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Resumo
Dados observacionais que suportam a existência de matéria escura (ME) têm sido am-
plamente documentados, apontando para a presença de uma matéria não barionica,
responsável por cerca de 25% da quantidade de energia do Universo. Contudo, tal tipo de
matéria não foi detectada até o momento e o modelo padrão de física de partículas (MP)
não possui uma explicação para ME. Neste trabalho, as partículas massivas fracamente
interagentes (WIMPs) são apresentadas. É, então, o objetivo principal mostrar que estes
candidatos à ME geram a abundância necessária para obter a quantidade estimada de
ME no Universo. Esse resultado é obtido através da solução da equação de Boltzmann no
cenário do Universo primordial.

Palavras-Chave: Matéria Escura, WIMPs, Equação de Boltzmann, Abundância de
Relíquias.



Abstract
Observational data that support the existence of dark matter (DM) has been largely
documented, pointing to the presence of a non-baryonic matter that is responsible for
around 25% of the energy budget of the Universe. However, such type of matter has not
been detected so far, and the standard model of particle physics (SM) does not have an
explanation for DM. In this work, the weakly interacting massive particles (WIMPs), the
main candidates for DM, are presented. It is then the main goal to show that this DM
candidate generates the abundance required to obtain the estimated amount of DM in the
Universe. This result is obtained by solving the Boltzmann equation, in the early Universe
scenario.

Keywords: Dark Matter, WIMPs, Boltzmann Equation, Relic Abundaces.
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1 Introduction

Considering the past decades, the effort of physicists around the globe to describe
all observed phenomena is very well documented and condensed in two powerful theories,
the Standard Model of particle physics (SM), that describes the Universe in small scales,
predicting with extraordinary precision high-energy events, and the General Relativity
(GR), with its description of the same Universe, but in large, astronomical scales. For
instance, the SM anticipated the existence of the Higgs boson, recently discovered by
ATLAS (ATLAS, 2012) and CMS (CMS, 2012). While GR details the existence of black
holes (Akiyama et al., 2019) and the gravitational waves (Abbott et al., 2016), also recently
observed.

Despite all the fantastic accomplishments made by these theories, different aspects
of the Universe remain unexplained, such as matter-antimatter asymmetry, the neutrino
oscillations, or the origin and nature of the dark matter (DM), the latter being the main
topic of this dissertation.

Independent observations point to this unknown kind of matter that accounts for
roughly 25% of the energy budget of the Universe. The DM is found to be neither luminous
nor baryonic1, and its only form of interaction observed so far is gravitational. Multiple
evidences, on scales of galaxies, galaxy clusters, or even larger, suggest the existence of
DM, and such evidences even show that DM populated the Universe since its inception.
Although this intriguing mystery seems far from a solution, there is nowadays a plethora
of models, experiments, and candidates to explain the DM nature.

This dissertation focuses on exploring one candidate: the weakly interaction massive
particle (WIMP), and on exploring how could these particles explain the amount of DM
observed today.

The starting line is the SM, more precisely the electroweak sector of the SM, for it
successfully describes the electromagnetic and weak forces, and also addresses its particle
content. Next, in Chapter 3, with properties from GR, the standard cosmological model is
discussed, in order to explore the early Universe scenario. In this sense, all the necessary
tools to understand the DM evidences are shown. A tool called the Boltzmann equation is
also introduced to detail the evolution of the particles composing the early Universe, as
they start to fall out of equilibrium with the cosmic plasma. During Chapter 4, some of the
main evidences for DM are presented. In the same chapter, the Boltzmann equation will
be solved for WIMP particles, in order to obtain the observed relic abundance. Finally, the
last part of Chapter 4 is devoted to an overview of experiments that search for WIMPs.
1 Here, baryonic matter refers to all types of known matter, such as electrons, positrons, etc.
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This work uses the natural system of units, therefore ~ = c = kB = 1. Additionally,
some prior knowledge in quantum field theory, as well as classical mechanics, classic
electrodynamics and quantum mechanics are necessary in order to better understand the
topics explored throughout this work.
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2 Standard Model: Electroweak Sector

The main purpose of this chapter is to review some aspects of the electroweak
sector of the standard model (SM), or the Electroweak Theory, The SM is a very successful
and precise theory, with one of its main accomplishes being the prediction of the Higgs
boson. The understanding of the SM can provide an insight about how to extend it, since
this theory cannot explain some unsolved problems.

The most fundamental question that elementary particle physics attempts to answer
regards what is matter made of. For instance, if matter is made of atoms - which were once
thought to be indivisible - and such atoms are made of elementary particles, how such
particles interact with each other? With the work of many scientists around the world and
throughout many generations, the SM was built, motivated by these questions. The SM
then describes three of the four interactions observed so far in nature, and also categorizes
all elementary particles detected at the moment.

It is worth mentioning that the beginning of the SM is in 1930, when Pauli proposed
the existence of the neutrino (Pauli, 1930). At that time, the only elementary particles
detected were the electron (Thomson, 1897) and the proton (Rutherford, 1919). The
process for the hypothesis of this third particle was the beta decay, where the neutron
decays into a proton, an electron, and an anti-neutrino. Fermi, in 1934, tried to describe
the beta decay based on an interaction of four fermions (Fermi, 1934). With the (V − A)
structure1 being used to describe weak interactions (Feynman; Gell-Mann, 1958; Sudarshan;
Marshak, 1958; Sakurai, 1958), some physicists tackled the problem of explaining such
interactions with symmetry groups2 (Bludman, 1958; Lopes, 1958; Lee; Yang, 1960), until
Glashow used the gauge group SU(2)L ⊗ U(1)Y to portray the weak and electromagnetic
interactions amongst elementary particles (Glashow, 1961). Shortly after, Weinberg and
Salam, independently, used the Higgs mechanism to generate mass to elementary particles
without explicitly breaking the gauge symmetry of the model (Weinberg, 1967; Salam,
1968), the process is made through a spontaneous symmetry breaking, detailed in the next
pages. The model assembled by Glashow, Weinberg and Salam composes the electroweak
sector of the SM. In addition, the SM also requires the existence of gauge bosons, particles
responsible for mediating the forces of nature.

The Higgs mechanism is presumed to take place in the Universe fractions of seconds
after the Big Bang, when the Universe reached the temperature of electroweak scales,
around 246 GeV in energy scales, giving mass to particles (Kolb; Turner, 1990). This is the
first point that shall be reviewed. From there, all the sectors of the SM will arise. This first
1 This structure can be described by the Lagrangian: LV−A ⊃ ψ̄γµ(1− γ5)ψ.
2 For a more detailed narrative of the SM history, see (Weinberg, 2004).
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part ends then with the achievements that the SM accomplishes, and also its limitations.

2.1 The Higgs mechanism
Since the SM is built using the non-abelian symmetry group SU(3)c ⊗ SU(2)L ⊗

SU(1)Y , Lorentz invariance and renormalizability, it is required that all gauge bosons and
fermions be massless in order to explicitly preserve the gauge symmetry. However, the
Universe is composed by massive particles. In order to provide mass to these particles
without explicitly breaking any gauge symmetry of the SM, the Higgs mechanism, a tool
to provide the spontaneous symmetry breaking, is introduced.

To illustrate the Higgs mechanism, suppose the Lagrangian for a complex scalar
field (φ(x) = φ1(x) + iφ2(x))

L = 1
4FµνF

µν + 1
2(∂µφ)∗(∂µφ)− V (φ∗φ), (2.1)

where Fµν = ∂νAµ − ∂µAν is the kinetic term for the electromagnetic field Aµ = (V,−A),
and V (φ∗φ) = µ2

2 (φ∗φ) + λ
4 (φ∗φ)2 is the potential for the so-called φ4 theory3. This

Lagrangian is invariant under global gauge symmetry (φ→ eiqαφ, being q and α constants)
as verified below

L → 1
4FµνF

µν + 1
2e
−iqαeiqα(∂µφ)∗(∂µφ)− e−iqαeiqα µ2

2 (φ∗φ)− (e−iqαeiqα)2λ

4 (φ∗φ)2

= 1
4FµνF

µν + (∂µφ)∗(∂µφ)− µ2

2 (φ∗φ)− λ

4 (φ∗φ)2 = L. (2.2)

For a local gauge transformation, e.g. φ→ eiqα(x)φ, on the other hand, some changes
are needed to achieve the gauge invariance. Making the following substitution

∂µ → Dµ ≡ ∂µ + iqAµ, (2.3)

with Aµ transforming as

Aµ → A′µ = Aµ − ∂µα(x) (2.4)

the Lagrangian

L = 1
4FµνF

µν + 1
2Dµφ

∗Dµφ− µ2

2 (φ∗φ)− λ
4 (φ∗φ)2 (2.5)

3 This potential is chosen because it corresponds to the most general potential that can fulfill two
requirements: dimensionality and gauge invariance.
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is now invariant under a local gauge symmetry and also includes an interaction term
between the Aµ field and the complex scalar field, φ. The same analogy can be applied
for the Dirac Lagrangian, resulting on the interaction between a photon and matter, or
fermions.

In order to understand the description of the scalar field, it is necessary to analyze
the potential V (φ∗φ). Firstly, λ must be positive, otherwise the potential would not be
bounded from below, therefore it will not have a finite, stable minimum. Secondly, µ2 can
be: (a) positive or (b) negative.

The Figure 1(a) represents the potential for the first case, where µ2 > 0. In this
case, the potential has a minimum at φ = 0. If µ2 is chosen to be negative, the lowest
energy state does not occur at φ = 0, but is degenerate. The vacuum states are obtained
by deriving the potential with respect to the field, and then setting this value to zero, as
follows:

[
dV (|φ|)
d|φ|

]
φ0

= µ2|φ|0 + λ|φ|30 = 0 (2.6)

µ2 + λ|φ|20 = 0 (2.7)

|φ|20 = −µ2

λ
(2.8)

|φ|0 = ±
√
−µ2

λ
≡ ±v, (2.9)

as shown in the Figure 1(b). The choice of the vacuum state then breaks the symmetry of
the Lagrangian. Choosing between |φ|0 = +v or |φ|0 = −v will not make any difference,
since the Lagrangian holds global symmetry, remembering that the point were φ = 0 for
µ2 < 0 represents a point of unstable equilibrium. The vacuum state is then chosen to be
at φ = v and the symmetry is spontaneously broken. Examining the perturbations of the
field around the chosen vacuum state, by writing φ(x)1 = v + η(x), and φ2(x) = ξ(x), the
descriptions of the particle state (excitations of the field) can be obtained.

Consider, then, the kinetic part of the Lagrangian

LK = −1
4FµνF

µν + 1
2(∂µη)(∂µη) + 1

2(∂µξ)(∂µξ) + 1
2q

2v2AµA
µ + qv(∂µξ)Aµ. (2.10)

It is visible that the symmetry is now broken, leaving kinetic terms for Aµ, η(x) and ξ(x),
the mass term for Aµ and the mixing term of ξ and Aµ. Looking at the potential now,

V = 1
2µ

2η2 + 1
2µ

2v2 + µ2vη + µ2

4v2 [(η + v)4 + ξ4 + 2η2ξ2] + 4µ2

v
ηξ2, (2.11)
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V (φ)

φ1

φ2

(a) For µ2 > 0, there is only one vacuum state
at φ = 0, maintaining the U(1) symmetry of
the Lagrangian.

V (φ)

φ1

φ2

(b) For µ2 < 0, the vacuum is degenerate.
Any choice will break the U(1) symmetry of
the Lagrangian.

Figure 1 – Potential V (φ) = 1
2µ

2(φ∗φ) + 1
4λ(φ∗φ)2 as function of φ1 e φ2 for two different

values of µ2.

the first term on the right hand side (RHS) of the equation above is the mass term for the
η field, where mη = −2µ2. The ξ field is massless and the remaining of the RHS of (2.11)
is composed of mixing terms. The total Lagrangian can then be written as

L = Lkin − Vint, (2.12)

where

Lkin = 1
2(∂µη)(∂µη) + 1

2µ
2η2︸ ︷︷ ︸

massive η field

+ 1
2(∂µξ)(∂µξ)︸ ︷︷ ︸
massless ξ field

+ 1
2q

2v2AµA
µ − 1

4FµνF
µν︸ ︷︷ ︸

massive boson

+qv(∂µξ)Aµ
(2.13)

is the kinetic term and Vint takes into account all the interaction terms between η, ξ, and
Aµ, and self-interaction terms. It is possible to take a step further and simplify Lkin by
replacing

Aµ → A′µ = Aµ + 1
qv
∂µξ (2.14)

the gauge boson then transforms as ∂µα→ −∂µξ/qv.

Since the scalar field, after the spontaneous symmetry breaking, was expanded
around the vacuum by writing φ(x) = η(x) + v + iξ(x), in first order the same field can be
expressed as

φ ∼= (η + v)ei
ξ
v , (2.15)
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applying the local gauge transformation, considering α(x) = −η(x),

φ→ φ′ ∼= e−i
ξ
v (η + v)ei

ξ
v = η + v, (2.16)

resulting in a real scalar field. This gauge fixing is called unitary gauge. The Lagrangian
below is then finally derived

L = 1
2(∂µη)(∂µη) + 1

2µ
2η2 + 1

2q
2v2A

′

µA
′µ − 1

4FµνF
µν − Vint. (2.17)

Therefore, by choosing the vacuum of the potential, the symmetry of the inital
Lagrangian was broken. The consequences result in a massive scalar field, η, a massive
gauge boson field, Aµ, and a massless scalar field, ξ. The latter was absorbed into the
transformation of Aµ, becoming one of its degrees of freedom and dissapearing from the
Lagrangian obtained above. The ξ field is then recognized as the Goldstone boson. It is
valid to mention that the number of degrees of freedom is conserved during the process.

After presenting an illustrated process of the Higgs mechanism, the same process
can be applied for the SM of particle physics. The complex scalar field φ is now represented
by the SU(2)× U(1) doublet

φ =
 φ+

φ0

 =
 φ1 + iφ2

φ3 + iφ4

 , (2.18)

where φ1, φ2, φ3, and φ4 are four real scalar fields. The Higgs mechanism, in this context,
should generate mass to the bosons W± and Z0. Therefore, one of its scalar field should
be neutral, φ0, and the other charged, φ+. The charged field will account for the additional
degrees of freedom for the charged gauge bosons, W+ and W−, whereas the field φ4

becomes the degree of freedom for the neutral gauge boson, Z0.

