. 
This may allow to verify systems modeled in CCP. Another research direction would be to consider higher-order processes 
as those in [42]. This can be handled by fixpoints characterization of procedure calls as done in Section 6.

Finally, it is worth noticing that linear logic has been shown to be an adequate logical framework to reason about other 
process algebras such as CCS [25] and the π -calculus [27] (see a survey in [8]). Two lines of research can be identified 
in these developments. On one side, the processes-as-terms interpretation [1] identifies operational reductions with cut-
elimination as in the Curry–Howard isomorphism. For a more recent track on this direction, the reader may refer to [7]
(resp. [48]) where formulas in intuitionistic (resp. classical) linear logic are given a computational interpretation as ses-
sion types. On the other side, we have the processes-as-formulas interpretation [23] where constructs in the language are 
interpreted as connectives in the logic as we did in our encodings. Adequacy results relate proof steps with operational 
steps.

Extensions of linear logic have also played an important role in the specification of different concurrent behaviors. For 
instance, linear logic with subexponentials has been used in the specification of bigraphs [26] (a general model for concur-

3 Note that this does not happen in the case of CCP since all the constraints behave classically and �c =!c – see Fig. 3. Hence, the focusing is lost in !c
and we can deduce c from the set of constraints and the non-logical axioms in the theory �� – see discussion after Lemma 4.1.

http://slimmer.gforge.inria.fr/bedwyr/
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rency that subsumes both CCS and the π -calculus) in [11], spatial and epistemic behaviors in [31,33,35] and biochemical 
systems in [32]. We can also mention [22] that uses Hybrid Linear Logic for the specification of biological systems.
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