
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra

Departamento de Informática e Matemática Aplicada
Programa de Pós-Graduação em Sistemas e Computação

Doutorado Acadêmico em Ciência da Computação

Understanding the Relationship between
Continuous Integration and Code Coverage

José Diego Saraiva da Silva

Natal-RN

Maio de 2023

José Diego Saraiva da Silva

Understanding the Relationship between Continuous

Integration and Code Coverage

Doctoral Thesis presented to the Gradu-
ate Program in Systems and Computing of
the Department of Informatics and Applied
Mathematics at the Federal University of Rio
Grande do Norte as a partial requirement for
obtaining the degree of Doctor of Computer
Science.

Research Area:
Software Engineering

Advisor:

Uirá Kulesza

Co-Advisor:

Daniel Alencar da Costa

PPgSC – Programa de Pós-Graduação em Sistemas e Computação

DIMAp – Departamento de Informática e Matemática Aplicada

CCET – Centro de Ciências Exatas e da Terra

UFRN – Universidade Federal do Rio Grande do Norte

Natal-RN
Maio de 2023

ii

Silva, José Diego Saraiva da.
 Understanding the relationship between continuous integration
and code coverage / José Diego Saraiva da Silva. - 2023.
 xviii, 147 f.: il.

 Tese (doutorado) - Universidade Federal do Rio Grande do
Norte, Centro de Ciências Exatas e da Terra, Departamento de
Informática e Matemática Aplicada, Programa de Pós-Graduação em
Sistemas e Computação. Natal, RN, 2023.
 Orientação: Uirá Kulesza.
 Coorientação: Daniel Alencar da Costa.

 1. Computação - Tese. 2. Teste de software - Tese. 3.
Integração contínua - Tese. 4. Cobertura de código - Tese. 5.
Estudo empírico - Tese. I. Kulesza, Uirá. II. Costa, Daniel
Alencar da. III. Título.

RN/UF/CCET CDU 004

Universidade Federal do Rio Grande do Norte - UFRN
Sistema de Bibliotecas - SISBI

Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Ronaldo Xavier de Arruda - CCET

Elaborado por Joseneide Ferreira Dantas - CRB-15/324

Acknowledgements

Hello there! As I approach the culmination of my Ph.D. studies, I reflect on the

journey that has led me to this momentous milestone. With heartfelt appreciation and

profound gratitude, I acknowledge the significant contributions and support of those who

have played instrumental roles in shaping my academic and personal growth.

First and foremost, I humbly offer my heartfelt praise and gratitude to God,

the Almighty, for His abundant blessings, wisdom, and the invaluable opportunities

bestowed upon me. Through His grace, I have successfully completed this thesis, and I

am profoundly grateful for His guidance throughout this journey.

I extend my profound appreciation to my mentor, Uirá Kulesza, whose exceptional

guidance has been instrumental in shaping the trajectory of my work. Their expertise

and dedication have proven invaluable throughout this dissertation. Additionally, I am

immensely grateful to my co-advisor, Daniel Alencar, for their mentorship, which enabled

me to conduct the pivotal studies that form the cornerstone of this research. Their

insights and assistance have played a crucial role in the successful completion of this

work.

I am genuinely grateful for the unwavering support and love of my family: José

Martiniano da Silva Neto, Maria de Fátima Saraiva da Silva, and José Diogenes Saraiva

da Silva. Their constant presence and dedication have enabled me to embark on this

Ph.D. journey and face its challenges head-on. The foundation of a loving family has

provided me with the strength and motivation to pursue and complete this thesis.

vi

Furthermore, I am indebted to my girlfriend Nathália, whose sacrifices, patience,

and understanding have been the cornerstone of my success. Her constant encouragement

and belief in me have given me the strength and inspiration to overcome challenges and

persevere.

Lastly, but certainly not least, I express my deepest gratitude to my friends,

whose unwavering encouragement has been invaluable throughout this thesis journey.

Their presence, camaraderie, and insightful discussions have enriched my research and

kept me motivated.

vii

I am convinced that it is God who reveals Himself in the orderly harmony of what exists.

Gregor Mendel

viii

Understanding the Relationship between Continuous
Integration and Code Coverage

Author: José Diego Saraiva da Silva

Advisor: Uirá Kulesza

Co-advisor: Daniel Alencar da Costa

Abstract

Continuous Integration (CI) is a widely adopted software engineering practice

emphasizing frequent software integration through an automated build process. Although

CI has been shown to detect errors earlier in the software life cycle, the relationship

between CI and code coverage still needs to be clarified. Our work aims to fill this gap

by investigating the quantitative and qualitative aspects of this relationship.

In the quantitative study, we compare 30 CI projects and 30 projects that have

never adopted CI (NOCI projects) to investigate whether CI is associated with higher

code coverage rates. We analyzed 1,440 versions from different projects to identify trends

in code coverage. Our findings reveal a positive association between CI and higher code

coverage rates.

Our qualitative study consisted of a survey and a document analysis. The survey

revealed several significant findings, including a positive association between continuous

integration (CI) and higher code coverage rates, indicating the value of CI in promoting

testing practices. Additionally, our survey highlighted the importance of using code

coverage during the authoring and review process, which can help identify potential

issues early in the development cycle.

The document analysis focused on coverage-related themes in pull request

conversations in CI-enabled projects. Through this analysis, we discovered the main

ix

topics related to coverage usage during pull requests, which can provide valuable insights

into how developers use coverage to improve code quality. This information can help guide

the development of best practices for using coverage in CI-enabled projects, ultimately

improving the quality and reliability of software products.

Our work offers insights into the evolution of code coverage in CI, which can

assist researchers and practitioners in adopting tools and practices for better monitoring,

maintenance, and even enhancement of code coverage.

Keywords: Software Testing, Continuous Integration, Code Coverage, Empirical Study.

x

Entendendo a relação entre integração contínua e
cobertura de código

Autor: José Diego Saraiva da Silva

Orientador: Uirá Kulesza

Coorientador: Daniel Alencar da Costa

Resumo

Integração Contínua, em inglês Continuous Integration (CI), é uma prática

amplamente adotada na engenharia de software que enfatiza a integração frequente

do software por meio de um processo de builds automatizado. Embora tenha sido

demonstrado que a CI detecta erros mais cedo no ciclo de vida do software, a relação

entre CI e cobertura de código ainda precisa ser esclarecida. Nosso trabalho tem como

objetivo preencher essa lacuna investigando os aspectos quantitativos e qualitativos dessa

relação.

No estudo quantitativo, comparamos 30 projetos com CI e 30 projetos que nunca

adotaram CI (projetos NOCI) para investigar se a CI está associada a maiores taxas

de cobertura de código. Analisamos 1.440 versões de diferentes projetos para identificar

tendências na cobertura de código. Nossas descobertas revelam uma associação positiva

entre a CI e maiores taxas de cobertura de código.

Nosso estudo qualitativo consistiu em um survey e uma análise de documentos.

A pesquisa revelou várias descobertas significativas, incluindo uma associação positiva

entre a integração contínua (CI) e maiores taxas de cobertura de código, indicando o valor

da CI na promoção de práticas de teste. Ademais, nossa pesquisa enfatizou a relevância

do uso de cobertura de código durante o processo de autoria e revisão, pois isso pode

auxiliar na detecção precoce de possíveis problemas ao longo do ciclo de desenvolvimento.

xi

A análise de documentos se concentrou em temas relacionados à cobertura

nas discussões dos Pull Requests de projetos que adotam CI. A partir dessa análise,

identificamos os principais tópicos associados ao uso da cobertura durante os Pull

Requests, o que pode fornecer informações valiosas sobre como os desenvolvedores utilizam

a cobertura para aprimorar a qualidade do código. Essas informações são capazes de

orientar o desenvolvimento de melhores práticas para o uso da cobertura em projetos

que adotam CI, contribuindo para aprimorar a qualidade e a confiabilidade dos produtos

de software.

O nosso trabalho permitiu encontrar percepções sobre a evolução da cobertura de

código em projetos que adotam CI, as quais podem auxiliar pesquisadores e profissionais

a adotarem ferramentas e práticas para monitorar, manter e, inclusive, aprimorar a

cobertura de código.

Palavras-chave: Teste de Software, Integração Contínua, Cobertura de Código, Estudo

Empírico.

xii

List of Figures

2.1 Relationship between assignment variable and outcome in a regression

discontinuity design. 18

3.1 CI Projects. 33

3.2 NOCI Projects. 36

3.3 Overview of versions selection process (Nery, Costa, and Kulesza, 2019). 38

3.4 CI Projects - Maintaining Trend . 42

3.5 CI Projects - Raising Trend . 42

3.6 NOCI Projects - Raising Trend . 43

3.7 NOCI Projects - Maintaining Trend . 44

3.8 RDD model for CI Projects . 48

3.9 Box plot of 𝑅2 from each project. 49

3.10 RDD model for NOCI Projects . 49

3.11 How much each code change contributed to the net change in coverage. . 52

3.12 How much each code change contributed to the net change in coverage

into CI dataset. 53

3.13 How much each code change contributed to the net change in coverage

into NOCI dataset. 55

3.14 Projects with a sharp drop in code coverage at some point after CI adoption. 56

3.15 Projects with positive change in coverage after CI. 58

xiii

4.1 Experience across participants. 71

4.2 Experience of CI usage across participants. 72

4.3 Experience level with adopting CI among participants. 73

4.4 Participants’ agreement with the statement on systematic code coverage

monitoring. 74

4.5 Participants’ opinions on systematic code coverage monitoring in their CI

pipeline (Q3.2). 76

4.6 Participants’ views on the effectiveness of high code coverage test suites

in fault-finding (Q3.5). 77

4.7 Participants’ views on positive association between Coverage and CI (Q4.0). 80

4.8 Participants’ views association between coverage fluctuation and CI (Q4.1). 80

5.1 An overview of our methodology. 90

5.2 An overview of the Inductive phase. 93

5.3 An overview of the deductive phase. 94

5.4 An overview of themes that emerged from our inductive analysis. 101

xiv

List of Tables

3.1 Study datasets. 39

3.2 Coverage model Results. 48

3.3 Results of statistical tests applied in NOCI and CI dataset 53

3.4 Results of statistical tests applied in before-CI and after-CI dataset . . . 54

3.5 Results of statistical tests applied in early-NOCI and late-NOCI dataset. 55

4.1 Survey questions. 66

5.1 Inter-rater reliability measures. 95

5.2 Interpretation of Krippendorff’s alpha and Fleiss’s Kappa coefficients. . . 96

5.3 High-level Themes emerged from the Document Analysis. 102

xv

Contents

1 Introduction 1

1.1 Problem Statement . 4

1.2 Current Research Limitations . 5

1.3 Thesis Proposal . 6

1.4 Thesis Contributions . 8

1.5 Thesis Organization . 10

2 Background 11

2.1 Software Testing . 11

2.2 Code Coverage . 13

2.3 Continuous integration . 16

2.4 Regression Discontinuity Design . 17

2.5 Document Analysis . 21

2.6 Thematic Analysis . 23

2.6.1 Coding Reliability Thematic Analysis 24

2.6.2 Reflexive Thematic Analysis . 25

2.6.3 Codebook Thematic Analysis . 27

3 The Impact of the Adoption of Continuous Integration on Code

Coverage 30

3.1 Research Questions . 31

xvi

3.2 Study Setup . 32

3.2.1 Subject Projects . 32

3.2.2 Collecting Versions . 37

3.2.3 Collecting Coverage . 39

3.3 Results . 40

3.3.1 RQ1 - What are the evolution trends of code coverage

within CI and NOCI Projects? 40

3.3.2 RQ2 - Is there a significant correlation between CI and

code coverage values? . 46

3.3.3 RQ3 - What types of code changes affect the code coverage

of CI and NOCI projects? . 50

3.4 Discussions and Implications . 59

3.4.1 Implications for Practitioners . 59

3.4.2 Implications for Researchers . 59

3.5 Threats to the Validity . 60

3.5.1 Construct Validity . 60

3.5.2 Internal Validity . 61

3.5.3 External Validity . 61

3.6 Conclusions . 62

4 Uncovering the Relationship Between Continuous Integration and

Code Coverage: An Exploratory Investigation 63

4.1 Research Questions . 64

4.2 Study Design . 65

4.3 Study Results . 71

4.3.1 Demographics Analysis . 71

4.3.2 RQ4 - How the code coverage information is used in the CI projects? 74

xvii

4.3.3 RQ5 - Does the adoption of Continuous Integration increase the

code coverage of software releases? 79

4.4 Limitations . 84

4.5 Implications . 85

4.6 Conclusions . 87

5 Investigating Discussions on Code Coverage in CI-Enabled Projects:

An Exploratory Document Analysis 89

5.1 Study Setup . 90

5.1.1 Projects Selection . 90

5.1.2 Data Collection . 91

5.1.3 Data Filtering . 91

5.2 Analysis Procedure . 92

5.2.1 Inductive Phase . 93

5.2.2 Deductive Phase . 93

5.3 Results . 96

5.3.1 Summary of Themes . 97

5.3.2 In-Depth Analysis of Themes . 100

5.3.3 Coverage Report . 101

5.3.4 Coverage Issues . 104

5.3.5 Coverage Discussion . 109

5.3.6 Coverage Tools . 112

5.3.7 Coverage Strategy . 114

5.3.8 Coverage Maintenance . 116

5.4 Implications . 118

5.5 Threats to the Validity . 119

5.5.1 Construct Validity Threats . 119

xviii

5.5.2 Internal Validity Threats . 119

5.5.3 External Validity Threats . 120

5.6 Conclusions . 120

6 Related Work 122

6.1 Previous CI Studies . 122

6.2 Previous Coverage Studies . 125

7 Conclusions 129

7.1 Contributions and Findings . 129

7.2 Future Work . 132

7.3 Publications . 133

References 135

xix

1 Introduction

The software industry constantly struggles with frequently changing requirements

and the pressure to deliver products to market faster, which significantly strains the

software development process. In this context, software testing is of utmost importance as

it ensures that the software meets the required specifications and features, is reliable, and

performs as intended. Although, in the short term, software testing may appear to increase

time-to-market, as it adds extra practice in the development process. However, effective

testing can ultimately reduce time-to-market by identifying and resolving issues early

in the development process, reducing the risk of costly errors and later rework. Testing

can also help ensure that the software meets customer requirements and expectations,

increasing the chances of success in the market. In other words, investing in software

testing upfront can save time and resources in the long run by preventing delays, improving

quality, and reducing the need for rework and maintenance. Additionally, thorough testing

can increase customer satisfaction and loyalty by providing a high-quality product that

meets their expectations. Therefore, software testing is an activity intrinsically related to

software development methodologies.