2.2 The scalar sector
Considering again the Lagrangian for the scalar field,

Ls = 1
2(Dµφ)†(Dµφ)− µ2

2 φ
†φ− λ

4 (φ†φ)2. (2.19)

Since φ is now a SU(2)⊗ U(1) doublet, the covariant derivative is given by

Dµ = ∂µ + ig
σa

2 W
a
µ + ig

′ Y

2 Bµ, (2.20)

where g and g′ are the coupling constants of the SU(2) and U(1) groups, respectively, and
σa the Pauli matrices, or generators of the SU(2) group. Y is the U(1) group generator,
described further. The bosonic fields W a

µ and Bµ transform as
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Wµ −→ W
′

µ = Wµ −
1
g
∂µα−ααα×WWW µ and (2.21)

Bµ −→ B
′

µ = Bµ − ∂µχ. (2.22)

The Lagrangian is then invariant under SU(2)L ⊗ U(1)Y gauge transformations.
Once again, taking a closer look at the potential, there are two scenarios:

• µ2 > 0: The potential has a well-defined vacuum at φ1 = φ2 = φ3 = φ4 = 0. The
Lagrangian then describes four real scalar fields with mass µ interacting with W a

µ

and Zµ, two massles fields;

• µ2 < 0: Here, the potetial is minimum at

[
dV

d|φ|

]
φ0

= 0, (2.23)

where

|φ|2 = φ2
1 + φ2

2 + φ2
3 + φ2

4. (2.24)

Therefore the vacuum expectation value is given by Eq.(2.9),

|φ|20 = −µ
2

λ
.

As mentioned before, the vacuum is degenerate and any choice for the minimum will
break the symmetry of the Lagrangian. After the spontaneous breaking symmetry,
there will be left three Goldstone bosons, which become degrees of freedom for the
massive gauge bosons, and also a massive scalar field. Considering the unitary gauge,

|φi|0 = 0, i = 1, 2, 4;
|φ3|0 = v.

(2.25)

The field at the minimum of the potential is then

φ0 =
0
v

 , (2.26)
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and now expanding the field around the minimum yields

φ =
 0
h+ v

 , (2.27)

where h = h(x) is a real scalar field.

Rewriting the potential, the Lagrangian is now

Ls = 1
2(Dµφ)†(Dµφ) + µ2h2 − vλh3 − 1

4λh
4 − 1

4µ
2v2, (2.28)

where the mass term for the h field can be identified as mh = −
√

2µ2.

Expliciting the kinetic term,

Dµφ =
∂µ + ig

2 W
3
µ + ig′Y

2 Bµ
ig
2 (W 1

µ − iW 2
µ)

ig
2 (W 1

µ + iW 2
µ) ∂µ − ig

2 W
3
µ + ig′Y

2 Bµ

 0
h+ v

 , (2.29)

where Y can be obtained by the definition of the charge operator Q,

Q = T3 + Y

2 , (2.30)

with T3 being the third component of the weak isospin, equal to −1
2 for φ0. Since the field

is neutral, Q = 0 and then Y = 1. It is convenient to define

W±
µ = W 1

µ ∓ iW 2
µ , (2.31)

to achieve

Dµφ = 1
2

2∂µ + igW 3
µ + ig′Bµ igW+

µ

igW−
µ 2∂µ − igW 3

µ + ig′Bµ

 0
h+ v

 (2.32)

Dµφ = 1
2

 igW+
µ (h+ v)

2∂µhi(g′Bµ − gW 3
µW

3
µ)(h+ v)

 . (2.33)

Now, the remaining step is to multiply the term above by its conjugated to obtain
the explicit kinetic term for the Lagrangian,
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1
2(Dµφ)†(Dµφ) =1

2∂µh∂
µh+ 1

8g
2W−

µ W
+µ(h+ v)2+

1
8(h+ v)2[g2W 3

µW
3µ + g′2BµB

µ − gg′(W 3
µBµ +BµW

3µ)]. (2.34)

The term in squared brackets can be written in the matrix form

v2
(
W 3
µ Bµ

) g2 −gg′

−gg′ g′2

W 3µ

Bµ

 =
(
W 3
µ Bµ

)
M

W 3µ

Bµ

 , (2.35)

where M is dubbed mass matrix. Since this is a non-diagonal matrix, its mass terms mix
with each other, hence it is impossible to identify the mass of each gauge boson separately.
With a diagonal mass matrix, the gauge bosons are said to be physical. Therefore, with a
unitary transformation the diagonal representation can be obtained

(
Aµ Zµ

)0 0
0 g2 + g′2

Aµ
Zµ

 , (2.36)

with

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

, (2.37)

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

. (2.38)

Now going back to the Lagrangian for the gauge bosons, Eq. (2.19), with the
modifications

Ls =1
2(∂µh)(∂µh) + v2λh2 + 1

8v
2g2W−

µ W
+µ + 1

8v
2(g2 + g

′2)ZµZµ+
1
4vg

2W−
µ W

+µh+ 1
4v(g2 + g

′2)ZµZµh+ 1
8(g2 + g

′2)ZµZµh2+
1
8g

2W−
µ W

+µh2 − vλh3 − 1
4λh

4 + 1
4λv

4, (2.39)

there is the kinetic and mass terms for the higgs bosons, the mass terms for the W± and
Z0 bosons, and interaction terms between W±, Z0 and the h field. There is no mass term
for the A boson, identified as the photon, nor an interaction term between the photon and
the Higgs boson4. The masses of all bosons in the SM are
4 This is due the massless nature of the photon, and the fact that the Higgs boson is chargeless.
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mh =
√

2λv, mW = 1
2gv, mZ = 1

2v
√
g2 + g′2 e mA = 0. (2.40)

The SM sets, through the Higgs mechanism, a relation between the masses of W±

and Z0. This can be done by writing g and g′ as

g
′

g
= tanθW , (2.41)

with θW being the Weinberg angle. Hence,

mW = mZ cos θW . (2.42)

The relation between W 3
µ , Bµ, Aµ, and Zµ is written in terms of the Weinberg

angle, as a rotation matrix

(
W 3
µ Bµ

)
=
sin θW cos θW

cos θW − sin θW

Aµ
Zµ

 . (2.43)

The experimental value of the Weinberg angle is given by sin2 θW ∼= 0.231 (Sirunyan
et al., 2018). The numerical value for the masses of the gauge bosons can be achieved
by evaluating the decay width of the processes Z0 → ν̄ν, and W− → eν̄e (Quigg, 1983),
currently corresponding to mW = 80.379± 0.012 GeV, and mZ = 91.1876± 0.0021 GeV
(Zyla et al., 2020).

The Higgs mechanism was proposed by Peter Higgs in 1964, and independently
by Robert Brout and François Englert (Englert; Brout, 1964), and Gerald Guralnik, Carl
Richard Hagen, and Tom Kibble (Guralnik; Hagen; Kibble, 1964). In 2012, the ATLAS
ans CMS experiments announced the discovery of the Higgs boson (ATLAS, 2012; CMS,
2012), with mass 125.25± 0.17 GeV (Zyla et al., 2020).

2.3 Fermion sector
Here the description of the weak interactions for leptons and quarks is made, as

well as the mass generations for said particles. The dynamic representation of the fermions,
i.e., half-integer spin particles, is specified by the Dirac Lagrangian

LDirac = Ψ̄(iγµ∂µ −m)Ψ. (2.44)
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However, due the different transformation properties of the left- and right-handed
chiral states, the mass term in the Lagrangian,

−Ψ̄Ψ = −m(Ψ̄RΨL + Ψ̄LΨR), (2.45)

does break the SU(2)L ⊗ U(1)Y gauge symmetry, thus it is not a good representation to
be part of the Lagrangian of the SM. On that account, the Higgs mechanism can be used
again, this time to generate mass to these fermions.

2.3.1 Leptons

The Lagrangian that describes the dynamics of leptons and its interactions between
gauge bosons and involves the Dirac Lagrangian, except for the mass term, and with the
substitution ∂µ → Dµ to maintain the gauge invariance,

Ll = Ψ̄liγ
µDµΨl = ējRiγ

µ(∂µ + ig
′

2 YejRBµ)ejR + L̄jiγ
µ(∂µ + ig

′

2 YLjBµ + ig2τ
a ·W a

µ )Lj,
(2.46)

where

ejR = eR, µR, τR, and Lj =
νe
e


L

,

νµ
µ


L

,

ντ
τ


L

, (2.47)

are the right-handed leptons, represented as singlets, and the left-handed lepton doublets,
respectively.

Starting with the interactions between leptons and charged gauge bosons5,

L l
cc = − g√

2(ν̄ejLγµejLW+
µ + ējLγ

µνejLW
−
µ ), (2.48)

which, using definitions of the chiral operators, can be written as

L l
cc = g

2
√

2 [ν̄ejγµ(1− γ5)ejW+ + ējγ
µ(1− γ5)νejW−]. (2.49)

The expression above has the V −A structure of the weak currents. The constant g
can be related to the Fermi constant, GF , associated with the weak interactions, that give
5 In matrix representation, this description corresponds to non-diagonal terms.
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rise to the beta decay, introduced by Fermi. The value of GF is well known experimentally,
and found in the Appendix A. The relation between g and GF is given by the equation

GF√
2

= g2

8m2
W

. (2.50)

That being said, the vacuum expected value can be found,

v = 246 GeV. (2.51)

Looking more closely now to the terms responsible for the interactions with the
Z-boson and the photon6,

L l
nc = gg′√

g2 + g′2
ējγ

µejAµ −
√
g2 + g′2

2 ν̄ejLγ
µZµ + g − g′2

2
√
g2 + g′2

ējLγ
µejLZµ

− g′2√
g2 + g′2

ējRγ
µejRZµ, (2.52)

some known constants can be used to simplify the equation above. Since there is a symmetry
corresponding to the Quantum Electrodynamics, the electric charge can be identified by

e = gg′√
g2 + g′2

, (2.53)

resulting in

g sin θW = e = g′ cos θW . (2.54)

Now the Lagrangian for the leptonic neutral current is rewritten as

L l
nc =− 1√

2

(
GFm

2
Z√

2

)1/2

{ēj[(2 sin2 θW − 1)γµ(1− γ5)

+ 2 sin2 θWγ
µ(1 + γ5)]ejZµν̄ejγµ(1− γ5)νejZµ}+ eējγ

µejAµ, (2.55)

which provides the interactions between leptons and the neutral bosons. With these
Lagrangians at hand, the hadronic sector can be discussed.

2.3.2 Quarks

In analogy to the leptons, the hadronic Lagrangian provides the interactions between
quarks and gauge bosons. Still, there are some differences to discuss.
6 Now, there are the diagonal terms, in matrix representation.



Chapter 2. Standard Model: Electroweak Sector 23

Similarly as before, the neutral and charged currents will be obtained from the
Lagrangian

Lq = Q̄jRiγ
µDµQjR + Q̄jLiγ

µDµQjL, (2.56)

where

QjR = uR, dR, cR, sR, tR, bR, (2.57)

and

QjL =
u
d


L

,

c
s


L

,

t
b


L

. (2.58)

Starting with the neutral current, i.e., the diagonal terms of the above equation,
for the first family of quarks is

L q
nc =− 1√

2

(
GFm

2
Z√

2

)1/2

{ūγµ[(1− γ5)T3

− 4 sin2 θQu]uZµd̄θγµ[(1− γ5)T3 − 4 sin2 θQd]dθZµ}
−Quūγ

µuAµ −Qdd̄θγ
µdθAµ, (2.59)

where d→ dθ = d cos θc + s sin θc. The d quark has a dependence on θc, or the Cabbibo
angle, and the s quarks.

In 1963, Cabbibo (Cabibbo, 1963) observed that the universality of weak interactions
at low energies is not maintained for hadronic decays. However, this universality can be
restored, by writing the d quark as dθ, and if the s quark is an orthogonal state given by
the transformation s→ sθ = −d sin θc + s cos θc. With these transformations, there is a
change of flavor in the neutral current, a consequence not observed experimentally. Thus,
in 1970, Glashow, Iliopoulos, and Maiani (Glashow; Iliopoulos; Maiani, 1970) proposed the
existence of another quark, the charm quark, composing a doublet with the s quark. The
terms involving flavor change are then canceled and the problem is solved. This scenario can
be generalized for all three families, using a matrix called the Cabbibo-Kobayashi-Maskawa
(CKM) matrix (Kobayashi; Maskawa, 1973), which involves the Cabbibo angle.

The transformation for s and d quarks, in the matricial form, is

d′
s′

 =
 cos θc sin θc
− sin θc cos θc

d
s

 . (2.60)
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This is somewhat similar to the case of the Z boson and the photon, since the
transformation shows that the s and d quarks are superpositions of the mass eigenstates,
being the mixture suppressed by the value of θc.

As for the charged current, it is analogous to the leptons. For the first family, the
relation is given by

L q
cc = −

(
GFm

2
W√

2

)1/2

[ūγµ(1− γ5)dθW+ + d̄θγ
µ(1− γ5)uW−]. (2.61)

2.3.3 Yukawa Lagrangian

After the interactions of the fermions with the gauge bosons, in this section the
main goal is to obtain the fermions mass terms. As explained earlier, a simple mass term
such as the one from the Dirac Lagrangian does not preserve the gauge invariance required
for the SM. Therefore, the Higgs doublet can be used once again to generate such terms.
The process occurs through the Yukawa Lagrangian, where its components are

LY = L l
Y + L q

Y . (2.62)

The first term, the Yukawa Lagrangian for leptons, is simple due the fact that, in
the SM, the neutrinos are massless, hence there is no mixture terms and the Lagrangian
can be written as

L l
Y = −Gej(ējRφ†L+ L̄φejR), (2.63)

and after the spontaneous symmetry breaking, the result is

L l
Y = −Gej

ējR (0 v+h√
2

)νej
ej


L

+
(
ν̄ej ēj

)
L

 0
v+h√

2

 ejR
 . (2.64)

Thus, the mass terms for leptons, as well as its interaction with the Higgs boson, is

L l
Y = −

Gejv√
2
ējej −

Gej√
2
ējejh, (2.65)

where mej = Gejv/
√

2. As mentioned before, in the SM, the neutrinos are massless.
Currently, the observation of neutrino oscillations imply that neutrinos are massive
(Gonzalez-Garcia; Maltoni, 2008). Nevertheless, when the SM was built, such evidences
did not exist, nor the detection of a right-handed neutrino, even until now7.
7 So far, the right-handed neutrinos have not been detected. One of the most commons ways to provide

mass to neutrinos is via seesaw mechanism, which is beyond the scope of this dissertation.



Chapter 2. Standard Model: Electroweak Sector 25

It is also important to point out that the Higgs interacts with the leptons proporti-
onally to the masses of these leptons.