In the past, it was a common practice to integrate different software parts during

development only after each part was fully implemented, often leading to isolated integra-

tions. However, as projects become more complex and agile methodologies gain popularity

promoting iterative and incremental development cycles with constant modifications, the

need to increase the frequency of code integration between software parts has arisen,

1

giving rise to the Continuous Integration practice.

Continuous Integration (CI) is an incremental software development technique

that helps maintain the software in a working state by integrating changes more frequently.

Its goal is to provide a systematic approach to software development, reducing risk and

increasing software product quality (Felidré et al., 2019).

Despite being introduced as one of the eXtreme Programming (XP) practices by

Beck K. (Beck and Gamma, 2000), Continuous Integration (CI) only gained widespread

recognition and adoption after several years. Today, due to its promised benefits, CI has

become a popular software development practice.

A key idea of CI is that the more often a project is integrated, the less likely the

project will suffer from problems when in production (Hilton, Tunnell, et al., 2016). Also,

as automated builds are performed at each push, errors can be detected and located

earlier in the project’s lifetime. As such, CI is intended to bring many benefits, such

as risk reduction, improvement of project visibility and predictability (Duvall, Matyas,

and Glover, 2007), greater confidence in the software product (Laukkanen, Paasivaara,

and Arvonen, 2015), reducing code integration problems in a collaborative environment

(Vasilescu, Schuylenburg, et al., 2014), and helping to maintain code quality. Therefore

the stability of the code in the main branch repository is expected.

While Continuous Integration is a practice that can be implemented without

any specific tools, some authors attribute its widespread adoption to modern tools and

services that have significantly automated the steps necessary for compiling, building,

and testing software (Felidré et al., 2019). The availability of such tools removes many

of the barriers developers may face when adopting CI, making integrating it into their

workflow easier.

In recent years, researchers have conducted empirical studies to confirm the

benefits of Continuous Integration (CI) and determine whether it lives up to its reputation

2

(Hilton, Tunnell, et al., 2016). The research scope includes various aspects, such as

practices, environments, tools, potential benefits and problems, fundamental concepts,

motivation, and others (Hilton, Tunnell, et al., 2016; Pinto et al., 2018; Ståhl and Bosch,

2013; Soares et al., 2022).

Vasilescu et al. (Vasilescu, Yu, et al., 2015) studied the correlation between CI,

software quality, and productivity. The authors found that CI correlates with positive

quality outcomes and improves the productivity of project teams. Hilton et al. (Hilton,

Nelson, et al., 2017) studied the usage of CI in open-source projects and concluded that

projects that use CI tend to release more frequently than projects that do not use CI. In a

complementary study, Hilton et al. (Hilton, Tunnell, et al., 2016) report that CI projects

are more likely to catch software defects earlier. Vassallo et al. (Vassallo et al., 2016a)

found evidence that CI could be associated with time-to-market reduction. However,

Bernardo et al. (Bernardo, Costa, and Kulesza, 2018) observed that CI may not always

reduce the time-to-market for delivering new functionalities to end users. Guo & Leitner

(Guo and Leitner, 2019) conducted a conceptual replication of the work by Bernardo

et al. (Bernardo, Costa, and Kulesza, 2018), confirming their results through the use

of the Discontinuous Regression Design (RDD) statistical model. On the other hand,

the authors observed that CI is associated with the delivery of more functionalities per

software release.

Automated tests play an essential role in CI (Fowler and Foemmel, 2006) as

they represent a fundamental part of the build automation process to detect errors as

quickly as possible. Some researchers consider that, without automated tests, a project

should not be deemed as adopting CI (Duvall, Matyas, and Glover, 2007). Writing tests

assists developers in revealing faults embedded in the software. As such, the effectiveness

of a test suite directly impacts the quality of a software project (Aghamohammadi,

Mirian-Hosseinabadi, and Jalali, 2021). The effectiveness of a test suite can be partially

3

measured by code coverage (i.e., code coverage is a measure of the degree to which a test

suite exercises a software system (Ivanković et al., 2019). Measuring code coverage can

benefit the development workflow by offering an objective, industry-standard metric for

test quality (Hora, 2021).

1.1 Problem Statement

Continuous Integration (CI) practices have made valuable contributions to

software development culture, but many assumptions in the community remain unexplored

empirically. Although some practices are adopted based on the expectation of positive

outcomes, there is still a vague idea of the trade-offs and actual impact on software

process quality.

Soares et al. (Soares et al., 2022) have presented some studies that provide

evidence to support the association between CI and good test practices, specifically

concerning the number of tests and code coverage level. However, their findings were

based primarily on surveys (73.91%), and none of the studies they reviewed explicitly

addressed how code coverage changes over time after CI adoption. This suggests a need

for further investigation into the relationship between CI and code coverage over an

extended period.

The literature often links CI with higher code coverage (Humble and Farley,

2010; Felidré et al., 2019), likely because of the emphasis on automated testing. While

this assumption is intuitive, it remains unclear whether adopting CI results in a sustained

improvement in code coverage over time. So far, the research works that have explored

the relationship between CI and good test practices, particularly in terms of the number

of tests and test coverage, have predominantly relied on surveys, accounting for 73.91%

of the studies, as noted by Soares et al. (Soares et al., 2022). However, these studies

have not directly addressed the question at hand. This highlights the importance of

4

conducting additional empirical investigations to examine the long-term impact of CI

adoption on code coverage and other aspects of test practices.

The present thesis is an effort to reduce the lack of empirical investigation into

the relationship between code coverage and the adoption of CI.

1.2 Current Research Limitations

The work by Nery et al. (Nery, Costa, and Kulesza, 2019) investigated the

relationship between CI and test ratio. They compared projects that eventually adopted

CI (CI projects) and projects that never adopted CI (NOCI projects). The study results

suggest that adopting CI may positively affect the test ratio. However, test ratio is a

global measure of the proportion of test code in a project and does not necessarily capture

the amount of code exercised by the tests. In their work, they performed a preliminary

study on the association between CI and code coverage. The authors analyzed a subset

of projects (10 CI projects and 10 NOCI projects), where their preliminary results reveal

a potential positive association between CI and code coverage. However, their study

about the relationship between code coverage and CI was designed with a relatively small

number of projects and builds, making it unclear whether their results can be generalized.

Hilton et al. (Hilton, Bell, and Marinov, 2018) conducted a comprehensive

analysis of code coverage evolution over a large number of builds for multiple projects.

However, their primary focus was on evaluating the impact of patches on the quality of a

project’s test suite.

Therefore, the authors investigated the coverage of individual patches, i.e., the

changed statements within the system under test (SUT), instead of assessing the overall

coverage of the SUT. It’s worth noting that the study did not specifically examine the

integration of code coverage analysis with Continuous Integration (CI) practices, as the

authors’ main objective was to evaluate the effect of patches on the test suite’s quality.

5

Indeed, the investigation of the impact of CI on code coverage remains an open question.

1.3 Thesis Proposal

The central research question of this thesis is: What is the relationship between

the adoption of continuous integration and the evolution of code coverage?

The thesis proposes to analyze the the relationship between code coverage

and continuous integration from both quantitative and qualitative perspectives. The

goal of the quantitative study (Study 1), detailed in Section 1.3, is to compare code

coverage rates between continuous integration projects and non-continuous integration

projects (NOCI) and identify trends in code coverage over time. The goal of the two-part

qualitative studies is to investigate how developers use code coverage in continuous

integration projects. The first part, in the Study 2, described in Section 1.3, uses a

survey approach to gather developers’ data. Next, in the second part, the Study 3,

outlined in Section 1.3, uses document analysis to examine the use of code coverage in

continuous integration projects.

The subsections below provide further details on the motivation and methodology

of each study.

Study 1 — The Impact of the Adoption of Continuous

Integration on Code Coverage

Our quantitative study investigates whether CI is associated with an improvement

in code coverage. The study, which is detailed in Chapter 3, compares the code coverage

rates of 30 projects with continuous integration (CI) and 30 projects without CI (NOCI).

A total of 1,440 versions were analyzed to observe trends in code coverage related to

CI. The results indicate that CI is associated with an improvement in code coverage.

6

Specifically, more projects with rising trends in code coverage were observed in CI projects

compared to NOCI projects, and CI projects tend to stabilize at a higher code coverage

rate than NOCI projects. The statistical evidence also supports the positive association

between CI and a higher code coverage rate. Considering the CI dataset, the coverage

improvement after CI adoption is estimated to be approximately 10%, while it is negligible

in the NOCI dataset.

Study 2 — Uncovering the Relationship Between Continuous

Integration and Code Coverage: An Exploratory Investigation

This study is the first part of a two-part qualitative investigation aimed at

addressing the research gap in understanding the underlying mechanisms that drive the

relationship between continuous integration (CI) and code coverage. The main objective of

this study is to gain a comprehensive understanding of the impact of CI on code coverage

through a survey of developers, providing additional qualitative insights and examining

how developers utilize code coverage in CI projects. Furthermore, this study seeks to

enforce previous quantitative findings by comparing them with developers’ perspectives.

Study 3 — Investigating Discussions on Code Coverage in

CI-Enabled Projects: An Exploratory Document Analysis

This study is the second part of our qualitative investigation into the relationship

between continuous integration (CI) and code coverage. Our primary objective is to

investigate the connection between code coverage and continuous integration (CI) using

document analysis technique. After establishing a positive relationship between code

coverage and CI, we aim to explore the specific aspects of code coverage that developers

discuss during pull requests. To accomplish this, we conducted a comprehensive document

analysis of 30 CI projects, employing a two-step approach involving inductive and

7

deductive analysis techniques.

1.4 Thesis Contributions

We outline the contributions of this thesis below. The contributions are grouped

by their respective study.

Study 1 — The Impact of the Adoption of Continuous

Integration on Code Coverage

• Our study found compelling evidence for the positive relationship between continu-

ous integration (CI) and code coverage. Specifically, we observed that 50% of CI

projects exhibited increasing trends in code coverage, while only 10% of non-CI

(NOCI) projects showed similar trends.

• The data analysis conducted in our study indicates a statistically significant growth

in code coverage following the adoption of CI. These findings support the notion that

implementing CI can effectively improve code quality and test coverage. Moreover,

our research has revealed a positive correlation between code coverage and the

implementation of CI, further reinforcing this relationship.

• Interestingly, our study also found that projects that eventually adopt CI tend

to have a significantly higher number of code changes that lead to increased

coverage, a consequence of the positive correlation between code coverage and CI

implementation. This suggests that the decision to implement CI may be motivated

by a desire to improve testing practices and increase code coverage.

8

Study 2 — Uncovering the Relationship Between Continuous

Integration and Code Coverage: An Exploratory Investigation

• Our study found that developers use code coverage information during both the

code authoring stage and code reviews. They find it useful for identifying trivial

bugs, detecting uncovered code paths, and improving software quality by potentially

preventing bugs and controlling side effects when refactoring or changing code

behavior.

• Participants attributed the increase in code coverage to the adoption of CI, but

we wanted to ensure that this was not due to other testing practices. After asking

participants if they adopted any new practices after adopting CI, we found that

all practices mentioned fell under the umbrella of CI practices. This supports the

association between CI and coverage. Additionally, participants associated coverage

fluctuations with the proper use of CI practices.

Study 3 — Investigating Discussions on Code Coverage in

CI-Enabled Projects: An Exploratory Document Analysis

• Our findings suggest that there may be projects that monitor their code coverage,

as evidenced by the existence of automated coverage reports. This finding is in line

with the monitoring practices that developers reported in our qualitative study.

• Developers face challenges when integrating coverage tools with CI, with com-

patibility issues between local and CI server environments being a critical factor

in coverage within CI environments. Study 1 - RQ3 (Section 3.3.3) findings sup-

port this, as integration problems were identified as a major reason for decreased

coverage, and multiple mentions of compatibility issues were observed.

9

• In Study 1 - RQ3 (Section 3.3.3), we did not find any clear evidence of prioritiz-

ing coverage for newly added code over preexisting uncovered code. While some

participants mentioned the significance of covering new lines, the frequency of

such comments was not substantial enough to suggest a systematic trend towards

prioritizing new code coverage. Based on our findings, the coverage of new code

does not appear to be a primary concern in the projects surveyed.

• The coverage maintenance theme is the second most common topic, making up

22.87% of all comments. This aligns with the results from both the quantitative

study (Chapter 3) and survey (Chapter 4), as it reflects the efforts made by

developers to increase coverage. The reduction in discussions related to coverage

debt is also expected, as our RQ1 findings (Section 3.3.1) suggest that CI projects

tend to stabilize at higher coverage levels.

1.5 Thesis Organization

The remainder of this thesis is organized as follows. In Chapter 2, we provide

the background material to the reader. In Chapter 3 presents our quantitative study

to investigate the evolution of code coverage and its relationship with the adoption of

continuous integration. Chapter 4 and Chapter 5 present the two-part quantitative study

on how developers use code coverage in CI projects. In Chapter 6, we present related

research with respect to this thesis. Finally, Chapter 7 draws conclusions.

10

2 Background

In this chapter, we describe the key concepts that are necessary to understand

the studies that are performed in this thesis.

2.1 Software Testing

Software testing is a fundamental discipline within software engineering that

seeks to enhance the quality and reliability of software systems by detecting software faults

and ensuring that the system functions as intended without errors or non-conformities,

thereby fulfilling the customer’s requirements (Mahdieh et al., 2020). This role is critical

in the software development lifecycle, and the effectiveness of testing is paramount

(Aghamohammadi, Mirian-Hosseinabadi, and Jalali, 2021). According to the academic

literature, fixing a bug becomes increasingly costly throughout the software development

life cycle (Boehm and Papaccio, 1988), and discovering all faults in a program is essentially

unviable. As a result, testing considers only a limited number of possible program states,

meaning that there is a possibility of existing faults that the test suite cannot discover.

Therefore, the focus of software testing is on eliminating as many defects in the software

system as soon as possible, which adds value to the software development process by

reducing repair costs.

Consequently, testing software always involves a trade-off between the cost of

(further) testing and the potential cost of undiscovered faults in a program (Gopinath,

11

Jensen, and Groce, 2014). In this context, the quality of the test suite is crucial in

measuring the effectiveness of testing. The effectiveness of the test suite concerns its

ability to uncover faults, making it a mandatory requirement for the software testing

discipline to achieve its goals. As a result, software developers aim to write high-quality

tests to reveal faults embedded in the software and estimate the overall quality of the

system under test (SUT).

The fault detection measure is a perfect method for measuring the effectiveness

of the test suite. However, collecting faults and analyzing failures requires substantial

effort, making it an unrealistic method for measuring test suite effectiveness in a practical

software development cycle. Instead, software developers use methods that predict fault

detection capability based only on the test suite itself and the current version of the SUT

(Gopinath, Jensen, and Groce, 2014).

One well-established metric to measure the effectiveness of a test suite is code

coverage, which is the most popular metric used to compare test suites’ adequacy (Ahmed

et al., 2016). Numerous organizations set testing requirements in terms of coverage levels

(Gligoric et al., 2013).

Code coverage is a metric that estimates the proportion of the execution paths

within the code under test that the test suite exercises. Due to its simplicity and

computational efficiency, code coverage has become a popular metric in both industry

and research for evaluating the effectiveness of software testing. By measuring the code

coverage achieved by the test suite, developers can identify untested or under-tested areas

of the code, which can help to reveal potential faults and improve the overall quality of

the software. Nevertheless, its effectiveness in improving testing in practice remains a

matter of debates (Inozemtseva and Holmes, 2014; Ivanković et al., 2019).

The proliferation of practices such as continuous integration and test-driven

development has promoted testing to new prominence, proclaiming to help developers

12

achieve high code coverage. Thus, having a comprehensive test suite is essential to these

practices.

2.2 Code Coverage

Code coverage is a metric that expresses which proportion of application code of

a software project is executed when running all test cases. Code coverage is a widely-used

metric in software testing that measures which proportion of application code of a

software project is executed when running all test cases (Zhu, Hall, and May, 1997). By

using code coverage-based metrics, software developers can evaluate the effectiveness of

their test suites and identify untested or poorly-tested areas of the code. This information

can then be used to improve the testing process and increase the reliability and quality

of the software.

However, this loose definition allows for the implementation of coverage at

different levels, objectives and measure criterion. Coverage measure criteria provide a set

of requirements for the code under test and measure how many of these requirements

are satisfied by a given test suite. As a result, we found a variety of code coverage-based

metrics in the literature.

Structural coverage metrics, which explore code structure to determine how much

of the code is exercised by the test suite, are among the most popular coverage-based

metrics in software engineering. These metrics provide a way to measure the extent to

which code has been executed, and several of them have been proposed in the literature.

In the following paragraphs, we briefly discuss some of the most common structural

coverage metrics and their applications.

Statement coverage is a coverage metric used to determine the proportion of

executable statements that are executed at least once during testing (Aghamohammadi,

Mirian-Hosseinabadi, and Jalali, 2021). It is calculated as the number of executed

13

statements divided by the total number of statements. Statement coverage is the most

widely used coverage metric.

Line coverage is a metric that quantifies the proportion of executable lines of

code in a program that have been executed at least once during testing (Someoliayi et al.,

2019). To compute line coverage, each executable line is assigned a coverage point value

of either 0 or 1, depending on whether it has been exercised or not. The total coverage is

then calculated as the ratio of coverage points of all exercised lines to the total number

of executable lines.

Branch coverage measures the proportion of conditional branches that are ex-

ercised by a test suite (Homès, 2013). Branch coverage is equivalent to edge coverage

for all conditional edges in the control flow graph (Zhu, Hall, and May, 1997), and it

subsumes statement coverage once all branches are examined.

Decision coverage measures the proportion of decisions in the program that are

executed by its test suite (Inozemtseva and Holmes, 2014). A decision is a compound

of one or more conditions, and a 100% decision coverage requires that each decision is

evaluated to both true and false. Decision coverage is slightly more difficult to satisfy

and measure than statement coverage.

Condition coverage measures whether each condition in a decision is evaluated

to both possible outcomes at least once (Kelly J. et al., 2001). It does not require that

the decision take on all possible outcomes at least once, and therefore a 100% condition

coverage does not guarantee a 100% decision coverage.

Modified condition/decision coverage (MC/DC) measures whether every condition

within a decision in the program has taken on all possible outcomes at least once, each

condition has been shown to independently affect the outcome of the decision, and

that each entry and exit point have been traversed at least once (Rajan, Whalen, and

Heimdahl, 2008). Achieving MC/DC requires, in general, a minimum of n+1 test cases

14

for a decision with n inputs.

Recently, novel coverage-based criteria have been proposed to evaluate and

compare the effectiveness of test suites. In the following paragraphs, we describe some of

them.

Vanoverberghe et al. (Vanoverberghe et al., 2011) introduced state coverage as

a new metric to measure the ratio of state updates that are read by assertions to the

total number of state updates. Additionally, the authors presented efficient algorithms

for measuring state coverage and reported that it helped to identify multiple unchecked

properties and detect several bugs in their preliminary evaluation.

Someoliayi et al. (Someoliayi et al., 2019) proposed a novel test coverage metric

called Program State Coverage (PSC), which considers the number of distinct program

states in which each line is executed. The only difference between PSC and line coverage

is the method of assigning a coverage point to each line. PSC assigns a real number

between 0 and 1 to each line based on the number of distinct program states in which that

line is executed. The authors reported that their approach outperformed the traditional

line coverage metric.

Aghamohammadi et al. (Aghamohammadi, Mirian-Hosseinabadi, and Jalali,

2021) presented a new coverage metric called Statement Frequency Coverage that subsumes

Statement Coverage. Statement frequency coverage aims to address the limitations of

branch and statement coverage as they do not consider the executed statement frequency.

Thus, Statement Frequency Coverage assigns a continuous value to a statement that is

proportional to the number of times it is executed during test execution. The authors

reported that their coverage metric outperformed the existing code coverage metrics,

namely statement coverage and branch coverage.

15

2.3 Continuous integration

Software systems are highly intricate, consisting of numerous interdependent

components that require careful management. Even a minor change in one file can result

in unintended consequences that compromise the entire system’s accuracy and stability.

As a result, integrating software, which involves combining all developers’ working copies

into a shared mainline, poses significant challenges that increase in complexity with the

size of the system and team.

Consequently, a significant portion of software development time is often spent

with the system in an unusable state (Humble and Farley, 2010). Developers typically

only attempt to build the entire application after completing their work, and the process

of merging multiple active branches into the mainline can be painful, particularly as the

number of branches and their duration of existence increase. This integration process

is critical to the system’s overall success, and any errors or complications during the

process can significantly impact the final product.

CI advocates for the use of an automated build process with each push, enabling

early error detection and location in the project’s life cycle. By doing so, CI is expected

to bring numerous benefits, including risk reduction, improved project visibility and

predictability (Duvall, Matyas, and Glover, 2007), increased confidence in the software

product (Laukkanen, Paasivaara, and Arvonen, 2015), reduced code integration problems

in collaborative environments (Vasilescu, Schuylenburg, et al., 2014), and maintenance of

code quality. Therefore, stability in the code of the main branch repository is expected.

Given its promised benefits, CI is widely used in software development practice today.

The practice of continuously integrating code changes dates back to the 1970s

(Brooks Jr, 1995), but it has only gained widespread adoption in recent decades thanks

16

to the popularization of various CI services, such as TravisCI1 CircleCI2, and Jenkins3.

Although Continuous Integration can be implemented without this specific tooling, these

tools provide the underlying infrastructure to automate software compilation, building,

and testing, significantly lowering the barriers to CI adoption. CI services have become

a cornerstone of modern software development practices, employed in both commercial

and open-source projects alike (Felidré et al., 2019).

The adoption of continuous integration has been increasing among software

development projects (Hilton, Tunnell, et al., 2016). Today continuous integration is a

critical aspect of software development, serving as the centerpiece for ensuring software

health and quality (Duvall, Matyas, and Glover, 2007).

2.4 Regression Discontinuity Design

The Regression Discontinuity Design (RDD) is a quasi-experimental research

design that is well-suited for examining the impact of an intervention based on a cutoff

score or threshold on a outcome continuous variable (Hyman, 1982). RDD involves the

assignment of treatment based on whether the participant’s observed covariate value

is above or below a known threshold or cutoff point. The discontinuous jump in the

probability of treatment assignment at the threshold creates a natural "quasi-experiment"

that can be used to estimate the average treatment effect. By comparing outcomes closely

on either side of the threshold, RDD provides an estimate of the causal effect of the

intervention that is robust to potential confounding factors. The fundamental premise of

RDD is that if an intervention has no effect on the outcome, there will be no discontinuity,

and the outcome will remain continuous over time.

In other words, RDD divides the sample into two groups based on the value of

1https://www.travis-ci.com
2https://circleci.com
3https://www.jenkins.io

17

the threshold variable, with those above the threshold assigned to the treatment group

and those below the threshold assigned to the control group. The basic idea behind RDD

is that units on either side of the threshold are similar in all relevant respects except for

their treatment assignment. Therefore, any outcome difference between the treatment

and control groups can be attributed to the treatment effect rather than to differences in

baseline characteristics or other confounding factors.

The relationship between an assignment variable and an outcome in RDD is

depicted in Figure 2.1. When an actual effect of the intervention is present, a discontinuous

change or jump in the outcome value is observed when the assignment variable exceeds the

threshold. This abrupt change in the outcome corresponds to the effect of the treatment

or policy being analyzed.

Figure 2.1: Relationship between assignment variable and outcome in a regression dis-
continuity design.

RDD makes several key assumptions that are essential for valid causal inference.

Firstly, there must be a clear and deterministic rule for assignment to treatment based

18

on a score variable, which is fully known in advance. This score variable should not

be related to any other confounding variables that may affect the outcome. If there

is no misassignment, the design is called sharp. On the other hand, if there are some

misassignments or treatment crossovers, the design is called fuzzy.

Therefore, in the sharp RDD, the threshold variable is used to divide the sample

precisely into the treatment and control groups. Specifically, all units with assignment

variable values above a certain threshold value are assigned to the treatment group,

while all units with values below the threshold are assigned to the control group. This

sharp separation creates a discontinuity in the probability of treatment at the threshold,

which enables the estimation of causal effects by comparing the outcomes of units on

either side of the threshold. In contrast, the fuzzy RDD involves a threshold variable

that influences the probability of being assigned to the treatment group. Consequently,

the separation between the treatment and control groups is less precise than in the

sharp RDD. However, the fuzzy RDD also allows for the estimation of causal effects by

exploiting the discontinuity in the probability of treatment at the threshold.

The second assumption is there should be no manipulation of the score variable

by individuals, as this can lead to bias in the results. The third assumption is that the

assignment of units to the treatment or control group should be as good as random at the

threshold point. Finally, the treatment and control groups should be comparable in terms

of observable characteristics, both before and after the threshold. If these assumptions

are met, then RDD can provide unbiased estimates of causal effects at the threshold

point.

There are two widely used methods for estimating treatment effects in RDD:

non-parametric and parametric approaches. The difference between non-parametric and

parametric RDD estimation approaches lies in the assumptions made about the functional

form of the relationship between the running variable and the outcome variable.

19

In parametric RDD estimation assumes a specific functional form, typically a

polynomial regression, to model the relationship between the running variable and the

outcome variable. This method is often used when the relationship between the running

variable and the outcome variable is well-known or when the data conform to a specific

functional form. In this case, a parametric model may have greater statistical power to

detect the treatment effect. The statistical model for parametric RDD using polynomial

regression can be represented as:

𝑌𝑖 = 𝛼 + 𝛽1𝑆𝑖 + 𝛽2𝑆
2
𝑖 + ... + 𝛽𝑖𝑆

𝑘
𝑖 + 𝛾𝑇𝑖 + 𝜖𝑖 (2.1)

where 𝑌𝑖 is the outcome variable for unit 𝑖, 𝑆𝑖 is the score variable used for

assignment, 𝑇𝑖 is a binary variable indicating treatment status (1 for treatment, 0 for

control), 𝛼 is the intercept, 𝛾 is the treatment effect, 𝛽1 through 𝛽𝑘 are the coefficients for

the polynomial terms of 𝑆𝑖, and 𝜖𝑖 is the error term. The polynomial degree 𝑘 is chosen

based on the data and the degree of nonlinearity in the relationship between 𝑆𝑖 and 𝑌𝑖.

On the other hand, non-parametric RDD refers to an estimation approach that

does not assume any specific functional form for the relationship between the score

variable and the outcome of interest. Instead, it estimates the treatment effect by fitting

a flexible function to the data using techniques such as local linear regression or other

non-parametric regression methods (Lee and Lemieux, 2010). The most common non-

parametric method used in the RDD context is a local linear regression. This is of the

form:

𝑌𝑖 = 𝛼 + 𝛽𝑊𝑖 + 𝛾(𝑊𝑖 − 𝑐) + 𝜖𝑖 (2.2)

where 𝑌𝑖 is the outcome variable for the 𝑖-th observation, 𝑊𝑖 is the assignment

variable (e.g., test score), 𝑐 is the threshold value, 𝛼 is the intercept, 𝛽 is the effect of 𝑊𝑖

on 𝑌𝑖 away from the threshold, 𝛾 is the effect of the distance between 𝑊𝑖 and 𝑐 on 𝑌𝑖,

20

and 𝜖𝑖 is the error term.