In order to generate mass to all quarks, the following doublet must be used

φ̃ =
 φ0∗

−φ−

 , (2.66)

that can be obtained by the relation

φ̃ = iσ2φ∗. (2.67)

Therefore, this is not a new scalar, only a SU(2) transformation of φ. The difference now
is that the hypercharge Y is equal to −1 and the third component of the weak isospin, T3

is equal to +1/2, meaning that the use of φ̃ will guarantee that the u, c, and t quarks are
massive. The Yukawa Lagrangian for quarks is shown in the equation below

L q
Y = −

3∑
i,j=1

[
GU
ijR̄Ui(φ̃†QjL) +GD

ij R̄Di(φ†QjL)
]

+ h.c., (2.68)

where

RUi = uR, cR, tR, and RDi = dR, sR, bR. (2.69)

After the spontaneous symmetry breaking process, it can be represented in the
matricial form

L q
Y = −

(u′, c′, t′
)
R
MU


u′

c′

t′


L

+
(
d′, s′, b′

)
R
MD


d′

s′

b′


L

+ h.c., (2.70)

where MU and MD are non-diagonal matrices related to GU and GD, respectively, by

MU
ij = v√

2
GU
ij, and MD

ij = v√
2
GD
ij . (2.71)

With the use of unitary transformations the diagonal matrices can be found8. If
UL,R and DL,R are matrices that diagonalize MU and MD, respectively,
8 A square matrix A′ is diagonalizable if there exists an invertible matrix U and a diagonal matrix A

such that A = U−1A′U .
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U−1
R MUUL =


mu 0 0
0 mc 0
0 0 mt

 , (2.72)

D−1
R MDDL =


md 0 0
0 ms 0
0 0 mb

 . (2.73)

Therefore, the Lagrangian can be written in the diagonal basis, where the states q′

are superpositions of the eigenstates q, specified by the unitary transformations,


u′

c′

t′


L,R

= UL,R


u

c

t


L,R

, (2.74)


d′

s′

b′


L,R

= DL,R


d

s

b


L,R

. (2.75)

Revisiting the charged current, described in Eq. (2.61), a generalization for the
three families is made

Lqcc = −
(
GFm

2
W√

2

)1/2

[ū′γµ(1− γ5)d′ + c̄′γµ(1− γ5)s′ + t̄′γµ(1− γ5)b′]W+
µ + h.c., (2.76)

where the transformations for the quarks are now

(
u′, c′, t′

)
L
γµ


d′

s′

b′

 =
(
u, c, t

)
L
(U †LDL)γµ


d

s

b


L

, (2.77)

being the product (U †LDL) the CKM matrix, V , i.e.,

V ≡ U †LDL. (2.78)

As for the neutral current, the representation in matrix form is given in two terms
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(
u′, c′, t′

)
L
γµ


u′

c′

t′

 =
(
u, c, t

)
L
(U †LUL)γµ


u

c

t


L

, (2.79)

(
d′, s′, b′

)
L
γµ


d′

s′

b′

 =
(
d, s, b,

)
L
(D†LDL)γµ


d

s

b


L

. (2.80)

Since U †LUL = D†DL = I, there are no flavor changes (mixtures) in the neutral
current. This feature is only observed in the neutral current for −1/2 isospin quarks. The
following definition can be made


d′

s′

b′


L

= U †LDL


d

s

b


L

≡ V


d

s

b


L

, (2.81)

thus, the rotation of the u, c, and t quarks is absorbed, leaving no flavor mixture on the
neutral current.

The lagrangian for weak interactions of the SM is now assembled,

L = Ls + Ll + Lq + LY + Lb, (2.82)

where Lb is the lagrangian describing the kinectics of the gauge bosons

Lb = −1
4WµνW

µν − 1
4BµνB

µν . (2.83)

With the discovery of the Higgs boson, the SM was finally complete, being the
best description so far of how elementary particles interact. This model also includes
interactions between quarks and gluon, or strong interactions, that are not discussed here.

The SM, however, is unable to address many problems observed in nature, one of
them being the mass of the neutrinos, already mentioned above. Others worth mentioning
are leptogenesis, baryogenesis, and the dark matter, the focus of this work.

Therefore, to understand more about the nature of dark matter, one has to step
beyond the SM and use fundamental knowledge from the cosmological model, a task
tackled during the next chapter.
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3 The Standard Cosmological Model

A fundamental ingredient to discuss dark matter physics is to understand the
evolution of the Universe. Several topics, not only in physics, but in Science as a whole,
overlap with each other, this is not different for Particle Physics and Cosmology. So there
is no surprise that dark matter is a problem which particle physicists try to solve, but it
also reflects in Cosmology. It is then necessary to set the groundwork before diving into
the study of dark matter.

One of the pillars of the standard cosmological model is the cosmological principle,
the cornerstone to modern cosmology (Peebles, 1993). It states that no matter where or
who the observer is, the Universe will look the same. There is absolutely nothing special
about the place where the Earth, or any object, occupies in the Universe. This simple albeit
powerful statement can be validated at very large scales. Around hundreds of Megaparsecs,
the Universe becomes smooth, with the properties of homogeneity and isotropy, and all
positions are essentially equivalent. This assumption is not able to answer whether the
Universe holds these properties since its origin, or only during some temporary present
phase. However, over all its history that can be directly reached with observational data,
the Universe has been highly homogeneous and isotropic (Clarkson, 2012; Goodman, 1995;
Maartens, 2011; Clarkson; Maartens, 2010; Pandey; Sarkar, 2015).

That said, throughout this chapter the standard cosmological model will be presen-
ted, beginning with a sense of an expanding Universe, followed by a brief history of the
Early Universe, where some pillars of the Big Bang Theory lie, a few key points of the
first stages of the Universe are shown, such as decoupling of elementary particles from the
thermal bath that compose the Universe, the Big Bang Nucleosynthesis, which address
the formation of light elements, and a glimpse of the Cosmic Microwave Background.

3.1 The Expanding Universe
A very interesting feature of the Universe described by Cosmology is its expansion.

While trying to correlate the distance between the galaxies and the Earth with the velocity
of recession of such galaxies, Edwin Hubble, during the 1920’s (Hubble, 1929), observed
a linear pattern, showing that these objects move away from our planet at velocities, #»v ,
proportional to their distances, #»

` , as seen in Figure 2. This relation is called Hubble
Law, and it can be expressed in mathematical language through the following equation

#»v = H0
#»

` , (3.1)
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Figure 2 – 2001 version of the Hubble diagram from the Hubble Space Key Telescope
Program (Freedman et al., 2001). The distance of each galaxy was obtained
using pulsating stars, also known as Cepheid variables.

where the constant of proportionality H0 is the Hubble’s constant, which is the current
value of the Hubble parameter, H. The Hubble parameter, in turn, varies with time. The
value of H0 is

H0 = 100 h km s−1 Mpc−1, (3.2)

where h is a constant that accounts for the uncertainties on the measurements of the
Hubble’s constant. There is still no consensus about the accurate value of h (Freedman,
2017), however, this work will use the value measured by the Planck Collaboration
(Aghanim et al., 2020b), being h = 0.677± 0.004.

The Hubble parameter is defined in terms of the scale factor a by the expression

H(t) ≡ ȧ

a
. (3.3)

The present value of a is set as 1, and going back in time decreases the value of
a, as seen in Figure (3). Therefore, the scale factor has the purpose of measuring the
universal expasion rate.

Taking into account the expansion of the Universe, it is convenient to change to a
coordinate system where the coordinates can carry such effect. These are called comoving
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Figure 3 – Scale factor evolution with cosmic time.

coordinates. Therefore, the real distance #»

` is proportional to the comoving distance, say
#»r , via the relation

#»

` = a(t) #»r . (3.4)

Since the Universe is homogeneous at large scales, the scale factor should be a function
of time alone. The comoving distance is always fixed, whereas the real distance, or the
physical coordinate, `, evolves with time.

As the Universe expands, all galaxies seem to be moving away from the Milky Way.
Due the Hubble Law, the further away these astronomical objects are, the faster is its
recession. Each galaxy can be identified by their spectra of electromagnetic absortion and
emission lines. Because of the Doppler effect, when a galaxy is approaching the Milky Way,
such lines move towards a higher frequency of the visible spectrum, an event known as
blueshift (Campbell, 1906). Whereas if the galaxy is travelling in the opposite direction,
i.e., moving far away, the lines of the spectrum will shift to a lower frequency, causing the
redshift. This use of the Doppler effect was first made by Vesto Slipher (Slipher, 1913), in
the decade of 1910, and Edwin Hubble then applied the same technique (Hubble, 1929).

Since in general the galaxies are receding, the use of the redshift is more standard,
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and it can be mathematically described as (Peebles, 1993)

z = λo − λe
λe

, (3.5)

where z is the redshift, λo is the observed wavelength of the light observed, and λe the
wavelength of the light emitted by the moving object. There is another way of writing the
formula for redshift considering the equation for the Doppler effect in special relativity,

1 + z =

√√√√1 + v/c

1− v/c. (3.6)

At lower speeds compared to the speed of light (v � c), the following equation for redshifts
can be used

z = v

c
. (3.7)

From this point, a relationship between the redshift and the scale factor can be traced.
Still at the low speed limit, and using the Eqs. (3.5) and (3.7), to obtain

dλ

λ
= dv

c
= Hdl

c
= da

dt

1
ca
dl = dλ

λ
= da

a
, (3.8)

meaning that

λ ∝ a, (3.9)

and substituting into the Eq. (3.5), the result is

1 + z = a(to)
a(te)

. (3.10)

Since a(t0) = 1, the redshift can be used to compare the Universe today to the same
Universe with a fraction of its actual size, or even to look at the primordial Universe.
Therefore, the redshift and the scale factor are tools to trace the Universe and describe it.

3.2 The Friedmann equations
In order to understand how the Universe evolves, a specific metric is needed, and

the homogeneity and isotropic properties are used. The metric that follows from this model
is named the Friedmann-Lemaître-Roberston-Walker (FLRW) metric, given by (Weinberg,
2008)

ds2 = dt2 − a2(t)
(

dr2

1− kr2 + r2dθ2 + r2 sin2 θdφ2
)
, (3.11)
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where k is a curvature factor, t, r, θ, and φ are time and spatial comoving coordinates,
respectively. In addition, a(t) is the scale factor previously introduced.

Henceforth, not only the scale factor and the expansion are characteristics of the
Universe, but also its geometry, which can have a flat, open or close geometry. Each
possibility can have an influence in the values of some observable quantities.

Using the FLRW metric in the Einstein’s equations, written as (Weinberg, 2008;
Weinberg, 1972)

Rµν(t)− 1
2gµν(t)R(t) + Λ(t)gµν(t) = 8πGTµν , (3.12)

where the Ricci scalar has the form R = gµνRµν , and the Ricci tensor can be described in
terms of the scale factor as

R00 = −3ä
a

and Rij = δij[2ȧ2 + aä], (3.13)

and Λ receives the name of cosmological constant (Einstein, 1917). This equation describes
the standard cosmological model, or ΛCDM1. Taking into account the period of the
Universe considered in this work, the cosmological constant will not contribute much,
therefore it is out of the scope to discuss the topic2, and for the rest of this chapter it can
be considered Λ = 0.

Taking the 00 component of the Einstein’s equation, the Friedmann equation is
obtained,

ȧ2

a2 + k

a2 = 8πG
3 ρ, (3.14)

whereas the spatial components of the Einstein’s equation yield

2 ä
a

+ ȧ2

a2 + k

a2 = −8πGp, (3.15)

where p is the pressure of the system.

Dividing the Friedmann equation by the squared Hubble parameter results in

k

a2H2 = 8πG
3H2 ρ− 1, (3.16)

the right hand side (RHS) of the equation can be written as

Ω− 1 = k

a2H2 , (3.17)
1 Here, CDM stands for cold dark matter.
2 For a more detailed analysis on the cosmological constant, see (Peebles, 1993; Dodelson; Schmidt,

2020).
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where Ω is defined as

Ω ≡ ρ

ρc
, with ρc ≡

3H2

8πG, (3.18)

which is called density parameter. Experiments were created to obtain the value of Ω
today, Ω0, such as the WMAP experiment and the Planck Collaboration, with the result
very close to one3 (Aghanim et al., 2020b). The parameter ρc is called critical energy
density, or the energy density of the Universe considering k = 0. The current value for the
critical density is (Zyla et al., 2020)

ρc = 1.88 h2 × 10−26 kg m−3. (3.19)

Since k is a curvature parameter, with values going from −1 to 1, and as can be
noted, H2a2 is always positive, the curvature parameter will thus dictate if ρc is greater
or less than ρ; namely, saying what is the curvature of the Universe. That said, from Eq.
(3.17), the density parameter can assume the following values for each possible curvature
of the Universe


Ω > 1, if k = +1 (closed),

Ω = 1, if k = 0 (flat),

Ω < 1, if k = −1 (open).

(3.20)

Taking the difference between Eqs. (3.14) and (3.15), results in the acceleration
equation

ä

a
= −4πG

3 (ρ+ 3p), (3.21)

which describes the acceleration of the scale factor. If the material in question has any
pressure, the gravitational force will increase, decelerating the expansion.

Another important equation is the fluid equation, which is useful to determine how
the energy density depends on the scale factor, and it is based on the principle that the
Universe behaves as perfect fluid that expands adiabatically. It is given by

ρ̇+ 3H(ρ+ p) = 0. (3.22)
3 With Ωk = k

a2H2
0

= 0.001± 0.002, from (Aghanim et al., 2020b).
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The pressure and energy density can be related with the thermodynamic equation
of state (EOS)

p = ωρ, (3.23)

where ω is 0 for non-relativistic matter, since it exerts no pressure, 1/3 for relativistic
radiation, and −1 for vacuum energy.

Integrating the fluid equation with time, and combining with the equation of state,
the energy density is given by

ρ = ρ0a
−3(1+ω), (3.24)

where ρ0 is the present energy density.

Henceforth, an analysis is made for periods in which the Universe is composed by
different contents (Weinberg, 2008).

• Matter

In the context adopted here, matter would be non-relativistic matter, or any material that
does not exert pressure. The energy density for matter is proportional to

ρm ∝ a−3, (3.25)

meaning that the energy density of matter is inversely proportional to the volume of the
Universe.

The Friedmann equation informs how the scale factor evolves with time, depending
on the geometry and content of the Universe. Considering a flat and matter-dominated
Universe, the Eq. (3.14), is now

ȧ2 = 8πGρ0

3
1
a
. (3.26)

An attempt to solve this differential equation can be made by guessing that the
solution is a power law, i.e., a ∝ tq. The only solution possible is q = 2/3, and hence the
scale factor reads as

a(t) =
(
t

t0

)2/3
, (3.27)

whereas for the energy density

ρ(t) = ρm0t
2
0

t2
, (3.28)
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and the rate of expansion decreases with time, following

H ∝ 2
3t . (3.29)

• Radiation

Radiation can be referred to as particles with velocities large enough that they exert
pressure in the Universe, such as neutrinos or photons. Therefore

ρr ∝ a−4. (3.30)

In analogy to the previous item, the radiation-dominated scenario has

a(t) =
(
t

t0

)1/2
, (3.31)

the energy density evolves as

ρ(t) = ρr0t
2
0

t2
, (3.32)

and the Hubble parameter behaves like

H ∝ 1
2t . (3.33)

Compared to the scenario in which the Universe is matter-dominated, now the
Universe expands more slowly. Figure (4) shows the evolution of energy density for matter
and radiation in the Universe.

If the radiation has the black-body spectrum, the Rayleigh-Jeans-Wien-Planck can
be applied (Peebles, 1993), and the energy density also has the form

ρrc
2 = αT 4, (3.34)

where α is the Stefan-Boltzmann constant. Thus, still considering the radiation-dominated
Universe, the temperature is a parameter proportional to

T ∝ a−1. (3.35)

As the Universe expands, it also cools down, and looking with a time-reversed
frame, the Universe in the past was hotter and denser, a conclusion that is in agreement
with the Hot Big Bang Theory.



Chapter 3. The Standard Cosmological Model 36

Figure 4 – Plot for energy density vs scale factor for radiation and matter.

3.3 The Early Universe
Throughout the history of the Universe, it can be considered that the scenario has

been very close to a state called thermal equilibrium. In the initial stages, all particles
species were composing a primordial plasma, or thermal bath. As the Universe expanded
and cooled down, these species started to decouple from the plasma. The departures
from equilibrium have a large contribution on the formation of light elements during
this early stage, on the recombination of electrons and protons to form hydrogen, and
as discussed further, possibly on the production of dark matter. That said, to discuss
the thermal history of the Universe, it is not only crucial to understand the Equilibrium
Thermodynamics, but also the conditions that have led to breaking the equilibrium of
particle species with the thermal bath (Kolb; Turner, 1990).

For illustrative purposes of this section, a good rule to guarantee that thermal
equilibrium is maintained, is that the interaction rate for processes involving such species
must be quicker than the expansion rate of the Universe. Putting it into other words, as
long as

Γ ≥ H (3.36)

holds, the particle is in thermal equilibrium with the plasma. Here Γ ≡ nσ|v|, being n
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the number density, and σ|v| the cross section times the averaged relative velocity. This
condition is valid because, as the Universe expands, the energy density of the particle
decreases, reaching a point where processes involving the production of the species can
hardly occur. Therefore, equilibrium will no longer be maintained.

This condition, however, is not sufficient, as only the rate of some reaction that
is crucial to conserve equilibrium shall remain lower than H to assert the decoupling. A
much more reliable tool to determine the evolution of particles is the Boltzmann equation,
used in the next section. For the moment, the case where Γ > H will be used to state
that a particle is in thermal equilibrium, and if it is decoupled from the thermal bath, the
condition Γ < H will be required.

Considering the scenario Γ � H, where the process that Γ takes into account
involves four different species transforming into one another, i.e., a process of the type

1 + 2↔ 3 + 4, (3.37)

the particles are then in chemical equilibrium, and therefore

µ1 + µ2 = µ3 + µ4, (3.38)

where µi is the chemical potential of each species. If Γ� H holds for a scatting process,
described as

1 + 2↔ 1 + 2, (3.39)

the particles are in kinetic equilibrium. Having chemical or kinetic equilibrium, or both, is
a warranty of thermal equilibrium. There is the possibility where a species no longer stays
in chemical equilibrium, but still preserves thermal equilibrium with the cosmic plasma
via kinetic equilibrium (Bringmann; Hofmann, 2007).

As a consequence, by falling out of equilibrium with the thermal bath, each
component left a signature, displaying features of the Universe at the time of decoupling.
Such signatures today are evidence of how the Universe looked like during its earlier
moments.

The starting point considered here is around the neutrino decoupling. The processes
responsible for maintaining the neutrino in thermal equilibrium are

ν̄ + e− ↔ ν̄ + e−, (3.40)

ν + ν̄ ↔ e+ + e− (3.41)
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such weak interaction processes have the cross section approximately given by

σ w G2
FT

2, (3.42)

where GF is the Fermi constant. From Eq. (B.6), the number density for a relativistic
particle is

n =


ζ(3)
π2 gT

3 (bosons)
3
4
ζ(3)
π2 gT

3 (fermions),
(B.6)

and therefore the interaction rate is

Γ w G2
FT

5, (3.43)

The ratio of Γ to H is

Γ
H

w
G2
FT

5MPl

T 2 w
(

T

1 MeV

)3
. (3.44)

Approximately 10−2 seconds after the Big Bang, the temperature of the Universe
is T = 10 MeV, the Universe is composed mostly by radiation, and the relativistic degrees
of freedom are 3 neutrino species (g = 6), e± pairs (g = 4), and the photon (g = 2), so
g∗ = 10.75, where (Kolb; Turner, 1990)

g∗ =
∑

i=bosons
gi

(
Ti
T

)4
+ 7

8
∑

i=fermions
gi

(
Ti
T

)4
, (B.9)

and

g∗s =
∑

i=bosons
gi

(
Ti
T

)3
+ 7

8
∑

i=fermions
gi

(
Ti
T

)3
(B.15)

are the number of effective degrees of freedom of the thermal bath. The quantities
g∗ and g∗s account for species considered relativistic at the given temperature T . As the
Universe cools down, the species become non-relativistic, start to annihilate, and therefore
the number of effective degrees of freedom decreases. Therefore g∗ is a good parameter to
describe the thermal evolution of the Universe, as seen in Fig 5.

Going back to the moment where T = 10 MeV, the interaction rates are larger
than the expansion rate for the reactions (3.40) and (3.41). Therefore, the neutrino is in
thermal equilibrium with the thermal bath, hence Tν = T .

As the temperature drops below T = 1 MeV, the neutrinos decouple from the
thermal bath, and the neutrino temperature is now proportional to a−1. At this point, the
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Figure 5 – Evolution of g∗ and g∗s with the temperature for the SM. The number of degrees
of freedom changes as the Universe cools down, and it is noticeable that, for
most of the period, g∗s (dashed lines) does not differrs much from g∗s. Figure
from (Baumann, Lecture Notes).

relativistic particle species in thermal equilibrium are the photon, and electron-positron
pairs, resulting in g∗ = 11/2.

The temperature of the plasma continues to decrease, and soon after the neutrino
decoupling, the e± pairs can no longer be created, since the temperature is below Te = 0.511
MeV. The entropy of the e± pair is transferred to the photons. Now, only the photons are
relativistic particles in thermal bath, therefore g∗ = 2. From the conservation of entropy
(Baumann, 2018), the difference between the neutrinos temperature and the photons
temperature due the entropy injection can be obtained

Tγ
Tν

=
(11

4

)1/3
= 1.40. (3.45)

Around the same temperature of the neutrino decoupling, the processes that were
maintaining the neutrons and the protons in thermal equilibrium with the cosmic plasma,
specified by

n+ ν ↔ p+ e−, (3.46)
n+ e+ ↔ p+ ν̄, and (3.47)

n↔ p+ e− + ν̄, (3.48)
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have the interaction rate to start falling below the expansion rate of the Universe, hence
the baryons fall out of equilibrium.

Before that period, while the chemical equilibrium is preserved, the following
relation is obtained

µn + µν = µp + µe, (3.49)

and the neutron-to-proton ratio is

n

p
= nn
np

= Xn

Xp

= exp
[
−Q
T

+ (µe − µν)
T

]
, (3.50)

where Q ≡ mn − mp = 1.3 MeV. Based on charge neutrality, it can be inferred that
µe/T � 1. Assuming also that the number of leptons is small, hence |µν |/T � 1. The
neutron-to-proton ratio at equilibrium is then

(
n

p

)
EQ

= exp
(
−Q
T

)
. (3.51)

When the chemical equilibrium can no longer hold due the fact that Γ becomes
smaller than H, the neutron-to-proton ratio is

(
n

p

)
f

w
1
6 , (3.52)

where Tf = 1 MeV. After the freeze-out of neutrons and protons, this ratio slowly decreases.

Between 3 and 4 minutes after the Big Bang, light nuclei4 start to form (Steigman,
2007). That is possible because the blackbody radiation does not have energy enough to
separate the deuterium nuclei. However, such photons do have energy to keep such nuclei
ionized, preventing them to form atoms.

Several hundred thousand years after the formation of light elements, the photons
lose energy and the electrons start bond with nuclei, forming the first atoms. This period
receives the name of recombination. Although the binding energy for the electron is 13.6 eV,
the recombination period started when the thermal bath had a temperature significantly
below this value5, and the temperature where recombination starts can be obtained using
the Saha equation.

Before deriving the Saha equation, some results from the photon decoupling are
important to consider. After the atoms are formed, the photons can no longer interact with
4 Other than hydrogen, which the nuclei is composed by one proton.
5 This happens because the baryons to photon ratio, as seen forwardly in this chapter, is very low. Also,

since the photons follow the blackbody energy spectrum, at T = 13.6 eV, there are still photons with
enough energy to keep the atoms ionized.
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the electrons, since they do not have energy to separate the atoms anymore. The photons
then decouple from the thermal bath, traveling freely through the Universe, which now
becomes visible. This radiation can be measured today and it is called Cosmic Microwave
Background Radiation (CMBR). The current temperature of such photons experimentally
measured is

Tγ,0 = 2.4× 10−4 eV = 2.73 K. (3.53)

This result can be also used to obtain the current temperature of the neutrinos
that were created during the early Universe, or the relic neutrinos, from Eq. (3.45). Its
value corresponds to

Tν,0 = 1.7× 10−4 eV w 1.95 K. (3.54)

Since the decoupling, these neutrinos stream freely through the Universe. This cosmic
neutrino background radiation (CNB or CνB) has not been detected so far, however.
Compared to the cosmic microwave background radiation (CMB or CMBR), discussed
in more details in Chapter 4, that describes a Universe 380,000 years old, the CNB
corresponds to roughly one minute after the Big Bang, containing information about
a much younger Universe. Detecting high energy neutrinos is already a difficult task,
therefore it is extremely hard to directly measure the CNB, although strong evidences
indicate its existence (Dodelson; Schmidt, 2020).

The number density of relic photons today is

nγ,0 = 2ζ(3)
π2 T 3

0,γ = 410 cm−3. (3.55)

Consider nH , np, and ne the number density for hydrogen, free protons, and free
electrons, respectively. Assuming charge neutrality, np = ne, and from baryon number
conservation, nb = np + nH , recombination takes place when the process

p+ e↔ H + γ (3.56)

is in chemical equilibrium, therefore

µp + µe = µH , (3.57)

where, as seen in the end of this chapter, since the photons from this epoch follow the
blackbody radiation, its chemical potential is zero (Pathria, 2016).
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The number density of hydrogen can then be expressed as

nH = gH
gpge

npne

(
meT

2π

)−3/2
exp (B/T ), (3.58)

where B ≡ mp +me −mH = 13.6 eV is the binding energy of hydrogen, gp = ge = 2. The
fractional ionization, or the fraction of free electrons, is given by

Xe ≡
ne

np + nH
= np
np + nH

. (3.59)

Using Eq. (3.59) and Eq. (3.58), the Saha equation can be derived

X2
e

1−Xe

= 1
nb

nenp
nH

= 1
ne + nH

(
meT

2π

)3/2
exp (−B/T ). (3.60)

It is possible to write the Saha equation in the form

X2
e

1−Xe

=
√
π

4
√

2ζ(3)η

(
meT

2π

)3/2
exp (−B/T ), (3.61)

where η is the baryon-to-photon ratio

η ≡ nb
nγ
, (3.62)

Since the baryon abundance measured today is Ωb
∼= 0.02 h−2 (Zyla et al., 2020), the

current baryon number density, using the equations (3.18), and (B.11) is

nb,0 = Ωb
ρcr
mb

∼= 0.2× 10−6 cm−3. (3.63)

The baryon-to-photon ratio can then be estimated as η ∼= 5.4× 10−10. That is, for
each baryon in the Universe there are 1010 photons. This ratio remains constant as the
Universe expands, since the photon number and the baryon number are conserved.

With these ingredients, for a temperature close to the binding energy for the
electron, T w B the Saha equation reads

X2
e

1−Xe

∼= 1× 1015. (3.64)

One way to interpret this result is to see that when the temperature of the Universe
reaches the binding energy of the hydrogen, the fraction of free electrons is close to one,
meaning that, most if not all of the hydrogen is still ionized. It takes then a longer time
so the recombination is able to start. The standard definition of the beginning of the
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recombination is when about 90% of the electrons are captured by the protons, i.e., when
Xe = Xrec = 0.1. That being said, the temperature for recombination is equivalent to

Trec ∼= 3575 K = 0.31 eV. (3.65)

Since T = T0(1 + z), the redshift corresponding to when the recombination begins is

1 + zrec ∼= 1300. (3.66)

After recombination, at some point the temperature reaches the moment where
the photons stop interacting with the electrons, decoupling from matter. With the same
approach for the decoupling of the neutrino, the CMBR photons will decouple roughly
when Γγ w H, where the interaction rate is expressed in terms of the photon mean free
path, L, by

L = 1
neσT

= 1
XenbσT

= 1
Γγ
, (3.67)

being σT the Thomson cross section, σT = 6.65× 10−25 cm2.

In order to obtain the redshift and temperature for the photons decoupling, the
relation Γγ w H must be written in terms of z. The equations

1 + z = a(to)
a(te)

, and (3.10)

ρm ∝ a−3, (3.25)

are used in the relation for Γγ to form

Γγ = Xenb,0(1 + z)3σT = 4.39× 10−21(1 + z)3Xe s−1. (3.68)

Assuming that by the time where the photons decouple the Universe was dominated by
matter, and using the equations (3.63), (3.16), and (3.18) the expansion rate is

H2

H2
0

= Ω0

a3 , (3.69)

where Ω ∼= 0.28. Using the equation for redshift, (3.10),

H = H0

√
Ωm,0(1 + z)3 = 1.77× 10−18

√
(1 + z)3 h s−1. (3.70)
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Now imposing the condition for decoupling,

(1 + zdec) = 44.2
X

2/3
e

. (3.71)

The redshift value for the photons decoupling is found to be somewhere in the
range

1 + zdec ∼= 1100 to 1200, (3.72)

suggesting that the fraction of free electron lies between 8 × 10−3 and 7 × 10−3. The
temperature at decoupling for zdec ∼= 1100 is

Tdec ∼= 3030 K = 0.26 eV. (3.73)

When the photons decouple from matter, the event marks the last scattering
surface, making the Universe visible. These photons follow the most perfect blackbody
radiation spectrum ever found in nature, measured by WMAP (Bennett et al., 2013), as
shown in Figure (6).