Non-parametric methods in RDD offer a significant advantage by providing

estimates based on data closer to the cutoff, which is intuitive and reduces bias that can

arise from using data farther away from the cutoff to estimate the discontinuity. Local

linear regressions are commonly preferred because they have better bias properties and

convergence. Nonetheless, using both parametric and non-parametric methods, if feasible,

can be a useful way to validate the estimated results and reduce reliance on a specific

approach (Lee and Lemieux, 2010).

2.5 Document Analysis

Document analysis is a systematic procedure for reviewing or evaluating any type

of document, including written texts (printed and electronic), images, audio recordings,

or video footage (Bowen, 2009).

It involves a range of methods for analyzing documents, including close reading,

textual analysis, and discourse analysis, with the goal of extracting insights, identifying

patterns, or gaining a deeper understanding of the document(s) being analyzed. Document

analysis can be used in various fields, including social sciences, humanities, law, and

business.

Document analysis is often used in combination with other qualitative research

methods such thematic analysis (see Section 2.6), means of triangulation and discourse

analysis.

Mixed-methods studies, which combine both quantitative and qualitative research

techniques, can use document analysis to enhance the comprehensiveness of data analysis

and interpretation.

Document analysis is a common qualitative research method that is sometimes

used in mixed-methods studies to provide a more comprehensive analysis and inter-

21

pretation of the data. Mixed-methods studies are research designs that combine both

quantitative and qualitative research techniques. By analyzing qualitative data (surveys,

surveys, open-ended, semi-structured interviews with reviews of documents), researchers

can gain a deeper understanding of the topic being studied

Document analysis is a valuable qualitative research method that has advantages

over other research methods. One of its key advantages is that it is an efficient method

that requires data selection instead of data collection, making it less time-consuming

than other methods. Additionally, it is a cost-effective method that is often the method

of choice when collecting new data is not feasible. Another advantage is that documents

are ’unobtrusive’ and ’non-reactive’, meaning that they are unaffected by the research

process and do not require reflexivity, which is inherent in other qualitative research

methods. Furthermore, documents are stable, making them suitable for repeated reviews,

and they provide exact names, references, and details of events, enhancing the precision

of the research process. Finally, documents provide broad coverage, spanning a long time

period and many events and settings, making them a valuable tool for researchers seeking

a comprehensive understanding of complex social phenomena (Merriam, 1988; Yin, 1994;

Bowen, 2009).

Despite the advantages of document analysis, there are also some inherent

limitations that researchers should consider. One limitation is that documents may

lack sufficient detail since they are produced for a purpose other than research and are

independent of a research agenda. Another limitation is that document retrievability can

be low or difficult, and access to documents may be deliberately blocked. Furthermore,

an incomplete collection of documents may suggest biased selectivity, which can occur in

an organizational context where available documents may align with corporate policies

and procedures or reflect the emphasis of a particular unit that handles record-keeping,

such as Human Resources. As a result, researchers should be cautious in using document

22

analysis as a standalone research method and should consider complementing it with

other qualitative or quantitative research methods to address these limitations (Merriam,

1988; Yin, 1994; Bowen, 2009).

Document analysis involves skimming (superficial examination), reading (thor-

ough examination), and interpretation. This approach combines elements of both content

analysis (Neuendorf, 2016) and thematic analysis(See Section 2.6). Content analysis

involves organizing information into categories related to the central questions of the

research, while thematic analysis involves identifying patterns, themes, and meanings

within the data.

2.6 Thematic Analysis

Thematic Analysis (TA) is a qualitative research method used to identify, analyze,

and report patterns (themes) in qualitative data (i.e., audio, text, or video). Therefore,

Thematic Analysis focuses on identifying and describing implicit and explicit ideas within

the data, namely, themes. This technique moves beyond counting explicit words or

phrases; interpreting and analyzing the themes to gain insights into the research question

(Braun and Clarke, 2006).

Thematic Analysis is a family of methods (Fugard and Potts, 2020). Although the

thematic analysis methods have some characteristics in common, they also have significant

divergences in underlying research values, the conceptualization of core constructs, and

analytical procedures. The literature categorizes the thematic analysis methods into three

broad approaches (Braun and Clarke, 2019): Coding reliability approaches, Reflexive

approaches, and Codebook approaches.

23

2.6.1 Coding Reliability Thematic Analysis

Coding reliability Thematic Analysis (coding reliability TA) approaches involve

early theme development and conceptualize coding as a process of identifying evidence for

themes (Guest, MacQueen, and Namey, 2011). According to Boyatzis “Coding Reliability

Thematic Analysis is a translator of those speaking the language of qualitative analysis

and those speaking the language of quantitative analysis” (Boyatzis, 1998). Qualitative

data are gathered and examined using qualitative techniques of coding and theme

development; the data are reported qualitatively as themes.

The coding process involves breaking down the data into smaller units of meaning,

such as phrases, sentences, or paragraphs, and then labeling or categorizing these units

based on commonalities or patterns. In coding reliability TA, themes are typically

conceptualized as domain/topic summaries (often derived from data collection questions)

(Braun, Clarke, et al., 2018), analytic inputs, and outputs – they drive the coding process

and are the output of the coding process.

The coding is an identification process driven by a codebook/coding frame, which

usually contains a list of codes/themes – each has a label/name, a definition, information

on how to identify the code/theme, a description of any exclusions or qualifications to

identifying the code/theme, and even examples (Boyatzis, 1998). The coding process

typically demands multiple coders working independently to apply the codebook to the

data, reaching reliability and replicability.

The final coding is determined through consensus between coders. So any bias

related to coders is managed by measuring the level of agreement between coders. The

coding reliability TA assumes that a high level of agreement equals reliable coding.

There are several coding reliability approaches that researchers can use, depending

on the research question, data type, and analytical approach (Aghamohammadi, Mirian-

Hosseinabadi, and Jalali, 2021; Braun and Clarke, 2021).

24

Some common approaches include:

1. Inter-coder reliability: This approach involves having multiple coders indepen-

dently code the same data and comparing their codes to assess the consistency of

coding. Inter-coder reliability can be assessed using various measures, such as Co-

hen’s kappa, Holsti’s method, Scott’s pi, Krippendorff’s alpha, percent agreement,

or intra-class correlation coefficient.

2. Intra-coder reliability: This approach involves having the same coder code the

same data multiple times and comparing their codes to assess the consistency of

coding. In contrast to inter coder reliability, intra-coder reliability measures the

consistency of coding within a single researcher’s coding. Intra-coder reliability

can be assessed using various measures, such as test-retest reliability or split-half

reliability.

3. Consistency coding: This approach involves having the same coder code a subset

of the data at two different points in time and comparing their codes to assess

the consistency of coding. This approach is builds toward a singular, shared, and

"correct" analysis of the data. This approach involves having the same coder code

a subset of the data at two different points in time and comparing their codes to

assess the coding consistency. This approach is built toward a singular, shared, and

"correct" data analysis.

2.6.2 Reflexive Thematic Analysis

Reflexive Thematic Analysis (Reflexive TA) (Braun and Clarke, 2019) is a

variation of the thematic analysis method that emphasizes the researcher’s subjective

interpretation of the data. This approach acknowledges that the researcher’s beliefs,

values, and experiences shape how they interpret and analyze the data, encouraging

25

researchers to reflect on their positionality throughout the research process. Thus, in

reflexive thematic analysis, the researcher engages in an iterative data analysis and

reflection process that incorporates their experiences and perspectives into the analysis.

Although the more traditional thematic analysis approaches prioritizes the

objectivity of the research process, the reflexive thematic analysis approach emphasizes

the researcher’s reflexivity and subjectivity.

Themes do not arise spontaneously from the data or coding; they are not inherent

in the data, waiting to be identified and retrieved by the researcher. Instead, themes are

creative and interpretive stories about the data, resulting from the interaction of the

researcher’s theoretical assumptions, analytical abilities, and the data itself (Terry et al.,

2017).

In reflexive TA, the theme process is about identifying meaning-based patterns

rather than data features.

According Braun and Clarke (2019), the theoretical approach to analysis in

RTA can be agnostic, meaning that it is not tied to a specific theoretical framework

or approach. However, they suggest that RTA can be used with a range of approaches,

including inductive/deductive, semantic/latent, critical realist/constructionist, or a mix

of those.

1. Deductive/Inductive: The deductive/inductive approach involves the researchers

using their theoretical framework and hypotheses to inform the development of codes.

The inductive approach involves building generalizations from specific observations,

where the researcher starts with the data and generates themes and concepts based

on emerging patterns and trends. On the other hand, the deductive approach starts

with a theoretical framework or pre-existing concepts, and the researcher looks for

evidence in the data to support or refute these preconceptions.the choice between

inductive and deductive approaches may depend on the research question and the

26

available data.

2. Semantic/latent: In semantic/latent approach to reflexive thematic analysis, the

researcher analyzes the surface-level meaning of the data (semantic) as well as the

underlying or implicit meanings (latent). The semantic approach focuses solely on

the explicit or obvious meanings conveyed by the data (i.e. what participants say).

The latent approach involves exploring the ideas, assumptions, and conceptualiza-

tions that underpin the data, and how they may influence participants’ perspectives

and experiences (Clarke and Braun, 2021). This approach allows for a more nuanced

and comprehensive understanding of the data, and can reveal deeper insights that

may not be immediately apparent at the semantic level.

3. Critical realist/constructionist: The realist/constructionist approach to RTA

acknowledges the co-construction of reality between the researcher and the par-

ticipants. This approach recognizes that knowledge is constructed through social

interaction and language use and that multiple perspectives and experiences con-

tribute to creating meaning. In the realist approach, researchers make claims about

the objectivity of people’s experiences as they report them (realist approach).

Alternatively, they may adopt a constructionist approach, focusing on how people

perceive a situation (constructionist approach).

2.6.3 Codebook Thematic Analysis

The Codebook approach to Thematic Analysis (Codebook TA) is positioned

between the coding reliability and reflexive approaches, as it incorporates the structured

coding process of coding reliability TA (although without relying on coding reliability

measures), while also aligning with the qualitative philosophy of reflexive TA (Braun,

Clarke, et al., 2018). This method involves pre-determining some, if not all, of the themes

27

before conducting the full analysis and conceptualizing the themes as domain summaries.

The initial them could be derived from data research questions.

The aforementioned approach is particularly appropriate for describing and

summarizing qualitative data, along with participants’ perspectives regarding a certain

topic or technology. These codebooks can be presented as a template (Brooks et al.,

2015), thereby providing a structure for an article, or as a framework (J. Smith and Firth,

2011) that emphasizes displaying each stage of the analysis, or as a matrix. It does not

measure (inter)reliability. There are two main types of codebook approaches:

1. Deductive codebook approach: In this approach, the researcher creates a set of

codes based on existing theories or previous research in the area. The codes are

pre-determined before the analysis of the data begins.

2. Inductive codebook approach: In this approach, the researcher does not pre-

determine the codes, but instead develops them through a close reading and analysis

of the data. The codes are generated from the data itself, rather than being imposed

on the data from a pre-existing theoretical framework.

The codebook approach has clear pragmatic advantages. The codebook provides

a structured and systematic way to analyze qualitative data, allowing for efficient and

consistent analysis across multiple researchers or studies. It also allows for easy comparison

and synthesis of findings across studies that use the same codebook. Additionally, the

use of a codebook can provide a clear and transparent method for reporting results and

can help ensure that all relevant aspects of the data are captured and analyzed.

The codebook approach offers evident pragmatic benefits as it furnishes a

structured and systematic technique to examine qualitative data, ensuring reliable and

consistent analysis across various researchers or studies (Braun, Clarke, et al., 2018).

Moreover, it facilitates easy comparison and synthesis of results across studies utilizing

28

the same codebook. Furthermore, the utilization of a codebook can provide a lucid and

transparent procedure for reporting findings. It can aid in guaranteeing that all significant

aspects of the data are captured and analyzed.

29

3 The Impact of the Adoption of

Continuous Integration on Code

Coverage

Earlier versions of the work in this chapter ap-

pears in the proceedings of the International

Conference on Mining Software Repositories

(MSR 2023) (Silva et al., 2023)

In this chapter, we present a quantitative study that aims to investigate the

correlation between CI and code coverage. We analyze a total of 1,440 versions to identify

trends in code coverage associated with CI by comparing the code coverage rates of

30 projects with continuous integration (CI) and 30 projects without CI (NOCI). The

results demonstrate a positive relationship between CI and the improvement of code

coverage. Notably, CI projects exhibit a higher frequency of increasing code coverage

trends compared to NOCI projects, and they tend to maintain a consistently higher

code coverage rate. Moreover, the statistical evidence provides further support for the

association between CI and the attainment of a higher code coverage rate.

Chapter organization. The subsequent sections of this chapter are structured

as follows: Section 3.1 introduces the research question that serves as the central focus

30

and primary objective of our investigation. In Section 3.2, we present the study design,

followed by Section 3.3, which presents the findings of our empirical study. The principal

implications of our investigation are deliberated upon in Section 3.4, while Section 3.5

highlights the potential threats to its validity. Finally, Section 3.6 provides a comprehensive

analysis and draws insightful conclusions based on our study.

3.1 Research Questions

In particular, we address the following research questions:

• RQ1 - What are the evolution trends of code coverage within CI and

NOCI Projects?

Rationale: This research question aims to gain insights into the patterns and trends

of code coverage over time in projects with continuous integration (CI) and projects

without CI (NOCI). By examining the evolution of code coverage within these two

groups, we can identify any significant differences in how code coverage changes

over time between CI and NOCI projects. Understanding these trends can provide

valuable information about the impact of CI on code coverage and shed light on

the effectiveness of CI in improving code coverage over the course of a project.

• RQ2 - Is there a significant correlation between CI and code coverage

values?

Rationale: In RQ1, we examine the distinct patterns of code coverage trends between

CI projects and NOCI projects, which demonstrate a noticeable difference. Building

upon these findings, RQ2 delves deeper into a quantitative analysis of the code

coverage within our studied projects. The objective is to investigate whether the

adoption of CI is significantly correlated with improved code coverage. Establishing

a positive association between CI and code coverage values would provide evidence

31

of the effectiveness of CI in positively influencing code coverage outcomes.