Figure 6 – Spectrum of the CMBR, measured by WMAP. Figure obtained from
https://map.gsfc.nasa.gov/Universe/bb_tests_cmb.html.

The CMBR is so far the most powerful probe of the early Universe. These evidences
show that, even being homogeneous and isotropic, the Universe had minor perturbations of
order 10−5 (Smoot et al., 1992; Bennett et al., 2003; Ade et al., 2016), and as a consequence,
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the relic photons carried such irregularities that were responsible to form structures some
hundred thousands years after decoupling.

As this topic will be revisited further in this work, for now the focus turns back
into finding a more precise method to describe how a species evolves in the thermal bath.

3.4 Introducing the Boltzmann Equation
While in thermal equilibrium, the evolution of a species is easily described, being

relativistic or not, following either the Fermi-Dirac or the Bose-Einstein distribution.
After the decoupling, the behavior of the species is also simple, with the energy density
decreasing as a−4 if the particle is relativistic, or a−3 if it is non-relativistic. However, the
decoupling is not instantaneous, and the period around this event is more challenging to
describe.

As mentioned previously, the condition Γ & H implies that the species is coupled
to the thermal bath, while if Γ . H, then the species is decoupled. Although this method
is very useful and sometimes valid, a more appropriate analysis of the decoupling is done
using the Boltzmann equation, which describes a thermodynamic system that is not in
equilibrium. The Boltzmann equation is initially given by (Kolb; Turner, 1990)

L̂(f) = Ĉ(f), (3.74)

where L̂ is the Liouville operator and Ĉ is the collision operator, both depending on the
phase space distribution function, f(pµ, xµ). The relativistic Liouville operator for the
FLRW model6 is

L̂[f(E, t)] = E
∂f

∂t
− ȧ

a
|p|2 ∂f

∂E
. (3.75)

Since the number density is defined as

n = g

(2π)3

∫
d3pf(E, t), (3.76)

performing integration by parts helps to write the Boltzmann equation in the form

dn

dt
+ 3 ȧ

a
n = g

(2π)3

∫ d3p

E
Ĉ[f(E, t)]. (3.77)

Considering the generalized process ψ + a + b + · · · ↔ i + j + · · · 7, the collision
term is then
6 In this case, the phase space density has space homogeneity and isotropy, therefore, f = f(|p|, t) =

f(E, t)
7 For the Boltzmann equation, the abundance in interest is the one of the species ψ.
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g

(2π)3

∫ d3p

E
Ĉ[f(E, t)] = −

∫
dΠψdΠadΠb · · · dΠidΠj · · ·

× (2π)4δ4(pψ + pa + pb · · · − pi − pj · · · )
× [|M|2ψ+a+b+···→i+j+···fafb · · · fψ(1± fi)(1± fj) · · ·
− |M|2i+j+···→ψ+a+b+···fifj · · · (1± fa)(1± fb) · · · (1± fψ)], (3.78)

where fx are the phase space densities of the particles i, j, · · · , a, b, ψ, and the + signal
corresponds to bosons, whereas the − is referred to fermions. The dΠ factor is a simplified
version, given by

dΠ ≡ g

(2π)3
d3p

2E . (3.79)

The delta function guarantees energy and momentum conservation, andM are matrix
elements squared for the processes described in Eq. (3.78) as subscript. The different
matrix elements can be approximated assuming CP invariance, leading to

|M|2 ≡ |M|2i+j+···→ψ+a+b+··· = |M|2ψ+a+b+···→i+j+···. (3.80)

Another approximation that can be done is that since there are no degenerate species,
both Fermi-Dirac and Bose-Einstein statistics are replaced by the Maxwell Boltzmann
statistics. Therefore, for all species in kinetic equilibrium, the phase space density is

fx = exp
[
−(Ex − µx)

T

]
, (3.81)

and also 1± f ∼= 1. The Boltzmann equation is now read as

ṅψ + 3Hnψ = −
∫
dΠψdΠadΠb · · · dΠidΠj · · · (2π)4|M|2

× δ4(pi + pj · · · − pψ − pa − pb · · · )[fafb · · · fψ − fifj · · · ]. (3.82)

On the left hand side of Eq.(3.82) there is the evolution of the number density
of the species with respect with time, where the 3Hnψ term refers to the dilution effect
that the expansion of the Universe provides. As for the right hand side, it describes the
interactions that are able to change the amount of ψ particles. That way, if there are no
interactions, nψ ∝ a−3.

It is useful to define the comoving density number,

Y ≡ n

s
, (3.83)
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where s is the entropy density. With this definition the effect of expansion is no longer
explicit in the Boltzmann equation. The left hand side of Eq. (3.82) is now

ṅψ + 3Hnψ = sẎ . (3.84)

Since the Boltzmann equation is used to study the thermal history of the Universe,
another useful quantity to be introduced is the independent variable

x ≡ m

T
, (3.85)

to rewrite Eq. (3.82) in terms of the temperature. Performing the change of variables

dY

dt
= dY

dx

dx

dt
, (3.86)

where, for x,

ẋ = dx

dt
= −m

T 2
dT

dt
= −m

T 2 Ṫ . (3.87)

Using the equation for the Hubble parameter, Eq. (3.3), and since a ∝ T−1,

H = ȧ

a
= − T

T 2 Ṫ = − Ṫ
T
, (3.88)

therefore

dx

dt
= xH, (3.89)

and also

dY

dt
= xH

dY

dx
. (3.90)

Now, the Eq. (3.82) is rewritten as

dY

dx
=− x

H(m)s

∫
dΠψdΠadΠb · · · dΠidΠj · · · (2π)4|M|2

× δ4(pi + pj · · · − pψ − pa − pb · · · )[fafb · · · fψ − fifj · · · ], (3.91)

where H now explicitly depends on the mass of the particle, since x and t are related by

t = 0.3 MPl√
g∗T 2 = 0.3 MPl√

g∗m2x
2 (3.92)
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during the radiation-dominated period. The Hubble parameter is then, from Eq. (B.19),

H(m) = 1.66
√
g∗m

2

MPl

= H(x)x2, (3.93)

The applications here developed for the Boltzmann equation are described in the next
chapter as an attempt to extract possible information about the production of dark matter
during the early Universe.
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4 Dark Matter

One of the questions that humanity tries to answer regards to what are the contents
of the Universe, or more fundamentally, what its building blocks are. This wonderment
started so long ago that there are evidences from centuries before Christ, such as the atomic
theory by Democritus (400 b.C.) (Bertone; Hooper, 2018). Of course, the approaches used
to answer this question at that period were very different from today. Traveling all the
way back to the last century, not only the atom was shown to be formed by a nucleus
by Rutherford, in 1911, but also a plethora of particles were detected. In the last decade,
with the discovery of the Higgs boson, the Standard Model was finally complete, providing
an unified description of the electromagnetic and weak forces.

Does it mean that the initial question is answered? No. Although the Standard
Model is a very good description of three of the four forces that interact between visible
matter, apparently, said matter only accounts for roughly 5% of the total content of the
universe, which is called ordinary matter1. Approximately 25% of the universe is composed
of dark matter, while around 70% is made of dark energy (Caldwell; Kamionkowski, 2009;
Weinberg et al., 2013). As the title of the chapter suggests, this work will be, from now on,
focused on some aspects of the dark matter.

One of the first to try to measure the quantity of dark matter from a dynamical
estimate was Lord Kelvin. He started from the argument that the Milky Way could
be described as a gas of particles in which gravity acts upon, and thus formulated a
relationship between the size of the system and the velocity dispersion of the stars,
reaching the conclusion that there could be around 109 stars within the Milky Way,
although a great majority would be dark bodies, i.e., either extinct or not bright enough to
be seen by an observer on Earth (Kelvin, 1904). Henri Poincaré mentioned Kelvin’s work,
stating that the amount of dark matter was probably very similar or less than the amount
of visible matter (Poincare, 1906). Other astronomers kept on the similar conclusions, such
as Ernst Öpik, Jacobus Kapteyn, Jan Oort, and James Jeans2, and they also thought that
dark matter was likely to be made of faint stars. Although another type of matter was
not mentioned, a majority of authors agreed that more information should be obtained to
achieve further results. Until today, the research around local dark matter density have a
great relevance, and these astronomers were the pioneers.

Currently, it is known that dark matter is at least mostly composed by non-baryonic
matter, it interacts with other particles through the gravitational force, and also that it
1 Even for ordinary matter, there are still unsolved problems which the SM does not address, such as

baryon on lepton asymmetry, or neutrino masses.
2 For a deeper discussion about the history of dark matter, see (Bertone; Hooper, 2018).
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does not emit light. Although not very much information is concrete about dark matter,
its existence is supported by many evidences (Feng, 2010).

4.1 Dark Matter Evidences

4.1.1 Galaxy Clusters

One of the first scientist to point out a big deficit on the total amount of mass
was Fritz Zwicky (Zwicky, 1937), during the decade of 1930, via a careful observation of
galaxies within the Coma Cluster. Zwicky applied the virial theorem to determine the total
mass of the Coma Cluster, a cluster of approximately 1000 galaxies distributed nearly in
a spherically symmetrically fashion, and showed that this averaged mass differs notably
from the mass expected from the galaxies luminosity.

Zwicky’s results shows a very high mass-to-light ratio of M
L
∼= 500. His work used

the Hubble constant with the value H0 = 558km/s/Mpc, obtained by Hubble and Humason
(Hubble; Humason, 1931). Rescaling Zwicky’s result by the current value for the Hubble
constant3, he overestimated the mass-to-light ratio by a factor of ∼ 8.9 (Bertone; Hooper,
2018).

Even with this correction, the Coma Cluster velocity dispersion still points to a
high mass-to-light ratio, suggesting the existence of an invisible amount of matter.

4.1.2 Galactic Rotation Curves

With the discovery of 21-line radio emission (Muller; Oort, 1951) and subsequent
rise of the radio astronomy during the decades of 1950 and 1960, astronomers started to
compute rotation curves, which correlate the orbital velocity of gas and stars with their
distance to the galactic center(Rubin; Ford W. Kent, 1970b; Rubin et al., 1980).

For a galaxy with mass M(r) distributed within a radius r, there should be an
equilibrium between the gravitational pull and the centrifugal acceleration so the following
relation is carried out (Liddle, 1998)

v2

r
= GM(r)

r2 , (4.1)

where G is the gravitational constant, and v is the velocity of the object of interest. The
Eq. (4.1) can be reorganized as

v =
√
GM(r)

r
. (4.2)

3 From the Planck Collab (Aghanim et al., 2020b), H0 = 67.70 km/s/Mpc.
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The mass M(r) can be supposed to have a spherically symmetric distribution in
the region, therefore it obeys

M(r) = 4πr3

3 ρ, (4.3)

ρ being the matter density of the galaxy. Substituting Eq. (4.3) in Eq. (4.2), the velocity
is expected to behave like

v ∝ r, (4.4)

for an object inside the galaxy. For an external region, the mass M(r) is approximately
constant, therefore

v ∝ 1√
r
, (4.5)

however, the observed result was that the velocity of the objects outside the galaxy tend
to be constant, in other words, the rotation curves of galaxies lean to be ‘flat’ (Swart;
Bertone; Dongen, 2017), as can be seen in Fig. 7.

Figure 7 – Rotation curve of ionized hydrogen in M31, by Rubin and Ford. Their observed
results are one of the most mentioned in history of dark matter, but others
contributed to confirm such results, as can be seen in (Bertone; Hooper, 2018;
Swart; Bertone; Dongen, 2017). Figure from (Rubin; Ford W. Kent, 1970a).

This result suggests that there is a great amount of unknown mass forming a halo
where the galaxy is embedded in. Fig. 8 shows the rotation curve for the NGC3198 galaxy,
which represent the dots with error bars, there are also contributions from the dark matter
halo only and visible contributions from the galactic disk only (van Albada et al., 1985).
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Figure 8 – Galactic rotation curve from NGC3198. Figure from (van Albada et al., 1985).

This is not the only possible explanation for the observed events, since there are
propositions for modified newtonian dynamics4 (MOND) (Milgrom, 1983), for instance.
It also does not explains what kind of matter could be composing the dark matter halo,
a notable possibility being baryonic matter, i.e., massive objects that do not emit light5,
or non-baryonic matter. However, the study of galactic rotation curves represent another
piece of the foundation of the dark matter community.

4.1.3 Gravitational Lensing

Gravitational lensing is an effect predicted by general relativity, where, because
of the intense gravitational influence that very massive objects have on space-time, the
path made by light bends as it meets such objects while traveling towards an observer. In
other words, the massive object generates a gravitational field that deflects the trajectory
made by light (emitted by a luminous object), as seen in Fig. 9. The observed result can
be amplification, multiplication, or distortion of the image of the object that emits the
deviated light. In addition, the mass of the object that provokes the lensing effect can be
measured based on how much the light is deflected (Schneider; Ehlers; Falco, 1992).

The gravitational lensing is divided into three classes: strong lensing, weak lensing,
and microlensing (Einasto, 2010).

The strong lensing occurs when the source is close and the lens (the object that
causes the effect) is significantly massive. The visible result of strong lensing is multiplied
images and also the formation of rings, as seen in Fig. 10. Objects responsible for strong
4 These are theories that modify the newtonian gravitational model for large scales.
5 It is well known nowadays that MACHOs,massive compact halo objects, do not provide the total

abundance of DM.
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Figure 9 – Schematic illustration of the gravitational lensing effect. Credit: ALMA
(ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

lensing are rich clusters or massive galaxies, and their effects allow the measurement of
mass distribution in these regions.

Figure 10 – Example of strong lensing. Credits: ESA/Hubble & NASA.

In order to observe weak lensing, it requires a less massive lens compared to the
strong lensing, causing only distortions on the background objects and rarely producing
rings or multiplication of image, as the strong lensing. This effect can only be detected
by analyzing a large number of distorted objects. Weak lens are used to obtain the mass
distribution of dark matter in clusters. An example of work with weak lensing is (Clowe et
al., 2006).

For the microlensing, no distortion can be observed, but the source at some point
appears to be brighter. These events are used to locate massive compact halo objects
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(MACHOs), small astronomical bodies that emit a light amount of radiation, being barely
visible. MACHOs can be considered planets, dead stars, brown dwarfs, etc.

4.1.4 Bullet Cluster

The collision between a pair of clusters known as “bullet cluster- or 1E0657-588
(Clowe; Gonzalez; Markevitch, 2004; Clowe et al., 2006) - is perhaps the main evidence for
DM. The first observation was made in 2004, and in detail in 2006.