• RQ3 - What types of code changes affect the code coverage of CI and

NOCI projects?

Rationale: The rationale behind this research question is delve deeper into under-

standing the dynamics of code coverage evolution, RQ3 explores how different types

of code changes impact code coverage in projects with continuous integration (CI)

and projects without CI (NOCI).

3.2 Study Setup

In this section, we explain the design of our study. We describe how we select

the projects and collect the data for our analyses.

3.2.1 Subject Projects

To perform our investigations, we leverage the dataset made available by Nery

et al. (Nery, Costa, and Kulesza, 2019).

As mentioned before, our objective is to investigate the possible association

between the adoption of CI and the evolution of code coverage. This target demands

available of two different sets of study objects: (i) projects that have adopted CI at some

point in their lifetime (CI projects) and (ii) projects that, to the best of our knowledge,

never adopted CI have never adopted CI during their lifetime (NOCI projects).

We use their dataset because it contains projects that fulfill our requirements

(detailed in the following sections) and comprises two groups: CI projects and NOCI

projects.

The process of data collection for constructing both datasets, as elucidated by

Nery et al. (Nery, Costa, and Kulesza, 2019), is depicted in Figure 3.1 and Figure 3.2.

32

To ensure that this thesis is self-contained, we explicate the methodology employed in

creating mentioned datasets, including supplementary procedures for collecting pertinent

data for our research.

The CI Dataset

The CI dataset consists of projects that eventually adopted CI during their

lifetime. As this dataset is used to analyze the evolution of code coverage before and

after adopting CI, it must have considerable historical data before and after the adoption

of CI. The CI dataset contains two years of data for each project, one year before and

one year after CI adoption.

Figure 3.1: CI Projects.

In step 1 (Figure 3.1), the 3,000 most popular GitHub projects (as measured by

the number of stars) were selected. These projects were written in Java, Python, Ruby,

PHP, and JavaScript. Next, projects that adopted a CI service were selected (TravisCI1

in this case). Since August 2019, GitHub has officially supported CI through GitHub

Actions (GHA). Although GHA has become the dominant CI service in the market, as

mentioned before, our study reuses a consolidated dataset used in other CI-related studies
1https://www.travis-ci.com

33

(Bernardo, Costa, and Kulesza, 2018; Nery, Costa, and Kulesza, 2019), which is based

on projects that use TravisCI. These projects were carefully filtered and fulfilled our

requirements, as detailed below. We also need the entire CI history from such projects,

making other services like Jenkins2 inappropriate.

In Step 2, builds associated with projects on TravisCI were checked to select

projects that adopt CI. Projects without any build on TravisCI were removed. Addi-

tionally, the first TravisCI build date of a project was used as the moment at which a

project started using CI. Of the 3,000 projects, 1,784 remained after this stage (59.5%).

Afterward, toy projects3 (step 3) and projects with less than 100 linked pull

requests4 before and after CI adoption (step 4) were filtered out to improve the dataset’s

quality. 87 projects remained after steps 3 and 4. And for linked pull requests, we

understand any pull requests bind to a release.

87 projects remained after steps 3 and 4. To investigate the relationship between

CI and test code evolution (which includes test coverage), five projects, which did not

have any test code, were excluded (Step 5). A total of 82 projects remained.

Lastly, in Step 6, because our goal is to study the relationship between CI and

code coverage, we further process the dataset made available by Nert et al. (Nery, Costa,

and Kulesza, 2019). To collect the code coverage information, we set up and run each

version of the 82 projects in order to execute their test suites and compute the coverage

information. This task proved challenging for several reasons.

First, for each project version, we need to download all the involved libraries

(some of them old, unavailable, or dependent on the OS), configure the build tools (which

changed considerably from version to version, especially for JavaScript projects), and

2https://jenkins.io/
3Toy projects are small and simple projects that are created for learning or experimentation purposes

rather than for actual use. Toy projects are typically characterized by a small number of files, a
limited quantity of commits, and infrequent updates, often spanning a significant period of time.

4A linked pull request was defined as any pull request that is associated with a specific software
release (Bernardo, Costa, and Kulesza, 2018).

34

run the tests.

Second, interpreting the result of tests is not trivial, as a failing test could be

due to a configuration error from our side instead of a real failure in a particular version

of the project, requiring us to debug and make assumptions about the domain knowledge

of the project. These challenges incur compiling and replicating the required environment,

using virtual machines, to execute the automated tests, and collecting the code coverage

data for each version of our projects, which made this task exceptionally time-consuming.

If a specific version (commit) was not compilable, we skipped it and proceeded to the

nearest compilable version (commit) within the same month.

Due to these challenges, we further sampled 30 randomly selected projects out

of the previous 82 projects (step 6 in Figure 3.1). We collected the code coverage

information for all versions of the remaining 30 projects (8 Python, 5 Java, 9 JavaScript,

4 Ruby, and 3 PHP projects).

The NOCI Dataset

The NOCI dataset consists of projects that never adopted CI. This dataset is

essential for checking the presence of bias in our observations (control data). For example,

if we observe an increase in code coverage after a project adopts CI, we can check whether

a similar trend occurs in the NOCI projects. If that is the case, it would be unreasonable

to conclude that CI could be a precursor for the improvement in code coverage (as NOCI

projects would also have presented such an improvement). Figure 3.2 illustrates the

process for building the NOCI dataset.

In Step 1, again, 3,000 projects with the most stars were selected. Next, projects

with at least one build in TravisCI were discarded (Step 2), since the NOCI dataset

must contain projects that have never adopted CI. Next, in step 3, to avoid studying

inactive and immature projects, we select projects that have at least four years of activity.

35

Figure 3.2: NOCI Projects.

After this step, 392 NOCI projects remained.

In step 4, 82 projects were randomly selected from the previous step. The reason

for selecting 82 projects is to balance the samples between the CI and NOCI datasets.

The random selection process occurred in several iterations. First, a NOCI project was

randomly selected from the dataset. Then, two criteria were checked: (i) whether the

project is not a toy project and (ii) whether the project has a test suite available. If a

given NOCI project fails to fulfill both criteria, the project is discarded, and another

project is randomly selected to replace it.

Sizílio et al. (Nery, Costa, and Kulesza, 2019) also manually verified whether

projects contain configuration files from other popular CI services like Jenkins or

CircleCI5. All projects using another CI service provider were excluded. To strengthen

the certainty that the selected projects never adopted CI, the members of each project

were contacted via development channels and emails. This process was repeated until 82

NOCI projects remained to match the CI projects number.

Nery et al. (Nery, Costa, and Kulesza, 2019) received confirmation replies for

about 48% of the NOCI projects. For the remaining 52% of NOCI projects, they confirmed

the NOCI attribute by manually inspecting their code to find CI services configuration

5https://jenkins.io/

36

files.

Lastly, due to the challenges involved in computing code coverage information

(as explained before), we further sampled 30 randomly selected projects out of the 82

NOCI projects (Step 5 in Figure 3.2). We collected the code coverage information for

all versions of the remaining 30 projects. We sought to maintain the same proportion of

projects across languages in the final dataset, ensuring that there was no more than a

5% difference in the number of projects for each language.

3.2.2 Collecting Versions

Once our projects are selected, we collect the versions of each project to perform

our analyses, since code coverage varies across versions. A version is the nearest commit

(snapshot) on the project’s default branch that occurred at the beginning of a month,

which can also be the end of a previous month (Zhao et al., 2017; Nery, Costa, and

Kulesza, 2019).

As our goal is to analyze the impact of adopting CI on code coverage, we collect

historical data before and after the adoption of CI. To determine when CI was adopted

in a project, we use the approach of previous studies (Zhao et al., 2017; Nery, Costa, and

Kulesza, 2019; Bernardo, Costa, and Kulesza, 2018), which considers the first build on

TravisCI as the reference point for when CI was adopted in a project. Commits made

after the reference point are categorized as belonging to the After-CI group, while those

made before are categorized as belonging to the Before-CI group.

Similar to Zhao et al. (Zhao et al., 2017), we disregarded 30 days around the

adoption of CI (15 days before and 15 days after), since it may represent an unstable

and noisy period for data collection (Zhao et al., 2017).

Figure 3.3 illustrates this process, where each red arrow indicates a checkout of

the nearest version. We collect 12 months of historical data before CI and 12 months

37

after CI for each project.

Figure 3.3: Overview of versions selection process (Nery, Costa, and Kulesza, 2019).

Concerning NOCI projects, it is also necessary to establish a moment to divide

their history into two periods, which is important to double-check the observations found

when studying CI projects. One could argue that NOCI projects could be split based on

their coverage variation, where a peak in coverage could become the splitting-event time

point. However, if we consider the CI projects, we primarily consider the adoption of CI

as the splitting-event time point regardless of variations in code coverage. Thus, to ensure

a fair comparison between CI and NOCI projects, we follow the methodology applied

by Nery et al. (Nery, Costa, and Kulesza, 2019). Specifically, we select a splitting-event

time point for the NOCI projects that is proportional to their own lifetime.

To find this point in time for NOCI projects, we first analyze the CI projects to

compute the number of months before the adoption of CI. Next, we identify the time

that CI projects took to adopt CI in relation to their own lifetime. We found that the

median proportional time to adopt CI was 27.36% of the projects’ lifetime. As such, we

use 27.36% of a project’s lifetime as the splitting-event time point for NOCI projects.

We fetched 24 versions from each project, i.e., 12 versions before the splitting-

event and 12 versions after the splitting-event, for both CI and NOCI projects (see

Figure 3.3). For CI projects, the splitting-event is the adoption of CI, whereas, for NOCI

projects, the splitting-event is the 27,36% timepoint within the projects’ lifetime. The

Table 3.1 resumes all datasets.

38

Table 3.1: Study datasets.

Dataset Definition
Before-CI The dataset includes the data of our CI projects before adopting

CI.
After-CI The dataset includes the data of our CI projects after adopting CI.

Early-NOCI The dataset contains the first 27,36% of the lifetime of our NOCI
projects.

Late-NOCI The dataset contains the remaining data of the NOCI projects

3.2.3 Collecting Coverage

Code coverage is a widely used quality metric with a long history in software

engineering (Vanoverberghe et al., 2011). Code coverage indicates the parts of the software

that are exercised by the test suite.

There is a wide variety of coverage metrics, including statement coverage, branch

coverage, edge-pair coverage, path, predicate, clause, and data flow coverage (Aghamo-

hammadi, Mirian-Hosseinabadi, and Jalali, 2021). Statement coverage, i.e., the number

of instructions executed by tests over the total number of instructions, is the simplest

but most commonly used coverage metric applied in studies on the evolution of code

coverage (Hilton, Bell, and Marinov, 2018; Gopinath, Jensen, and Groce, 2014; Ahmed

et al., 2016). Due to this reason, we choose statement coverage as our starting point.

We computed the coverage percentage (PC) using the following formula: 𝑃𝐶 =

𝐸𝐿/𝑉 𝐿 where EL stands for executed lines and VL stands for valid lines (i.e., lines that

are not comments and blank lines).

Nevertheless, configuring, building, and running each project to compute the test

coverage requires considerable effort. Therefore, we sample 30 projects from the database

to analyze, according to the process presented in Section 3.2.1. We compiled, tested, and

collected the code coverage in each version of each project studied in this thesis. We

ran the builds on a set of Ubuntu 14.04 docker containers targeting a compatible and

39

stable environment for the datasets, which include projects with versions dating back to

as early as 2012/2013.

We collected coverage information using the following coverage tools: Coverage.py6

to instrument Python projects, Open Clover7 for Java projects, Istanbul8 for JavaScript

projects, SimpleCov9 for Ruby projects, and PHP Unit Coverage10 for PHP projects.

To unify the output from all these libraries, we instruct them to produce two kinds of

format: Clover-formatted output and the Cobertura formatted output.

3.3 Results

In this section we disclose the motivation, approach, and results for our research

questions (RQ).

3.3.1 RQ1 - What are the evolution trends of code coverage

within CI and NOCI Projects?

Motivation

Although recent research has studied associations between CI and several software

development factors (Nery, Costa, and Kulesza, 2019; Beller, Gousios, and Zaidman,

2016), they have not investigated whether CI is associated with better code coverage in

software projects, which is an important investigation, since CI is known for its focus on

automated tests.

In this RQ, we study the evolution trends of code coverage in both CI and NOCI

projects. The trends will allow us to understand whether code coverage evolves differently

6https://coverage.readthedocs.io
7ttps://openclover.org
8https://istanbul.js.org
9https://github.com/simplecov-ruby/simplecov

10https://phpunit.de

40

in CI projects compared to NOCI projects. For example, CI projects may be associated

with a rising trend of code coverage, whereas NOCI projects may be associated with

maintaining or falling trends of code coverage (or vice-versa). Our goal is to investigate

whether CI is associated with enhancements in code coverage.

Approach

To address this research question, we use both datasets containing 30 CI projects

and 30 NOCI projects, as explained in Section 3.2. We compare the CI projects against

the NOCI projects to study the potential differences in code coverage trends between CI

and NOCI projects.

The evolution of code coverage over time can be interpreted as time series data.

Therefore, we use the Dynamic Time Warping (DTW) algorithm to identify the dominant

trends of coverage evolution.

The Dynamic Time Warping (DTW) algorithm (Kate, 2016) is a robust method

used to measure the similarity between time series by aligning their offsets (Berndt and

Clifford, 1994; Salvador and Chan, 2007), meaning that two similar time series can be

grouped together even if they span over different time periods. As such, DTW allows us

to group coverage trends into clusters. Although DTW supports cluster discovery, we

must first set the optimal number of clusters (Milligan and Cooper, 1985), so they can

better represent the coverage trends. We use the Gap Statistic (Tibshirani, Walther, and

Hastie, 2001) approach to determine the appropriate number of clusters. We varied the

number of clusters from 2 to n-1, where n is the number of projects.