The idea behind this evidence is that in the past, there was two ordinary clusters
composed by visible and dark matter. Around 150 million years ago, a collision between
these clusters happened, making the visible matter in each cluster interact substantially
with itself. The dark matter of each system, on the other hand, had a negligible interaction,
merely passing through each other.

With weak lensing it is possible to map out the center of mass of the bullet cluster,
corresponding to the distribution of total mass. While only the hot gas made of ordinary
matter emits X-rays, the visible matter can be localized, therefore the difference between
both (total matter and visible matter) can be traced, as shown in Fig. 11.

Figure 11 – Color images of the merging cluster 1E0657-588, or bullet cluster. Figure from
(Clowe et al., 2006).

In Fig. 11, the green contour on both panels represents the weak lensing recons-
truction or the matter distribution after the collision. On the right panel, the colored map
represents the observed X-ray emission of the hot baryonic gas obtained by the Chandra
space telescope. This result shows that the center of baryonic mass does not coincide with
the center of the total mass. In 2015, the observation of 72 similar system was reported,
concluding the existence of DM with a 7σ significance (Harvey et al., 2015). This evidence
is a problem for MOND theories, since there is no explanation for the discrepancy between
the centers of mass. Although being an evidence for DM, the Bullet Cluster can also be a
challenge for the ΛCDM model (Lee; Komatsu, 2010).
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The reports on collision between clusters also mention a superior bound to the
DM self-interaction cross section. Results from 2015 (Harvey et al., 2015) show, with 95%
confidence limit, that

σ

m
< 0.47 cm2

g , (4.6)

where σ is the self-interaction cross-section, and m is the dark matter mass.

4.1.5 Cosmic Microwave Background Radiation

As mentioned in Chapter 3, the CMB is a very powerful evidence for the early
Universe. It is related to the period where the photons decoupled from the thermal
bath, after not being able to ionize atoms anymore. This happened shortly after the
recombination and since their decoupling, these photons created during the early stages of
the Universe travel until today, being detected by observers (Samtleben et al., 2007).

The CMB was proposed by Alpher and Herman (Alpher; Herman, 1948) in 1948
and discovered accidentally in 1965 by Penzias and Wilson6 (Penzias; Wilson, 1965). The
photons that originated the CMB follow a blackbody radiation spectrum for a temperature
T = 2.73 K with remarkable precision (Aghanim et al., 2020b). A deep analysis of the CMB
power spectrum shows slight temperature variations in different directions in space. These
anisotropies due to temperature fluctuations, are seen in Fig 12. The CMB anisotropies
can be used to establish bounds for the cosmological parameters.

While developing a cosmological model to explain the evolution of the Universe,
the first assumption made was that the Universe is homogeneous and isotropic. As the
cosmological principle states, this assumption is really observed in large scales. However,
how can an universe that hold these properties since its beginning have such large structures
as the ones observed today? Following the same reasoning, once the CMB photons carry
characteristics of the early Universe, such anisotropies show that, before the photon
decoupling, the Universe already had these minor inhomogeneities on its mass distribution
(Dodelson; Schmidt, 2020).

The temperature fluctuations resulted in the CMB anisotropy can be expressed as
(Coles; Lucchin, 2002; Dodelson; Schmidt, 2020)

δT

T
(θ, φ) = T (θ, φ)− T0

T0
(4.7)

6 The astronomers were using a suspersentive antenna to detect faint radio waves and while trying to
eliminate all interference they could notice, a residual noise persisted until they reached the conclusion
that the noise was originated outside of Milky Way.
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Figure 12 – CMB sky, obtained by Planck Collaboration. The panel shows the spectral
matching independent component analysis (SMICA) temperature map. Figure
from (Aghanim et al., 2020a).

where θ and φ are angles that separate different regions of the sky. The temperature
distribution can also be quantified by expanding the distribution of temperature T on the
as a sum over spherical harmonics as follows

δT (θ, φ)
T

=
∞∑
l=0

m=l∑
m=−l

almYlm(θ, φ), (4.8)

the coefficients alm of the expansion define the variance Cl by

Cl ≡ 〈|alm|2〉 = 1
2l + 1

m=l∑
m=−l

|alm|2. (4.9)

The θ angle is related with the multipole moment l by

l ∼=
180o
θ
. (4.10)

The Fig. 13 shows the CMB power spectrum. The anisotropies observed are related
to the cosmological parameters.

The first peak of the power spectrum, for instance, is associated with the curvature
of the Universe, whereas acoustic oscillations are connected to dark matter, baryonic, and
dark energy abundances (Perkins, 2008). The value of these parameters for the ΛCDM
model, can then be obtained by comparison with the experimental data.

From Table 1, it is clear that the amount of non-baryonic matter is much larger
than the amount of baryonic matter, implying that, from CMB power spectrum analysis,
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Figure 13 – Angular power spectrum of CMB, obtained by the Planck satellite (Ade et
al., 2014).

Name Symbol Value
Baryonic Matter Density Ωbh

2 0.02242 ± 0.00014
Dark Matter Density Ωch

2 0.11933 ± 0.00091
Dark Energy Density Parameter ΩΛ 0.6889 ± 0.0056
Total Mass Density Parameter Ωm 0.3111 ± 0.0056

Total Density Parameter Ω 0.9993 ± 0.0019
Curvature Parameter Ωk 0.001 ± 0.002
Hubble Constant H0 [km s−1Mpc−1] 67.66 ± 0.42

Table 1 – Cosmological Parameters obtained by the Planck Collaboration (Zyla et al.,
2020; Aghanim et al., 2020a).

the Universe is dominated by dark energy and non-baryonic dark matter. It also shows
how close to one the total density parameter is, resulting in a flat Universe.

There are other important evidences for the existence of dark matter, such as the
structure formation, where dark matter plays a crucial role on the distribution of galaxies
and clusters, leading to a homogeneous and isotropic Universe essentially on large scales.
The structure formation is important to rule out hot dark matter7 as a candidate, and to
reinforce the fact that largest amount of matter comes from non-baryonic matter. For a
more in-dept discuss on this topic, the reference (Einasto, 2010) is a suggestion.

Another evidence that is worth mentioning is the Big Bang Nucleosynthesis (BBN)
7 The difference between hot, cold, and warm dark matter lies on the speed which each candidate travels,

being hot the faster, traveling in ultra-relativistic speeds, and cold the slower. The difference between
these candidates also reflects on the early Universe, when considering a thermal production.
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(Steigman, 2007). As previously stated, BBN is the process where light nuclei were formed
in the early Universe, but atoms were not able to form yet, due the high concentration of
very energetic photons. With the BBN, predictions on abundances of these light elements
that are synthesized during the first three minutes of the Universe can be made8, as seen
in Fig. 14. The relevance here for BBN is that it provides an estimate for the abundance
of baryons, given by (Olive et al., 2014)

0.021 ≤ Ωbh
2 ≤ 0.025. (4.11)

Since Ωbh
2 � 1, the amount of baryonic matter is not sufficient to account for the total

content in the Universe.

Figure 14 – Abundances for 4He, 3He, D, and 7Li, predicted by the BBN (Olive et al.,
2014).

These evidences motivate physicists around the world to gather more and more
information about the nature of dark matter, so its detection can be possible. The next
section dives into what could be the nature of dark matter, or even to describe its evolution
since the early Universe.
8 A good reference to the subject is (Kolb; Turner, 1990)
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4.2 Solving the Boltzmann Equation
The Boltzmann equation is a great tool to describe the evolution of species that

eventually fall out of equilibrium with the thermal bath. It is not only used to obtain
abundance of dark matter particles that could be produced thermally and start in equi-
librium with the cosmic plasma, but also to determine the abundance of light elements
produced during the early Universe, or even the abundance of relic photons, neutrinos,
etc. Unfortunately, the Boltzmann equation is not so simple to solve, requiring in some
cases, approximations, or in some circumstances, it has a semi-analytical solution. Here
the goal is to solve the Boltzmann equation for two cases: hot and cold relics. Starting
with the Boltzmann equation, from Chapter 3, as described below

dY

dx
=− x

H(m)s

∫
dΠψdΠadΠb · · · dΠidΠj · · · (2π)4|M|2

× δ4(pi + pj · · · − pψ − pa − pb · · · )[fafb · · · fψ − fifj · · · ], (3.91)

where, again,

dΠ ≡ g

(2π)3
d3p

2E , (3.79)

and

H(m) = 1.67
√
g∗m

2

MPl

= H(x)x2, (B.19)

remembering that x = mψ/T .

The first assumption is that the particle in question is stable, or has a life-time
comparable to the age of the Universe. Therefore, the only process that can influence on
the number density is the one involving annihilation of the species involved in the process,
that is

ψ + ψ̄ ←→ X + X̄. (4.12)

The second assumption is that there is no asymmetry between the quantities ψ and ψ̄.
The next hypothesis is that the species X and X̄ are in thermal equilibrium during the
whole process of ψ’s decoupling.

With those statements in mind, the term in squared brackets on the RHS of Eq.
(3.91) is now

[fafb · · · fψ − fifj · · · ] = [fψfψ̄ − fXfX̄ ], (4.13)
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using Eq. (3.81), with µX,X̄ = 09,

fX = exp
(
−EX
T

)
(4.14)

fX̄ = exp
(
−EX̄
T

)
. (4.15)

The δ-function on Eq. (3.91) guarantees that

Eψ + Eψ̄ = EX + EX̄ , (4.16)

hence

fXfX̄ = exp
[
−(EX + EX̄)

T

]
= exp

[
−

(Eψ + Eψ̄)
T

]
= fψeqfψ̄eq . (4.17)

The interaction term, or RHS, of the Boltzmann equation is then expressed as

dnψ
dt

+ 3Hnψ = −〈σ
ψ ¯ψ→XX̄ |v|〉(n

2
ψ − n2

ψeq), (4.18)

where the thermally averaged annihilation cross section times velocity is given by

〈σ
ψ ¯ψ→XX̄ |v|〉 =n−2

ψeq

∫
dΠψdΠψ̄dΠXdΠX̄(2π)4

× |M|2δ4(pψ + pψ̄ − pX − pX̄)exp
(
−Eψ
T

)
exp

(
−
Eψ̄
T

)
. (4.19)

Another way of describing the Boltzmann equation is using the variables defined
in Chapter 3,

x ≡ mψ

T
, and Y ≡ nψ

s
,

The equation now reads

dY

dx
= −

x〈σ
ψ ¯ψ→XX̄ |v|〉s
H(m) (Y 2 − Y 2

eq). (4.20)

The scenario can be generalized to any process of the type ψ+ ψ̄ → F , being F not
necessarily a two-body state. In that sense, the thermally averaged cross section can be
substituted by the total annihilation cross section 〈σA|v|〉, involving all channels, yielding
the two forms of the Boltzmann equation
9 This relation is considered by simplicity, once X and X̄ are in thermal equilibrium.
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dnψ
dt

+ 3Hnψ = −〈σA|v|〉(n2
ψ − n2

ψeq), (4.21)

dY

dx
= −x〈σA|v|〉s

H(m) (Y 2 − Y 2
eq). (4.22)

It is possible to realize from Eq. (4.21) that the species are in equilibrium when
n = neq, or if the annihilation is balanced by the creation process. The Boltzmann equation
is divided in the relativistic and the non-relativistic regimes. For each, the comoving
number density in equilibrium is

Yeq(x) =


45

2π4

(
π
8

)1/2 geff
g∗S(x)x

3/2e−x, non-relativistic (x� 3),
45ζ(3)

2π4
geff
g∗S(x) , relativistic (x� 3),

(4.23)

where geff for bosons and geff = 3
4g for fermions. From Eq. (B.19), H = x−2H(m),

allowing Eq. (4.22) to be rewritten as

dY

dx
= −x〈σA|v|〉s

H(m) (Y 2 − Y 2
eq) = −x〈σA|v|〉neq

x2H(m)Yeq
Y 2
eq

(
Y 2

Y 2
eq

− 1
)
, (4.24)

since the interaction rate is ΓA ≡ neq〈σA|v|〉, Eq. (4.24) reads

x

Yeq

dY

dx
= −ΓA

H

(
Y 2

Y 2
eq

− 1
)
. (4.25)

This version of the Boltzmann equation is interesting because it can be related to the
analysis made in Chapter 3, about the rule for the Γ/H fraction, and a qualitative
discussion can be made before actually solving the equation.

The familiar term appears multiplied by a deviation factor. When ΓA > H, the
comoving number density decreases. Since Γ = neq〈σ|v|〉, ΓA is proportional to a power of
x, because10 neq ∝ x−3 . Considering that the species starts in chemical equilibrium, hence
for x < 1, Y tracks Yeq, thus Y = Yeq. As x approaches to 1, ΓA < H, the particles fall
out of equilibrium, and ΓA decreases exponentially, once n has a Boltzmann suppression.
At some point, the annihilations are no longer effective enough to overcome the expansion
of the Universe. The relative change in Y becomes small, the annihilation rate freezes-out,
and the comoving number density “freezes-in”, in other words, the abundance remains
the same after the decoupling. After decoupling, the number density of the particles is
proportional to T 3 as the Universe cools down.
10 Before falling out of equilibrium, the species is considered relativistic.
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4.2.1 Hot Relics

Hot relics refer to species that are relativistic when they decouple from the thermal
bath. In this case, consider xf . 3. The value of Y is the value of Yeq at freeze-out, once a
comoving number density out of equilibrium behaves as a relativistic species in thermal
equilibrium due to the expansion of the Universe. Therefore, the quantity Y today, Y∞ is

Y∞ = Yeq(xf ) = 45ζ(3)
2π4

geff
g∗S(xf )

= 0.278 geff
g∗S(xf )

. (4.26)

Considering that, after the freeze-out, the expansion remains isentropic, that is,
sa3 =constant, the current number density for a hot relic is

nψ,0 = s0Y∞ = 2970Y∞ = 826 geff
g∗S(xf )

cm−3, (4.27)

whereas the relic mass density is

ρψ,0 = s0Y∞mψ = 826 geff
g∗S(xf )

mψ

eV cm−3, (4.28)

and the relic abundance is

Ωψh2 ∼= 7.8× 10−2 geff
g∗S(xf )

mψ

eV . (4.29)

Knowing that Ω0h
2 is close to unit, a cosmological bound can be imposed upon

the mass of the species

mψ < 14 g∗s(xf )
geff

eV. (4.30)

An example of hot relic are light neutrinos, those have mass below MeV scales
and decouple when the temperature is around a few MeV, hence, for a neutrino with one
helicity, gν = 1,

g∗s = gγ + 7
8(ge + ge+ + 3gν + 3gν̄) = 10.75 (4.31)

and

geff = 3
4 × 2 = 1.5. (4.32)

Therefore,

mν < 93 eV. (4.33)
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This bound on neutrinos masses is referred to as the Cowsik-McClelland bound
(Cowsik; McClelland, 1972). Note that the bound is upon the sum of the neutrino masses,
νe, νµ, and ντ . It is important to stress that more stringent limits over neutrino masses
comes from oscillation data, such as the KATRIN Collaboration (Aker et al., 2019), where
Σmν < 1.1 eV.

4.2.2 Cold Relics

The cold relics are species that decouple while non-relativistic, or at xf & 3. In this
case, Yeq is decreasing exponentially after falling out of equilibrium, therefore the solution
is a rather less simple than the last one. Bringing back the Boltzmann equation,

dYψ
dx

= −x〈σA|v|〉s
H(m) (Y 2 − Y 2

eq), (4.22)

since H(m) = Hx2, then

dYψ
dx

= −〈σA|v|〉s
Hx

(Y 2 − Y 2
eq). (4.34)

The first approach is to suggest for the cross section that σ|v| ∝ vp, being p a
power factor. From the Boltzmann distribution equation,

〈v〉 =
( 8T
πm

)1/2
∝ T 1/2, (4.35)

therefore, σ|v| ∝ T n, for n = p
2 . It is useful to parametrize the thermally averaged cross

section as

〈σ|v|〉 = σ0

(
m

T

)−n
= σ0x

−n, (4.36)

where σ0 does not depends on x. The factor n then stands11 for s-wave if n = 0, and for
p-wave if n = 2.

The Boltzmann equation can be more simplified by remembering that

H = 1.66 m2

MPlx2 , and s = 2π2

45 g∗s
m3

x3 , (4.37)

thus

dY

dx
= −x−n−2λ(Y 2 − Y 2

eq), (4.38)
11 These denominations come from the partially-spherical parametrization of scattered particles on

quantum mechanics.
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where

λ ≡
[
〈σ|v|〉s
Hx

]
x=1

= 0.264 g∗s√
g∗
MPlmσ0, (4.39)

and the equilibrium comoving number density is

Yeq = neq
s

= 0.145 g

g∗s
x3/2e−x = ax3/2e−x. (4.40)

To solve the equation, the difference between the comoving number density and
the equilibrium comoving number density, ∆ ≡ Y − Yeq, is substituted in the Boltzmann
equation. Then, the following regimes are considered: before the freeze out, where x� xf ,
a long time after the freeze-out, or x � xf , in order to obtained Y∞, and another for
x ∼= xf , to achieve a more detailed description of the behavior of Y around the freeze-out.
The differential equation for ∆ is

∆′ = d∆
dx

= dY

dx
− dYeq

dx
= −λx−n−2(Y 2 − Y 2

eq)−
dYeq
dx

(4.41)

∆′ = −Y ′eq − λx−n−2(Y 2 − Y 2
eq), (4.42)

however,

Y 2 − Y 2
eq = ∆(2Yeq + ∆), (4.43)

and hence

∆′ = −Y ′eq − λx−n−2∆(2Yeq + ∆). (4.44)

In the region 1 � x � xf , Y tracks Yeq very closely, so that ∆ and ∆′ are very
small quantities, hence an approximate solution is achieved considering ∆′ = 0, resulting
in

∆ ∼= −
xn+2Y ′eq

λ(2Yeq + ∆)
∼=
xn+2

λ
, (4.45)

where, in the last step, the following approximation was made

Y ′eq
Yeq

= 3
2x − 1 ∼= −1 (4.46)
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Whereas for x� xf , Yeq is exponentially small compared to ∆. Since Y tracks Yeq
very poorly, ∆ ∼= Y � Yeq, making terms involving Yeq negligible and

∆′ = − λ

xn+2 ∆2. (4.47)

At this point, the creation of particles has practically ceased, while the annihilations are
somewhat important. Integrating Eq. (4.47) from x = xf to x→∞ leads to

− 1
∆∞
− 1

∆f

= − 1
Y∞
− 1

∆f

= λ

(
x−n−1

n+ 1

)∞
xf

= − λ

n+ 1
1

xn+1
f

. (4.48)

To simplify Eq. (4.48), consider the scenario around the freeze-out temperature,
Y stops tracking Yeq, and ∆ becomes of order Yeq. The change is abrupt, as Y goes from
decreasing exponentially to leveling out to a constant. The freeze-out can be defined by
the condition

Yf = (1 + c)Yeq(xf ), (4.49)

where c is of order unity and determined empirically. Then, at the vicinity of xf , ∆ is
given by

∆f = Yf − Yeq(xf ) = cYeq(xf ). (4.50)

Back to the period after the freeze-out, Y is considerably small compared to Yeq around
the freeze-out, hence this can be extended to Y∞ � ∆f . Using Eq. (4.48),

− 1
Y∞
− 1

∆f

∼= −
1
Y∞

, (4.51)

and

Y∞ = n+ 1
λ

xn+1
f . (4.52)

The Eq. (4.52) can be used on the relation for the cold dark matter relic abundance
to obtain some information about the cross-section, for example. However, before doing
so, an attempt to describe xf can be made. Going back to the freeze-out period to use Eq.
(4.40), and to derive ∆f with respect to x leads to
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[
d∆
dx

]
xf

= −
[
dYeq
dx

]
xf

− λ∆f (2Yeq(xf ) + ∆f )
xn+2
f

, (4.53)

= −a
(3

2 − xf
)
x

1/2
f e−xf − λ∆f (2Yeq(xf ) + ∆f )

xn+2
f

,

= a
(
xf −

3
2

)
x

1/2
f e−xf − λcYeq(xf )(2Yeq(xf ) + cYeq(xf ))

xn+2
f

,

d∆f

dx
= a

(
xf −

3
2

)
x

1/2
f e−xf −

λcY 2
eq(xf )(2 + c)
xn+2
f

, (4.54)

where a = 0.145 g
g∗s

. Now, using the approximations d∆
dx
� 1 and xf � 3

2 , the equation for
xf is

ax
3/2
f e−xf =

λcY 2
eq(xf )(2 + c)
xn+2
f

, (4.55)

Yeq(xf ) =
λcY 2

eq(xf )(2 + c)
xn+2
f

, (4.56)

exf = aλc(2 + c)
x
n+1/2
f

, (4.57)

which is approximately

xf ∼= ln [(2 + c)aλc]−
(
n+ 1

2

)
ln {ln [(2 + c)aλc]}. (4.58)

The best fit to numerical values is c(2 + c) = n+ 1 (Kolb; Turner, 1990).

Back to the comoving number density for today, substituting in the equation for
number density yields

nψ,0 = s0Y∞ = 2970Y∞ cm−3, (4.59)

nψ,0 = 1.13× 104 (n+ 1)√g∗xn+1
f

g∗smMPlσ0
cm−3, (4.60)

and then the energy density is

ρψ,0 = 1.13× 104 (n+ 1)√g∗xn+1
f

g∗sMPlσ0
cm−3, (4.61)

finally leading to the relic abundance

Ωψh
2 = 1.04× 109 GeV−1 (n+ 1)√g∗xn+1

f

g∗sMPlσ0
. (4.62)
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The relic abundance can be rewritten in terms of the cross section, so its value can
be estimated. Remembering that 〈σA|v|〉 = σ0x

−n, and for s-wave annihilations, n = 0,

Ωψh
2 = 1.04× 109 GeV−1

√
g∗xf

g∗sMPl〈σA|v|〉
. (4.63)

Assuming Ωch
2 ∼= 0.11 and MPl = 1.22× 1019 GeV,

〈σA|v|〉 . 7.75× 10−10 GeV−2xf

√
g∗
g∗s

. (4.64)

Typical values of Weakly Interactive Massive Particles (WIMPs) are xf ∼= 20, g∗ ∼= g∗s =
106.75, and m ∝ 102 GeV. For these candidates, the annihilation cross section would be
around

〈σA|v|〉 . 3× 10−26 cm3s−1. (4.65)

Fig. 15 shows the behavior of this species around the freeze-out epoch. It is important to
notice that as the annihilation cross section increases, the species takes longer to decouple,
decreasing its abundance.

Figure 15 – Freeze-out for massive species. The solid black line represents the comoving
number density in equilibrium with the thermal bath, while the dashed lines
represent the abundance for different annihilation cross sections.

The result from Eq. (4.65) is very interesting and frequently referred to as “WIMP
miracle” due the fact that the value lies in the same region of cross sections for electroweak
interactions. This dark matter candidate is assumed to interact weakly with standard
model particles, making it difficult to detect, however “strongly” enough to keep in thermal
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equilibrium until its eventual freeze-out, since WIMP’s are supposed to be heavier the SM
particles, the latter would no longer be able to produce DM particles once the Universe
reaches temperatures of order of the WIMP’s mass, leading to the suppression on the
comoving number density, and eventually on the decoupling of DM and the relic abundance
observed today. The WIMP miracle could point to models of new physics at weak scales to
solve this and other problems of the standard model. This is a possibility that motivates
the detection of DM particles, setting efforts on searches at colliders, satellites, telescopes,
and underground detectors.

4.3 Detection Methods
As demonstrated in the previous section, in order to produce CDM thermally in

the early Universe the WIMPs must interact with the SM particles via processes mediated
by interactions interactions with the cross section of order 〈σv〉 10−9 GeV−2 10−26 cm3 s−1.
This lower bound guarantees that DM is no overproduced. It also provides interactions
that, ideally, can be measured today. That said, it is interesting to briefly analyze,
before discussing the detection methods, what would be a good range of mass for WIMP
candidates.

The first bound that can be imposed is the unitarity bound on the annihilation
cross section (Griest; Kamionkowski, 1990). As result, the DM mass cannot be higher
than PeV scales. Also, the DM mass cannot be too low, for a mass of order keV or below
could impact on structure formation processes due to the free streaming length (Viel et al.,
2013). Moreover, thermal relics with mass below MeV can affect BBN and CMB (Sabti et
al., 2020). Finally, assuming the thermal WIMPs with s-wave annihilation with visible
final states, the mass window is given by (Leane et al., 2018)

10 GeV . mWIMP . 100 TeV. (4.66)

as shown in Fig. 16.

The experiments that search for WIMPs are built with this mass window in mind.
From now on, an overview of the current detection methods will be presented. The three
search strategies can be described in essence by the following diagram from Figure 17,
where the arrows represent the DM interactions of each possible way to search for a DM
particle.

Therefore, the DM detection methods are called indirect, direct, and collider
searches. This section presents an overview on the first two detection methods mentioned.
For a review on collider searches, see (Boveia; Doglioni, 2018).
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Figure 16 – Bounds on thermal WIMP for a s-wave annihilation, considering that all DM
is composed by WIMP. Figure from (Leane et al., 2018).

4.3.1 Indirect Detection

Indirect detection refers to searches of WIMP annihilation processes where the final
state is composed by SM particles. This method is explored using telescopes to observe
regions that have high DM particles density, where such aforementioned processes occur.
Good targets are the center of the Milky Way and nearby dwarf galaxies.

For non-relativistic DM, annihilations and decays can produce all SM particles,
this first process is called primary production. However, the final product observed on
Earth is composed of stable particles12 (Figure 18), this is the secondary process, given by
the decay of unstable particles or the hadronization process. The mostly discussed scenario
here is the gamma rays, whose energy scale is set by the DM mass. For a WIMP candidate,
the DM particle moves slowly compared to the speed of light, thus both annihilation and
decay processes are approximately equivalent in terms of kinematics, since the DM initial
state is considered at rest.

When searching for photons as the final product, the indirect detection has the
advantage that photons carry direction and energy information, for they propagate without
much further interaction after their production. In contrast to the charged particles, for
example, that interact with magnetic fields, accelerating and changing the direction in a
way that it turns to be challenging to reconstruct their propagation path, and localize
their source. On the other hand, many astrophysical processes also produce photons, being
the gamma rays production via DM annihilation usually subdominant. Therefore, it is
difficult to discriminate the astrophysical background from the process of interest. Fig. 19
12 Such as electrons, positrons, neutrinos, protons, anti-protons, and gamma rays.
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Figure 17 – Detection methods for Dark Matter.

shows the gamma-rays spectra for DM annihilations, where the gray band that is accounts
for secondary particles are very difficult to distinguish.

The flux of gamma rays provenient from DM annihilations can be obtained by the
number of photons per unit energy13

dNγ

dEγ
= 1

4πr2 ×
dnγ(mχ)
dEγ

× 1
2n

2
χ〈σv〉 ×∆V ×∆A∆t, (4.67)

where r is the distance between the observer and the signal, dnγ
dEγ

is the amount of photons
produced per unit energy given the DM mass. The 1/2 factor avoids the double counting
of DM particles, ∆V is the observed volume where the photons are produced, ∆A is the
area of the telescope, and ∆t is the exposition time. The equation (4.67) can be rewritten
as

dNγ

dEγ
= (∆A∆t)×

(
〈σv〉
m2
χ

)
×
(
dnγ(mχ)
dEγ

)
×
( 1

8π

∫
ρ2
χdrdΩ

)
. (4.68)

Considering the RHS of Equation (4.68), the first term depends only on the detector, the
second and third terms address only particle physics properties, and the last one is related
13 For more detail, the lecture from (Slatyer, 2017) is a suggestion.
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Figure 18 – Possible final states for DM annihilation. Figure from (Vitale; Morselli, 2009).

Figure 19 – Gamma ray spectra for different energies, where x is the photon energy,
normalize in a way that for x = 1, E = mχ, being χ the DM particle. Figure
from (Bringmann; Weniger, 2012).

to astrophysics. The observed quantity is usually the differential flux per unit energy per
unit solid angle, given by

dΦγ

dEγdΩ = 〈σv〉
m2
χ

dnγ(mχ)
dEγ

J, (4.69)

where the astrophysical properties are parameterized by the J-factor

Jann ≡
1

8π

∫
l.o.s

d`ρ2
χ, (4.70)
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which is an integration along the line of sight. For DM decay the J-factor will change to

Jdecay ≡
1

8π

∫
l.o.s

d`ρχ. (4.71)

Considering the thermal annihilation cross section obtained in the last section,

〈σv〉 ∼= 3× 10−26 cm3 s−1, (4.72)

cold relics lighter than 100 GeV are excluded by the Fermi-LAT observations, as shown in
figure 20. Another main experiments that search for gamma rays are H.E.S.S., Veritas,
and the Cherenkov Telescope Array (CTA), the latter currently under construction and
planned to probe higher masses for the WIMP candidates.

Figure 20 – Constrains on DM annihilations for the τ+τ− channel. The dashed gray line
represents the thermal relic cross section. Figure from (Ackermann; Albert et
al., 2015).