Results

Each plot in Figures 3.5, 3.4, 3.6 and 3.7 contains the distribution of code

coverage (Y-axis) across the versions of the CI or NOCI projects (X-axis). The vertical

dotted line indicates the moment at which CI was adopted (in CI projects), or the

41

splitting-event in the lifetime of NOCI projects. We use the numbers on the top gray bars

of the plots to refer to a specific cluster in our observations.

1

0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

Versions

C
o
ve

ra
g

e

3

0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

Versions

C
o
ve

ra
g
e

Clusters: Maintaining Trend

Figure 3.4: CI Projects - Maintaining Trend

Figure 3.4 shows that the centroids (i.e., the gray horizontal dashed lines) of

clusters 1 (9
30 projects) and 3 (6

30) of CI projects indicate a maintaining trend of code

coverage. However, although these are maintaining trends, they are stabilized at high

values (i.e., around or above 75%).

2

0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

Versions

C
o
ve

ra
g
e

4

0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

Versions

C
o
ve

ra
g
e

5

0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

Versions

C
o
ve

ra
g
e

Clusters: Raising Trend

Figure 3.5: CI Projects - Raising Trend

42

Figure 3.5 shows clusters 2, 4, and 5, which reveal rising code coverage trends

of CI projects. Clusters 2 (8
30 projects) and 5 (3

30 projects) reveal a significant increase

in the code coverage, i.e., varying from 25% to 75%. On the other hand, cluster 4 (4
30

projects) reveals only a slight increase of code coverage (i.e., from around 13% to 25%).

Figure 3.6 shows the rising code coverage trends for NOCI projects. Only cluster

1 reveals a rising trend of code coverage (3
30 projects). We observe that the code coverage

for those projects stabilizes at values around below 65%, thus, lower than the values

observed in most of the rising trends of CI projects.

1

0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

Versions

C
o
ve

ra
g
e

Clusters: Raising Trend

Figure 3.6: NOCI Projects - Raising Trend

The remaining clusters shown in Figure 3.7 reveal maintaining code coverage

trends. Clusters 2, 3, and 10 containing 3
30 projects; clusters 4, 7, 8, 9, and 16 containing

(2
30 projects; and clusters 5, 6, 11, 12, 13, 14, 15, and 17 containing 1

30 projects. Overall,

90% of NOCI projects reveal a maintaining trend of code coverage (27
30 projects).

When comparing the code coverage distributions between the before-CI and

after-CI periods, we observe a notable increase in the median code coverage following the

adoption of CI. In the before-CI period, the median code coverage is 0.663 with a mean of

43

14 15 16 17

10 11 12 13

6 7 8 9

2 3 4 5

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Versions

C
o
ve

ra
g

e

Clusters: Maintaining Trend

Figure 3.7: NOCI Projects - Maintaining Trend

44

0.72 and a standard deviation of 0.315. In the after-CI period, the median code coverage

is 0.79 with a mean of 0.629 and a standard deviation of 0.225. A Wilcoxon rank-sum test

reveals a statistically significant difference between the distributions (𝑝−𝑣𝑎𝑙𝑢𝑒 = 2𝑒−07).

Additionally, we calculate a Cliff’s delta of −0.2173, indicating a small but meaningful

difference in code coverage values. Thus, the improvement in coverage across sets is on

the order of magnitude of 10%.

In a similar vein, when comparing the code coverage distributions between the

early-NOCI and late-NOCI periods (as shown in Table 3.1), we observe the following

results. In the early-NOCI period, the median code coverage is 0.435 with a mean of

0.482 and a standard deviation of 0.293. In the late-NOCI period, the median code

coverage is 0.448 with a mean of 0.510 and a standard deviation of 0.287. Despite a

slight increase in code coverage during the late-NOCI period, our Wilcoxon test (with

alternative=’less’) indicates no significant difference between the early-NOCI and late-

NOCI periods (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.1). Thus, the difference in coverage levels between the

early-NOCI and late-NOCI periods is negligible or statistically insignificant.

Findings 3.3.1

We observe more projects with rising trends of code coverage in CI projects (50%,
15
30) than NOCI projects (10%, 3

30). We also observe that maintaining trends differ,

as CI projects tend to stabilize their code coverage at a higher value than NOCI

projects.

45

3.3.2 RQ2 - Is there a significant correlation between CI and

code coverage values?

Motivation

In RQ1, we observe a notable difference in code coverage trends when comparing

CI projects against NOCI projects. As such, in RQ2, we dive deeper and quantitatively

analyze the code coverage of our studied projects. The goal is to investigate whether the

adoption of CI has a significant association with better code coverage. This investigation

allows us to better understand whether CI has the potential to benefit code coverage.

Approach

To address this research question, we applied the regression discontinuity design

(RDD) (Imbens and Lemieux, 2008) to assess the potential association between adopting

CI and better code coverage. As this research question considers non-randomized trials,

as is often the case with software engineering data, techniques such as quasi-experiments

are suitable. The RDD is a robust quasi-experimental design to evaluate the presence

and extent of the impact introduced by an intervention (Cook and Campbell, 1979). It

works by assigning a cut-off above or below a given intervention. RDD assumes that the

trend would continue without changes if the intervention had not existed. In our study,

the intervention refers to the adoption of CI; a cut-off relates to the moment at which

CI was introduced. RDD has already been applied by existing research investigating

the potential benefits of CI (Cassee, Vasilescu, and Serebrenik, 2020; Zhao et al., 2017),

e.g., to study whether CI may influence software quality or productivity in software

development. Given that RDD fits the purpose of our research question, we apply RDD

in RQ2.

In this RQ, the RDD model was formulated in the following manner. Let 𝑌 be

the outcome of the dependent variable (coverage) of the project version with and without

46

the effect of the intervention (i.e., using CI or not), respectively. 𝐷𝑖 ∈ 0, 1 represents the

intervention, which, in our case, refers to the moment at which a CI service was adopted.

Finally, 𝑋𝑖, as the forcing variable, represents the time in months from the start of the

observation period. It determines the value of 𝐷𝑖 with the cutpoint 𝑐. 𝐷𝑖 = 1𝑋𝑖 > 𝑐. We

can specify the following linear regression model to estimate the level and trend in 𝑌

before and after the adoption of CI:

𝐸[𝑌𝑖(𝑑)|𝑋𝑖, 𝐷𝑖] = 𝛼 + 𝛽 * 𝑐 + 𝜏 * 𝐷𝑖 + 𝛽 * 𝑋𝑖

Where 𝐸[𝑌𝑖(𝑑)|𝑋𝑖, 𝐷𝑖] represents the estimation of the coverage given 𝑋𝑖 and

𝐷𝑖; 𝜏 as the treatment effect, 𝛼 represents the intercept of a fitted regression line, and 𝛽

represents the slope. Solving the regression gives us the coefficients, which, if significant,

can help us reason about the effects of adopting CI, if any. We report on the models

having significant coefficients in the regressions (𝑝 < 0.05) as well as their effect size.

Results

We fitted an RDD model, as described above, to model the trend in coverage

levels over time as a function of the adoption of CI. Our data is centered around the

moment at which CI was adopted, having an equal number of points, 12, on each side.

The model is fitted by lm function in R. This function models a regression with the

Ordinary Least Squares (OLS) technique.

Figure 3.8 shows the outcome from the fitted model. A discontinuity is observed

after introducing CI. The dots represent individual coverage levels. In the center of

the plot, we note the cut-off point, before which are the samples after the adoption of

CI, and after which are the versions that precede the adoption of CI. The effect of the

intervention is estimated as a discontinuity between the intervention groups before and

after the cut-off point (the adoption of CI in our case).

47

Figure 3.8: RDD model for CI Projects

Table 3.2 summarizes the results. We observe a statistically significant 𝐷 of

0.12710 in coverage, meaning that adopting CI increases code coverage. The R-squared

(𝑅2) is a measure that provides information about how well the data fits the regression

model (the goodness of fit).

Table 3.2: Coverage model Results.
Coefficients Estimate Std Error 𝜏 𝑃𝑟(> 𝜏)
Intercept 0.59177 0.01444 40.977 <2e-16 ***

D 0.12710 0.02042 6.223 8.27e-10 ***
Statistical significance is indicated by ***p<0.001, **p<0.01,*p<0.05

Figure 3.9 shows a boxplot of the 𝑅2 values for the analyzed projects. The

horizontal line represents the median of 𝑅2 values (i.e., 0.46652) for all projects. Indeed,

the linear model achieves an 𝑅2 value higher than 0.35 for 60% of the projects, and 50%

of them achieve an 𝑅2 value higher than 0.5, meaning that adopting CI can explain a

reasonable portion of the coverage variation.

On the other hand, we did not find any discontinuities when applying the RDD

model to the NOCI dataset (Figure 3.10).

48

0.00

0.25

0.50

0.75

R
2

Figure 3.9: Box plot of 𝑅2 from each project.

Figure 3.10: RDD model for NOCI Projects

49

Findings 3.3.2

The statistical evidence indicates that adopting Continuous Integration is associated

with increased code coverage.

3.3.3 RQ3 - What types of code changes affect the code

coverage of CI and NOCI projects?

Motivation

In RQ1 and RQ2, we study whether CI is associated with the evolution of

code coverage in general. As our results reveal that CI has a significant association

with code coverage, we investigate how code coverage evolves in a finer granularity, i.e.,

we investigate different types of code changes that contribute to the evolution of code

coverage. For example, is CI associated with more legacy code being covered? Or is CI

associated with the removal of legacy and uncovered code, which ultimately increases

the total coverage? These are the type of questions we investigate in RQ3.

Current tools offer little support for understanding how changes to the source

code can affect code coverage (Hilton, Bell, and Marinov, 2018). From a naïve perspective,

code coverage increases when existing lines of code become covered and decreases when

existing lines are no longer covered. However, when considering code evolution, i.e.,

comparing two consecutive project versions, coverage can vary for diverse reasons. For

example, adding new and uncovered source code will cause code coverage to decrease.

Likewise, removing existing and uncovered source code will increase code coverage

without new tests. Finally, as one would expect, code coverage can be impacted due to

the addition or deletion of test code. In conclusion, there are several ways that code

coverage can increase or decrease. Our purpose with RQ3 is to study whether CI has a

strong association with the changes that impact the evolution of code coverage.

50

Approach

To address this research question, we again use our dataset containing 30 CI

projects and 30 NOCI projects. We combine code coverage data with code change data to

identify the types of code changes that affect code coverage. For each project version, we

find the lines of code (LoC) added, modified, or deleted compared to the previous version

(i.e., the commit patch representing the changes between versions). To track lines of code

that have moved or shifted within the codebase, we employ the Git Diff command. This

allows us to compare each version of the code with its previous version and obtain a

list of added and removed lines. We also create a mapping that identifies the unchanged

lines by pairing the line numbers of each version. To generate these mappings, we use

the Git Diff command for each changed file and determine the line numbers for each

line as compared to the previous version of that file. We used a global identifier to track

the position of each line across the versions of each project. Lastly, we aggregate each

studied project version’s coverage and code change information. With this combined

information, it is possible to determine whether the increase or decrease in code coverage

occurs due to the addition of new LoC or deletion of existing LoC (covered or uncovered).

We group the change types of covered or uncovered LoCs into the categories shown in

Figure 3.11, taking the median number of LoC that contributes to each category and the

overall number of changes throughout the versions.

Results

Figure 3.11 provides an overview of how each type of code change contributes

to the variation in code coverage. Comparing the CI dataset with the NOCI dataset,

we observe that the coverage of new lines is responsible for nearly 16% of changes

in code coverage, whereas, in the NOCI dataset, only nearly 5% of the changes in

coverage are due to covering newly added lines. Indeed, a Wilcoxon test shows that CI

51

0.00

0.25

0.50

0.75

1.00

CI NOCI

Dataset

V
a

lu
e

Added.coverage.to.existing.lines
Added.new.lines.that.are.covered
Deleted.untested.lines
Coverage.lost.on.existing.lines
Added.new.lines.that.are.not.covered
Deleted.tested.lines

Figure 3.11: How much each code change contributed to the net change in coverage.

is positively associated with the coverage of newly added lines (𝑝 = 0.0003 with a large

effect 𝑑 = −0.543).

Regarding the changes that increase coverage, we find that 40% of code changes

in CI projects increase the coverage, whereas only about 26% of code changes in NOCI

projects increase the coverage. A Wilcoxon test reveals that this difference is statistically

significant (𝑝 = 3.255𝑒 − 05 with a large Cliff’s delta of 𝑑 = −0.602). Furthermore, we

notice a statistically significant difference between CI and NOCI projects (𝑝 = 0.0016 with

a large Cliff’s delta of −0.475) regarding deleted test lines. CI projects lose more covered

lines because they have a higher coverage. Nevertheless, we do not have enough evidence

to reject the null hypothesis for the remaining types of changes, e.g., deleted untested

lines etc. Table 3.3 summarizes the obtained results for the CI and NOCI comparisons.

We now shift the focus of our analysis to investigate which types of changes

impact the code coverage during the before-CI and after-CI periods (for CI projects),

and during the early-NOCI and late-NOCI periods (for NOCI projects).

Figure 3.12 shows an overview of the prevalence of each type of code change

52

Table 3.3: Results of statistical tests applied in NOCI and CI dataset
Metric Wilcoxon (𝑝) Cliff’s Delta

Added coverage to existing lines 0.398 -
Added new lines that are covered 0.0003*** -0.543 (Large)
Deleted untested lines 0.0821 -
Coverage lost on existing lines 0.9474 -
Added new lines that are not covered 0.948 -
Deleted tested lines 0.0016** -0.475 (Large)
Changes that increase coverage 3.255e-05*** -0.602 (Large)
Changes that decrease coverage 0.6125 -
Statistical significance is indicated by ***𝑝<0.001, **𝑝<0.01, *𝑝<0.05

0.00

0.25

0.50

0.75

1.00

BEFORE CI AFTER CI

Dataset

V
a

lu
e

Added.coverage.to.existing.lines
Added.new.lines.that.are.covered
Deleted.untested.lines
Coverage.lost.on.existing.lines
Added.new.lines.that.are.not.covered
Deleted.tested.lines

Figure 3.12: How much each code change contributed to the net change in coverage into
CI dataset.

53

during the before- and after- CI periods. We observe that CI has a positive association

with the coverage of existing lines. The median and mean of existing and covered lines

during the before-CI period are 0.663 and 0.592, respectively. The median and mean of

existing and covered lines during the after-CI period are 0.7900 and 0.7189, respectively.

Our Wilcoxon test reveals a significant difference between the before-CI and after-CI

periods (𝑝 = 0.01966) with a small effect size 𝑑 = −0.243. Overall, the after-CI period has

14% more changes that increase the code coverage than the before-CI period (𝑝 = 0.04049

with a small effect size 𝑑 = −0.233). Nevertheless, we do not have enough evidence to

reject the null hypothesis for the remaining types of changes, e.g., deleted untested lines

etc. Table 3.4 summarizes the test results.

Table 3.4: Results of statistical tests applied in before-CI and after-CI dataset
Metric Wilcoxon (𝑝) Cliff’s Delta

Added coverage to existing lines 0.01966* -0.243 (Small)
Added new lines that are covered 0.1358 -
Deleted untested lines 0.3892 -
Coverage lost on existing lines 0.2621 -
Added new lines that are not covered 0.8553 -
Deleted tested lines 0.1332 -
Changes that increase coverage 0.04049* -0.233 (Small)
Changes that decrease coverage 0.04049 -
Statistical significance is indicated by ***𝑝<0.001, **𝑝<0.01, *𝑝<0.05

Regarding the NOCI projects, in Figure 3.13, we observe a statistically significant

difference (𝑝 = 0.02479* with a small delta of 𝑑 = −0.215) in the coverage lost on existing

lines. We also obtain a statistically significant difference (𝑝 = 0.03213) in deleted tested

lines with a small effect 𝑑 = −0.215. Similarly, with respect to deleted and uncovered

lines, a Wilcoxon test reveals a statistically significant (𝑝 = 0.01776) difference with a

small, but non-negligible effect (𝑑 = 0.234).

The remaining statistical tests show that we do not have enough evidence to reject

the null hypothesis for the other types of changes, corroborating the strong association

54

0.00

0.25

0.50

0.75

1.00

Early CI Late CI

Dataset

V
a

lu
e

Added.coverage.to.existing.lines
Added.new.lines.that.are.covered
Deleted.untested.lines
Coverage.lost.on.existing.lines
Added.new.lines.that.are.not.covered
Deleted.tested.lines

Figure 3.13: How much each code change contributed to the net change in coverage into
NOCI dataset.

between the adoption of CI and an improved code coverage. Table 3.5 summarizes the

test results.

Table 3.5: Results of statistical tests applied in early-NOCI and late-NOCI dataset.
Metric Wilcoxon(𝑝) Cliff’s Delta

Added coverage to existing lines 0.06356 -
Added new lines that are covered 0.06018 -
Deleted untested lines 0.01776* 0.234 (Small)
Coverage lost on existing lines 0.02479* -0.215 (Small)
Added new lines that are not covered 0.812 -
Deleted tested lines 0.03213* 0.217 (Small)
Changes that increase coverage 0.4045 -
Changes that decrease coverage 0.5158 -
Statistical significance is indicated by ***𝑝<0.001, **𝑝<0.01, *𝑝<0.05

Reasons for the decrease in coverage. Analyzing the evolution of code

coverage during the after-CI period, we observe that some projects underwent substantial

reductions in code coverage levels across successive versions. We manually inspect the

issues, code commits, and pull requests to better understand these reductions in code

55

coverage. These reductions were mostly observed in the Sensu11, Aframe12, Fog13,

and Gollum14, projects. Figure 3.14 shows the coverage evolution in these projects.

gollum/gollum sensu/sensu

aframevr/aframe fog/fog

0 5 10 15 20 25 0 5 10 15 20 25

0.00

0.25

0.50

0.75

0.00

0.25

0.50

0.75

Project

C
o
ve

ra
g

e USE_CI

FALSE

TRUE

CI Projects

Figure 3.14: Projects with a sharp drop in code coverage at some point after CI adoption.

For example, pull request #30515, from the Sensu project, addressed a premature

termination of tests due to a timeout issue. To fix the premature termination, developers

increased the test waiting time, allowing for the proper completion of CI tests. If tests

are terminated prematurely, the code they exercise is not executed, which impacts the

computation of code coverage, i.e., if the test suite exercises fewer statements, there

exists an unexpected reduction in code coverage.

Another example is pull request #30316, also from the Sensu project, which

addressed caching issues. In that case, test code relies on variables in an external cache

server to test each code branch properly. Due to caching issues, tests failed to exercise

some code execution flows, consequently reducing code coverage (i.e., these execution

flows were not considered when computing code coverage). We speculate that this kind
11https://github.com/sensu/sensu
12https://github.com/aframevr/aframe
13https://github.com/fog/fog
14https://github.com/gollum/gollum
15https://github.com/sensu/sensu/pull/305
16https://github.com/sensu/sensu/pull/303

56

of problem may indicate the use of naïve tests, as the tests relied on specific values that

would be present at Redis at a specific time. Inadequate testing is one of the main issues

in a CI environment (Pinto et al., 2018), potentially due to the lack of a testing culture

suitable to CI practices.

Concerning the Gollum project, we find that the most probable reason for

the drop in coverage is related to problems such as the one described in issue #64917.

The issue exposes that the test suite relies on a specific version of libxml2 in the CI

server (TravisCI). Thus, mismatch between library versions caused the breakage of

tests, which impacted the computation of code coverage. Indeed, existing research hints

that dependency management and version changes are two critical issues when building

and testing software systems (Pinto et al., 2018).

Concerning the Aframe project, we found issues where developers were trou-

bleshooting CI build failures. For instance, issue #51518 shows that setting up a CI

server can be challenging. For example, test failures occurred due to problems integrating

WebGL into the CI server, leading to a drop in coverage levels. The lack of integration

between WebGL and the CI server forced developers to inactivate related tests, leading

to a decrease in code coverage.

Reasons for the increase in coverage. Next, we investigate the substantial

increase in code coverage levels during the after-CI period for some of our CI projects.

In particular, we observe sharp increases in code coverage in the following projects:

Serverless19, and Kivy20. Figure 3.15 shows the coverage evolution for these projects.

The main reason for the increase in coverage levels is the improvements of test

suites. Projects like Serverless represent this trend; note the plot on the right side of

Figure 3.15. For example, in the Serverless project, it is possible to find issues such

17https://github.com/gollum/gollum/issues/649
18https://github.com/aframevr/aframe/issues/515
19https://github.com/serverless/serverless
20https://github.com/kivy/kivy

57

kivy/kivy serverless/serverless

0 5 10 15 20 25 0 5 10 15 20 25

0.00

0.25

0.50

0.75

1.00

Project

C
o
ve

ra
g

e USE_CI

FALSE

TRUE

CI Projects

Figure 3.15: Projects with positive change in coverage after CI.

as the following: Issue #108921 (“Write unit tests for Plugin methods”), issue #120322

(“Deep test coverage for awsCompileFunctions plugin”), and issue #327523 (“Return

code coverage to proud 100%”), i.e., issues addressing the lack of tests or the need to

improve existing tests.

Lastly, in the Kivy project (the plot on the left side of Figure 3.15), we observe

an 89% increase in issue reports and pull requests targeting test suites after adopting CI.

Pull requests such as #72124 (“add a test suite for App(), only two tests for now”), and

commits such as #3f76ea825 (“Added tests toward full coverage”) became a common-place.

Findings 3.3.3

CI projects tend to significantly increase the types of code changes that improve

code coverage (e.g., newly added and covered lines). NOCI projects tend to lose

coverage on existing lines.

21https://github.com/serverless/serverless/issues/1089
22https://github.com/serverless/serverless/issues/1203
23https://github.com/serverless/serverless/issues/3275
24https://github.com/kivy/kivy/pull/721
25https://github.com/kivy/kivy/commit/3f76ea8

58

3.4 Discussions and Implications

3.4.1 Implications for Practitioners

The result of RQ3 (Section 3.3.3) indicates that projects that use CI generally

have better coverage than NOCI projects even before the adoption of CI. We also obtained

evidence that projects that do not adopt CI tend to lose coverage, especially on existing

lines. We conjecture that projects that happen to take care of their code coverage may

be better positioned to eventually adopt CI, which may boost the code coverage even

more (see RQ2 (Section 3.3.2) and RQ3 (Section 3.3.3). Therefore, we suggest that, even

if a project does not plan to adopt CI, minding its code coverage through a quality and

well maintained test suite can only help the project.

In RQ3 (Section 3.3.3), we study the different reasons (i.e., the code change

types) as to why coverage can increase or decrease in CI and NOCI projects. Given that

code coverage may fluctuate for a variety of reasons, we believe current tools should

show how the change in coverage has occurred over time. We conjecture that proper

visualizations of such changes over time (e.g., a project has increased its code coverage

due to an exceptional coverage of new lines) may encourage developers to maintain good

testing practices and increase their confidence, similarly to how CI is already known for

increasing the confidence of developers (Soares et al., 2022). Furthermore, a finer-grained

analysis of how coverage evolves may equip developers to better understand the current

state of their automated tests.

3.4.2 Implications for Researchers

Our research opens avenues for future empirical studies that address other cover-

age metrics such as branch, MC/DC, method, file, and path coverage. We acknowledge

that the relationship between CI and other coverage metrics can differ from the results

59

obtained for statement coverage and CI, which was investigated in our research. In addi-

tion, our study uses data from public open-source projects, so further studies can consider

commercial projects. This is important as non-commercial projects may have a lower

release frequency than commercial projects, and their CI pipelines may be completely

different. Moreover, similarly to Felidré et al. (Felidré et al., 2019), a possible direction for

future work lies in investigating whether code coverage evolution is generally correlated

with the adherence to CI practices. Lastly, future studies can investigate whether better

visualizations for monitoring code coverage may influence the evolution of code coverage

(e.g., as developers would me more aware of how their code coverage evolves). Lastly,

future work may consider the expansion of our analysis to include project using GitHub

Actions.

3.5 Threats to the Validity

In this section, we discuss the threats to the validity of our study.

3.5.1 Construct Validity

Construct validity concerns the research design, i.e., whether it is inaccurate

in a way that it does not measure what it claims or purports. The statistical methods,

including two non-parametric tests Wilcoxon test (Wilks, 2011) and Cliff’s delta (Macbeth,

Razumiejczyk, and Ledesma, 2011), and Regression Discontinuity Design (RDD) (Imbens

and Lemieux, 2008) fulfill the requirements of this work once we are researching for

an association between CI and coverage and not necessarily causality. The potential

threats related to constructing validity mainly include the processes of collecting data

from projects. We mitigate this threat by relying on a consolidated dataset constructed

and validated by other studies (Bernardo, Costa, and Kulesza, 2018; Nery, Costa, and

Kulesza, 2019; Guo and Leitner, 2019).

60

3.5.2 Internal Validity

Internal threats are concerned with the ability to draw conclusions from the

relationship between the dependent variable (code coverage) and independent variables

(e.g., use of CI, number of projects, and versions). Over the years, researchers have

proposed several coverage-based criteria, including statement coverage, branch coverage,

modified condition coverage, and others. We focused on statement coverage and recognized

that the relationship between other coverage metrics and CI could differ. However, this

is a starting study, and we plan to extend it to other coverage metrics in the future.

Furthermore, we only investigate open-source projects whose testing activities may differ

from commercial software. Given that our work is an exploratory study, we did not seek

causal relationships necessarily. Hence this category of risks is less important. Regardless,

we plan to include non-OSS in the study in the future.

3.5.3 External Validity

External threats are concerned with the extent to which we can generalize our

results (Perry, Porter, and Votta, 2000). In this work, we analyzed 1,440 versions of 60

popular open-source projects from GitHub. All CI projects adopt a popular CI server,

i.e., TravisCI. We excluded projects that do not use the most used CI services for

obtaining the NOCI dataset. However, we acknowledge that our results are restricted to

our projects’ setup (and potentially similar setups in other projects). Further analysis

(e.g., additional projects) should be performed in future work, which we are planning to

do.

61

3.6 Conclusions

We investigated the potential association between CI and code coverage evolution.

We compared 30 CI and 30 NOCI projects to study whether the adoption of CI is

associated with better code coverage. In total, we studied 1,440 versions.

Our analysis showed that continuous integration can be empirically associated

with better code coverage. The coverage values after the adoption of CI were significantly

higher than before the adoption of CI. Moreover, after CI is adopted, the types of

code changes that increase code coverage also increased across our studied projects. We

also identified that CI projects revealed a lower tendency of losing covered lines when

compared to NOCI projects. Lastly, our study demonstrated that, after the adoption of

CI, there was no difference in the prioritization to cover new or existing code. Indeed, we

did not observe a statistically significant difference between new or existing code when it

came to becoming covered. Conversely, when we compared CI projects (before and after

CI was adopted) to NOCI projects, we noticed that the coverage of newly added lines

was significantly higher in CI projects.

Overall, our work does not only revealed that the adoption of CI is associated

with a stronger code coverage, but also revealed that projects that eventually adopt CI

tend to maintain a significantly better code coverage than NOCI projects throughout

their lifetimes. Our recommendation is that, if CI cannot be adopted from the beginning,

maintaining good levels of code coverage may place the project in a better position to

heap the benefits of CI at a later stage.

62

4 Uncovering the Relationship

Between Continuous Integration

and Code Coverage: An

Exploratory Investigation

Despite the widespread adoption of continuous integration (CI) and code coverage,

there are still many unanswered questions regarding their relationship. In Chapter 3, we

quantitatively investigated this relationship and presented a positive association between

CI and code coverage. However, we did not explore the underlying mechanisms that

drive this relationship. To address this gap in knowledge and gain a comprehensive

understanding of developers’ use of CI and coverage, we conducted a two-part qualitative

study consisting of a preliminary exploratory phase based on a survey, followed by a

document analysis (see Chapter 5).