4.3.2 Direct Detection

The second method, first discussed by Goodmann and Witten (Goodman; Witten,
1985), refers to the elastic scattering between a WIMP particle and a DM nuclei target
inside a detector. The reasoning behind this type of experiment is that, since the Milky
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Way is surrounded by a DM halo, there is a flux of DM particles that depends on it mass.
For instance, considering mχ = 100 GeV, the flux is estimated to be

Φχ = ρχ
mχ

〈v〉 ∼= 104
(
GeV
mχ

)
cm−2 s−1, (4.73)

where ρχ = 0.3 GeV cm−3 the local DM density, and 〈v〉 = 220 km s−1 the averaged
velocity of WIMP particles on Earth.

As WIMPs are weakly interacting, it is very difficult to detect such particles. The
experiments built for direct searches have a nuclear target shielded and located underground
in order to avoid the interaction of other cosmic particles with the experiment. Suppose
that the incoming flux of invisible particles is reaching the underground detector. Therefore,
at some point, the targeted nuclei, initially at rest, starts to move for no apparent reason,
namely, an interaction between the DM particle and the nuclei provokes a nuclei recoil.
If no signal is observed, a bound on the scattering cross section is imposed over the DM
parameter space.

The kinematics of the elastic scattering in this case is a relatively simple one, since
the non-relativistic limit can be taken into account. Considering the scattering process

χN → χN, (4.74)

where N is the SM nucleon. The transferred momentum q can be obtained using the
Mandelstam variable t,

|q|2 = −t = −(pµ1 − pµ3)2 = 2µ2v2(1− cos θ), (4.75)

being

µ = mχmN

mχ +mN

(4.76)

the reduced mass, and θ the scattering angle for a center-of-mass frame. Hence, the recoil
energy of the nucleon is

ER = |q|2

2mN

= µ2v2(1− cos θ)
mN

. (4.77)

The maximum recoil energy is achieved when θ = 180º, where there is practically
no scattering between the WIMP particle and the nucleon. Related to the maximum recoil
energy there is a minimum value for the velocity,

vmin =
√
mNER

2µ2 , (4.78)
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where the limits can be considered

vmin =


√

mNER
2m2

χ
, for mχ � mN , and√

ER
2mN , for mN � mχ.

(4.79)

Therefore, for a WIMP mass much lower than the nucleon mass, the minimum velocity
increases as mχ decreases. The importance is that, if the DM mass is too small, the velocity
is greater than the escape velocity14 of the galaxy. There should be then a maximum
velocity in the halo. This means that the experiment can only probe a part of the WIMP
velocity distribution function, for a given DM mass, since the experiments are sensitive to
interaction above certain energy threshold, ET .

The expected rate of scattering between WIMPs and the nucleus is given by
(Schumann, 2019)

dR

dER
= ρ0M

mNmχ

∫ vesc

vmin
vf(v) dσ

dER
dv, (4.80)

where M is the target mass of the detector, f(v) is the WIMP velocity distribution, and
ρ0 = 0.3 GeV cm−3 is the local DM density. Integration of Eq. (4.80) over the energy
yields the observed number of events for a running time T

N = T
∫ Emax

ET
dERε(ER) dR

dER
, (4.81)

where

Emax = 2µ2v2
esc

mN

(4.82)

is the maximum recoil energy, and ε(ER) is the detector efficiency, usually energy-dependent.
Figure 21 shows the expected rate for different values of recoil energy (Schumann, 2019).

The WIMP-nucleon cross section appears in Eq. (4.80) and accounts for interactions
between the WIMP particles and the quarks. It depends on the model considered, since
the interaction of WIMPs with baryonic matter is unknown. In general, the scattering
cross section is given by

dσ

dER
=
(
dσ

dER

)
SI

+
(
dσ

dER

)
SD

= mN

2v2µ2 (σSIF 2
SI(ER) + σSDF

2
SD(ER)), (4.83)

which consists of the sum of spin-independent (SI) and spin-dependent (SD) components.
FSI and FSD are form factors, relevant for heavy targets, as Xe, I or W, due the loss of
14 The scape velocity of the Milky Way is 544 km/s (Smith; Ruchti et al., 2007).
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Figure 21 – Spectra for nuclear recoil, considering different target materials. The assumed
mass of the DM particle is 100 GeV. The WIMP-nucleon cross section is
spin-independent. Figure from (Schumann, 2019).

coherence during the scattering. The SI contributions are related to scalar and vector
couplings in the Lagrangian, described by (Bertone, 2010)

L ⊃ αsq(χ̄χ)(q̄q) + αvq(χ̄γµχ)(q̄γµq), (4.84)

being αsq and αvq scalar and vector couplings, respectively. The differential cross section in
this case is

(
dσ

dER

)
SI

= 2mN

πv2

{
[Zfp + (A− Z)fn]2 + BN

256

}
F 2
SI(ER), (4.85)

where Z is the atomic number, A the mass number, fp and fn the WIMP-proton and
WIMP-neutron couplings, respectively, and BN is defined by15

BN ≡ αvu(A+ Z) + αvd(2A− Z), (4.86)

where αvu and αvd are vector couplings for the up and down quarks. The WIMP coupling
to neutrons and protons is generally similar, leading to the good approximation for the SI
contribution

(
dσ

dER

)
SI

= 2mNA
2(fp)2)

πv2 F 2(ER). (4.87)

15 For more details, see (Bertone, 2010).



Chapter 4. Dark Matter 76

The SD contributions, on the other hand, can be described by an axial-vector
coupling in the Lagrangian,

L ⊃ αAq (χ̄γµγ5χ)(q̄γµγ5q). (4.88)

The differential cross section is

(
dσ

dER

)
SD

= 16mN

πv2 Λ2G2
FJ(J + 1)FSD(ER), (4.89)

where Λ accounts for expectation values of the spin content for the nucleus, determined
by nuclear models, GF is the Fermi constant, and J is the total angular momentum of the
nucleus.

Although both contributions are taken into account, the fact that the SI one is
proportional to A2, this factor is dominant over the SD contribution16. For this reason,
the detectors are usually more sensitive to the SI WIMP coupling.

Figure 22 shows current upper limits from several direct detection experiments
over the scattering cross section versus DM mass. The experiments include CDEX (Liu
et al., 2019), CDMSLite (Agnese et al., 2019), COSINE-100 (Adhikari et al., 2018),
CRESST (Angloher et al., 2017; Abdelhameed et al., 2019), DAMA (Bernabei et al.,
2008), DAMIC (Aguilar-Arevalo et al., 2020), DarkSide (Agnes et al., 2018a; Agnes et
al., 2018b), EDELWEISS (Armengaud et al., 2019; Hehn et al., 2016), LUX (Akerib et
al., 2017; Akerib et al., 2019), NEWS-G (Arnaud et al., 2018), PANDA (Cui et al., 2017),
and XENON (Aprile et al., 2016; Aprile et al., 2018; Aprile et al., 2019; Aprile et al.,
2021) collaborations. The most restrictive limits come from XENON1T. Moreover figure
23 shows projections from different experiments, described in (Billard et al., 2021).

So far, WIMPs are the main candidates for DM. The intense activity and impressive
progress on experimental searches lead to no conclusive or undisputed signals of DM, but
several bounds for WIMPs interactions were imposed. Even though DM has not been yet
observed, the WIMP framework is still motivating, and future experiments are expected
to probe the surviving scenarios.

It is worth pointing out once more that WIMPs are not the only existing candidates
for DM. Different alternatives are also explored, such as the feebly interacting massive
particles (FIMPs) (Hall et al., 2010), axions17 or axion-like particles (ALPs), and sterile
neutrinos. An important alternative for particle DM are the primordial black holes (PBH)
(Carr; Kühnel; Sandstad, 2016). Since candidates aside WIMPs are not discussed here,
16 Most of the experiments use heavy nuclei, then, in general A > 20.
17 Axions are particles proposed to solve the strong CP problem in quantum chromodynamics (QCD)

(Peccei; Quinn, 1977).
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Figure 22 – Current scenario for searches for SI elastic WIMP-nucleus scattering. The
dashed line limits the parameter space from below and represents the “neutrino
floor", a irreducible background due coherent neutrino interactions with target
nuclei (Billard; Figueroa-Feliciano; Strigari, 2014). Figure from (Billard et al.,
2021).

reviews on particle DM candidates can be found in (Zyla et al., 2020), and (Profumo;
Giani; Piattella, 2019).
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Figure 23 – Projections for direct detection experiments considering standard parameters
for WIMPs. Figure from (Billard et al., 2021).
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5 Conclusions

This dissertation started with a summary of the SM of particle physics, specifically
the electroweak sector, presented on Chapter 2 as a motivation for the DM problem, for
it fails to describe all of the contents of the Universe. Nevertheless, it is necessary to
acknowledge that the SM led to a plethora of successful predictions, and is so far the best
description of elementary particles, and the electroweak and strong interactions. In order
to properly introduce the DM problem, the standard cosmology was discussed on Chapter
3, describing how the Universe evolves with time, essentially based on the cosmological
principle. Important cosmological parameters were presented along with the thermal history
of the Universe. The analysis from the third chapter was also important to understand
in the Chapter that not only the CMBR shows a fairly homogeneous and isotropic early
Universe, with minor perturbations, but also that it is a very convincing evidence for the
existence of non-baryonic DM. During Chapter 4, other important evidences were shown,
with their historical relevance. The evidences give a clue of what DM can or cannot be.
After establishing the need of DM from cosmological and astrophysical observations, the
thermal production of DM was explored, and through the Boltzmann equation, abundances
for hot and cold relics were obtained. This is where the core of this work lies, since the
cold relic for DM particles, in specific the WIMP candidate, leads to a annihilation cross
section that lies in a range compatible to the scale electroweak of interactions. This result
is what motivates the searches for such candidates, and different methods of detection
where proposed in order to probe DM properties.

This work accomplished its main goal of presenting the usual WIMP scenario
as a possible description of particle DM. The topics here discussed are fundamental to
understand more about the nature of DM, especially those candidates that are supposed
to be produced thermally during the early Universe. The insights provided are necessary
for different studies over DM, such as the three types of searches, or some beyond SM
models that incorporate DM candidates.
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APPENDIX A – Relevant Physical
Quantities

The references used to build this table are (Dodelson; Schmidt, 2020) and (Olive
et al., 2014).

Name Symbol Value
Speed of light c 2.99792458× 1010 cm s−1

Reduced Planck’s constant ~ 6.58211899× 10−16 eV s
1.973269602× 10−5 eV cm c−1

Newtonian gravitational constant G 6.673× 10−8 cm3 g−1 s−2

~c/M2
Pl

Planck mass MPl

√
~c/G

1.221× 1019 GeV/c2

Boltzmann constant kB 8.617342× 10−5 eV K−1

Fine structure constant α 1/137.03599976
Electron mass me 0.510998902 MeV/c2

Neutron mass mn 939.565330 MeV/c2

Proton mass mp 938.271998 MeV/c2

Neutro-proton mass difference Q 1.2933 MeV/c2

Fermi constant GF 1.16639× 10−5 GeV−2 (~c)3

Thomson cross section σT 8πα2~2/(3mec
2)

0.665245854× 10−24 cm2

CMB photon energy density ργ π2k4
BT

4/[15(~c)3]
2.474× 10−5h−2(T/T0)4ρcr

CMB Temperature today T0 2.726 K
2.349× 10−4 eV/kB

Critical density ρcr 1.879h2 × 10−29 g cm−3

8.098h2 × 1011 eV4/(~c)3

Universe entropy today s0 2970 cm3

Parsec pc 3.0856× 1018 cm
Baryonic Matter Density Ωbh

2 0.02242 ± 0.00014
Dark Matter Density Ωch

2 0.11933 ± 0.00091
Dark Energy Density Parameter ΩΛ 0.6889 ± 0.0056
Total Mass Density Parameter Ωm 0.3111 ± 0.0056

Total Density Parameter Ω 0.9993 ± 0.0019
Curvature Parameter Ωk 0.001 ± 0.002

Dimensionless Hubble parameter h 0.677± 0.004
Age of the Universe t0 13.784+0.040

−0.037 Gyr
Hubble Constant H0 [km s−1Mpc−1] 67.66 ± 0.42

Table 2 – Relevant physical constants and other parameters.
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APPENDIX B – Equilibrium
Thermodynamics

The equations here defined can be found in (Pathria, 2016).

Probability distribution functions (PDFs) for Fermi-Dirac distribution (+), i.e.,
fermions, and for Bose-Einstein distribution (−), or bosons:

f(p) = 1
exp [E(p)−µ

T
]± 1

(B.1)

Particle number density:

n = g

(2π)3

∫ ∞
0

d3pf(p), (B.2)

Energy density:

ρ = g

(2π)3

∫ ∞
0

d3pE(p)f(p) (B.3)

Pressure:

P = g

(6π)3

∫ ∞
0

d3p
|p|2

3E(p)f(p) (B.4)

Relativistic limit, where T � m,

ρ =


π2

30gT
4 (bosons)

7
8
π2

30gT
4 (fermions),

(B.5)

n =


ζ(3)
π2 gT

3 (bosons)
3
4
ζ(3)
π2 gT

3 (fermions),
(B.6)

P = ρ

3 . (B.7)

The energy density can be simplified as

ρ = g∗
π2

30T
4, (B.8)
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where

g∗ =
∑

i=bosons
gi

(
Ti
T

)4
+ 7

8
∑

i=fermions
gi

(
Ti
T

)4
(B.9)

accounts for the degrees of freedom of the relativistic particle as function of the temperature.

Non-relativistic case, where m� T :

n = g
(
mT

2π

)3/2
exp (−m− µ

T
), (B.10)

ρ = mn, (B.11)

P = nT (B.12)

The entropy is given by

s = p+ ρ

T
(B.13)

therefore, for each case:

s =


2π2

45 g∗ST
3 relativistic

mn
T

non-relativistic,
(B.14)

where

g∗s =
∑

i=bosons
gi

(
Ti
T

)3
+ 7

8
∑

i=fermions
gi

(
Ti
T

)3
(B.15)

Mean speed of non-relativistic particles

〈v〉 =
∫
dvf(v)v = 4π

(
m

2πT

)3/2 ∫ ∞
0

dv exp
(
−mv

2

2T

)
v3, (B.16)

where

f(v) = 4πv2
(
m

2πT

)3/2
exp

(
−mv

2

2T

)
dv. (B.17)

Therefore

〈v〉 =
( 8T
πm

)1/2
. (B.18)
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Hubble parameter for a radiation-dominated Universe

H2(t) = 8πρr
3M2

Pl

= 8π
3M2

Pl

π2

30g∗(T )T 4 =
(√

8π3
√

90
T 2

MPl

)2
∼=
(

1.66 T 2

MPl

)2

, (B.19)

where MPl = 1√
G
.
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