Our main aim is to gain a comprehensive understanding of the impact of

continuous integration (CI) on code coverage through a survey of developers working

on the studied systems. This approach will allow us (i) to gather additional qualitative

insights from developers that cannot be obtained through quantitative analysis alone; (ii)

to examine how developers utilize code coverage in the context of CI projects; and (iii) to

63

validate our quantitative findings by comparing them with the developers’ perspectives.

The remainder of this chapter is organized as follows. Section 4.1 introduces

the research question that serves as the central focus and objective of our investigation.

In Section 4.2, we outline the study design, detailing the methodology and approach

employed to address the research questions. Section 4.3 presents the results, highlighting

the key findings and outcomes obtained from our study. We acknowledge the limitations

and constraints of our research in Section 4.4. Section 4.5 delves into the broader

implications for different stakeholders of our study. Finally, in Section 4.6, we draw

conclusions.

4.1 Research Questions

The following research questions guide our research:

• RQ4 - How the code coverage information is used in the CI projects?

Rationale: Our research question aims to explore how developers utilize code

coverage information in practice, i.e., their day-to-day coding activities. Specifically,

we are interested in understanding how valuable developers perceive code coverage

when writing and reviewing code.

• RQ 5 - Does the adoption of Continuous Integration increase the code

coverage?

Rationale: Qualitative investigation into the relationship between adopting Contin-

uous Integration and increasing code coverage can provide valuable insights that

quantitative metrics may not capture. Exploring the subjective experiences and

perspectives of developers can reveal nuances and complexities that quantitative

analysis alone may not capture. Qualitative research can uncover whether develop-

ers perceive an increase in code coverage after CI adoption and, if so, what factors

64

they attribute this improvement to.

4.2 Study Design

In this work, we developed a survey based on the guidelines proposed by Kitchen-

ham et al. (Kitchenham et al., 2002), which includes six phases: planning, survey creation,

target audience definition, evaluation, survey administration, and result analysis. To

increase survey participation, we employed several principles recommended in the litera-

ture (E. Smith et al., 2013), including personalized invitations, and the use of closed,

direct questions. Prior to distributing the survey, we developed an initial draft and sought

feedback from colleagues and researchers. Based on their suggestions, we refined some of

the questions and explanations to improve their clarity and precision. Participation was

voluntary and the estimated time to complete the survey was 10-15 minutes.

Our data collection method involves surveying the developers of the CI projects

included in our study. To select the most active contributors, we gathered the names and

emails of all contributors using the GitHub Rest API and ranked them by the number of

contributions (commits) during the period analyzed in our previous study (see Chapter

3).

We aimed to select the top 20% of contributors (90 out of the total) from

each project and expected a response rate of one-third. By focusing on the most active

contributors, we hope to gather the most relevant and insightful data about the impact

of CI on code coverage in our selected projects. However, due to the insufficient number

of responses for our research, we had to modify our initial procedure. As a result, we

sent the survey to the top 40% (200) remaining active developers to try to increase the

sample size. In the end, we obtained 17 responses, resulting in a 5.86% of response rate.

65

Table 4.1: Survey questions.

ID Section Question

Q1.0 Audience Have we correctly identified you as someone who

has contributed to the Ansible project ?

Q2.0 Demographic For how many years have you been developing

software?

Q2.1 Demographic How would you describe your main roles in the

project you work the most (e.g., core developer,

bug-fixer, reviewer) ? Choose all that apply.

Q2.2 Demographic How would you classify yourself in terms of ex-

perience using continuous integration?

Q2.3 Demographic Have you experienced the process of introducing

CI to a project that was not previously following

the practice?

Q3.0 Perceptions about CI

Adoption and Code

Coverage

To what extent do you agree with the following

statement: The Ansible project systematically

monitors code coverage?

Q3.1 Perceptions about CI

Adoption and Code

Coverage

How is coverage monitored in Ansible project?

Q3.2 Perceptions about CI

Adoption and Code

Coverage

Would you support the systematic monitoring

of code coverage in your CI pipeline? Why or

why not?

Continued on next page

66

Table 4.1: Survey questions (continued)

ID Section Question

Q3.3 Perceptions about CI

Adoption and Code

Coverage

What are the main tools/frameworks that you

have used to monitor code coverage?

Q3.4 Perceptions about CI

Adoption and Code

Coverage

Do you find code coverage useful when authoring

code and/or reviewing code? Why or why not?

Q3.5 Perceptions about CI

Adoption and Code

Coverage

Do you believe that test suites with high code

coverage will typically find more real faults or

reduce the search space to find a bug? Explain

your reasoning.

Q3.6 Perceptions about CI

Adoption and Code

Coverage

What code coverage metric do you use in your

project (if any)?

Q4.0 Study Results When analyzing the code coverage of project

Ansible, we observed an increasing trend in code

coverage after CI was adopted. In your opinion,

is this increase in coverage related to the use of

CI? If yes, please explain. If not, which are the

reasons that you could associate with it?

Continued on next page

67

Table 4.1: Survey questions (continued)

ID Section Question

Q4.1 Study Results There are many ways in which code coverage

can fluctuate. For instance, newly added and

uncovered code can reduce the overall coverage,

whereas the deletion of existing and uncovered

code can increase the overall coverage. In your

opinion, do you think CI influences how code

coverage fluctuates? If so, in what ways? If not,

why not?

Q4.2 Study Results Are there any development or testing prac-

tices/techniques/tools that were introduced after

the adoption of CI, which you believe must have

influenced the quality of your project? Could you

elaborate on the nature of such contribution?

Q4.3 Study Results Analyzing the evolution of code coverage, we

observe notable variations (increase/reduction)

in the levels of code coverage across successive

versions, as illustrated in graphic above (before

and after CI adoption). What are the main rea-

sons that explain such variations (e.g., broken

tests, inadequate test culture, code refactoring,

test suite improvement) ?

Continued on next page

68

Table 4.1: Survey questions (continued)

ID Section Question

Q5.0 Ending Our Question-

naire

Would you like to be informed about our findings

and receive additional reports about the code

coverage of your project?

Q5.1 Ending Our Question-

naire

Would you be willing to be contacted for an

online follow-up interview at a time that is con-

venient for you?

Q5.2 Ending Our Question-

naire

If you checked yes on one of the two questions

above and have not yet left your e-mail, please

leave it below.

Q5.3 Ending Our Question-

naire

Do you have further comments for us?

Our survey consisted of 21 questions, 9 of which were open-ended (free-response).

Table 4.1 shows the survey questions. The survey was divided into five sections: (1)

Audience, (2) Demographic Questions, (3) Perceptions about CI Adoption and Code

Coverage, (4) Study Results, and (5) Ending Our Questionnaire.

1. Audience: As an initial step, we asked participants to confirm whether they had

contributed to the project under investigation. This allowed us to ensure that our

sample consisted of individuals with first-hand experience of the project, enabling

us to gather valid information about their perceptions and experiences.

2. Demographic: This group of questions aimed to gather information about the

technical backgrounds, expertise, and experience of the participants. It included

four demographic questions, namely, the number of years of experience in software

69

development (Q2.0), the role they played in the project they worked on the most

(Q2.1), their familiarity with CI techniques (Q2.2), and whether they have ever

configured a project to use CI techniques (Q2.3).

3. Perceptions about CI Adoption and Code Coverage: In this section, we included seven

questions to gather information on participants’ perceptions about code coverage

monitoring and its impact on their projects. First, we asked for their opinion on an

affirmative statement about coverage monitoring in their project (Q3.0), followed by

a question on how coverage is monitored in their project (Q3.1). Then, we inquired

if they consider supporting systematic monitoring of code coverage in their CI

pipeline and their reasons for that decision (Q3.2). We also asked about the main

tools/frameworks they have used to monitor code coverage (Q3.3) and whether

they found code coverage helpful when authoring code and/or reviewing code. If

so, we asked them to elaborate on why they believe that (Q3.4). Furthermore, we

asked for their opinions on the usage of code coverage as a metric to assess test

suite effectiveness (Q3.5). Finally, we asked if they use any code coverage metric in

their project and, if yes, which one they use (Q3.6).

4. Study Results: We have questions about the results of our previous study (see

Chapter 3). In the first question (Q4.0), we presented charts related to each project

that depict the code coverage trends before and after the adoption of CI. These

charts were used to help participants reason about the behavior of code coverage in

their project. We began by asking for their opinions on the observed coverage trends

in their project. Next, we asked for their opinions on how the adoption of CI may

have influenced the fluctuations in code coverage (Q4.1), and whether they believe

that any development or testing practices, techniques, or tools introduced after the

adoption of CI can impact software quality. If so, we asked them to elaborate on

why they believe this is the case (Q4.2). Finally, we asked participants to explain

70

any notable variations in the levels of code coverage on the charts and to discuss

their motivations for using CI techniques (Q4.3).

5. Ending Our Questionnaire: In this section, we asked participants if they would

like to be informed about our findings and receive additional reports about the

code coverage of their project (Q5.0) and their availability for an interview (Q5.1).

Lastly, we reminded them to leave an email for contact (Q5.2).

To give respondents the most flexibility, no question was mandatory. To avoid

unreliable responses, developers were free to skip questions that they did not feel confident

to answer.

4.3 Study Results

4.3.1 Demographics Analysis

In this section, we present basic demographic information about the participants

in our study. Figure 4.1 displays the distribution of years of development experience

among the participants in our survey (Q2.0). We observed that all participants have at

least five years of experience in software development, and a significant number of them

reported having twenty or more years of experience.

35.3%29.4%17.6%5.9%11.8%Q20

0 25 50 75 100
Percentage

Category
> 20 Years
10 − 15 Years
15 − 20 years
5 − 10 Years
NA

Figure 4.1: Experience across participants.

Among the respondents, 35.3% reported working in software development for

more than twenty years, while 17.6% had between 10-15 years of experience, and 5.9%

71

had between 5-10 years of experience. A small proportion (11.8%) did not respond to this

question. These results indicate that the survey was answered by a highly experienced

group of software development professionals.

We also asked developers to indicate the roles they perform in the projects

they work on the most (Q2.1). Two participants did not provide any answer, and one

participant declared that they worked exclusively as a tester. The remaining participants

declared that they work in more than one role. The most common role mentioned was

Back-end/Core Developer, with 30% of the respondents, followed by DevOps Developer,

with 15% of the respondents reporting this role. Interestingly, one participant declared

that they work as a CEO, which was unexpected.

This result confirms the diversity of the audience for this survey, as all participants

who provided an answer stated that they work or have worked in a role related to

development. The roles mentioned included developers, bug fixers, testers, reviewers, and

others, highlighting the varied backgrounds and experiences of those who responded to

the survey.

The Q2.2 question inquired about the participants’ experience in using continuous

integration. The majority of respondents reported having experience with CI, which is

promising for our study as we can leverage their experience for the next set of questions.

Figure 4.2 summarizes the results of this demographic question.

52.9% 17.6%11.8%11.8% 5.9%Q2.2

0 25 50 75 100
Percentage

Category
Highly experienced
Experienced
Neutral
Highly inexperienced
NA

Figure 4.2: Experience of CI usage across participants.

As Figure 4.2 suggests, 17.6% of the respondents said that they are "Highly

Experienced" with CI techniques, 52.9% said that they are "Experienced", 11.8% are "Highly

72

inexperienced", 5.5% are "Neutral", and no respondent mentioned being "Inexperienced".

It is worth noting that 11.8% of the participants did not respond to this question. These

results indicate that the survey was answered by an experienced group in CI techniques.

Lastly, in our Q2.3 question, we asked participants whether they had experience

introducing CI to a project that was not previously following CI. Figure 4.3 presents an

overview of our results.

11.8% 5.9% 82.4%Q2.3

0 25 50 75 100
Percentage

Category
Yes
No
NA

Figure 4.3: Experience level with adopting CI among participants.

Among the respondents, 82.4% of the participants mentioned that they have

some experience in adopting the CI process, whereas 5.9% of the participants declared

that they do not have any experience in the CI adoption process. It is noteworthy that

11.8% of the participants did not respond to this question. This experience is crucial

for our research purposes, as it can provide valuable insights and confirm some of the

findings from our previous study.

Although the number of participants in our study is relatively small, it is

important to note that the group consists of highly experienced developers with a strong

background in the adoption of CI practices. This gives us confidence that the insights

and perspectives gained from our survey are valuable.

73

4.3.2 RQ4 - How the code coverage information is used in the

CI projects?

We analyzed the answers from the perceptions about CI adoption and code

coverage group of questions from the previous section to answer this research question.

Combining the answers for these questions, we can provide a comprehensive overview of

how developers use code coverage in the context of CI.

Initially, we asked participants to express their level of agreement with the

statement "The project XXX systematically monitors code coverage" (Q3.0). As we can

see in Figure 4.4, the majority of participants agreed with this statements.

41.2%5.9%11.8% 23.5% 11.8%5.9%Q3.0

0 25 50 75 100
Percentage

Category
Strongly agree
Agree
Neutral
Disagree
Strongly disagree
NA

Figure 4.4: Participants’ agreement with the statement on systematic code coverage
monitoring.

Among the participants, 53% indicated agreement with the statement that their

project systematically monitors code coverage (41.2% "Agree" and 11.8% "Strongly agree"),

while 11.8% indicated disagreement (5.9% "Disagree" and 5.9% "Strongly disagree"). A

small proportion (11.8%) did not respond to the question. This finding aligns with our

observations from the quantitative study presented in Chapter 3, where we speculated

that the majority of projects in the CI dataset have a culture of monitoring code coverage.

In the following three questions (Q3.1, Q3.2, and Q3.3), we asked respondents

how code coverage monitoring occurs in their projects. In question Q3.1, we asked

participants about how they monitor code coverage. We found that there were three

main approaches:

• Using coverage services (cloud-based solution): 23.5% of participants reported

74

using a cloud-based tool that provides code coverage reporting and analysis. The

most commonly used tool was Codecov.

• Using coverage tools: Among the participants, 29.4% monitored coverage using

reports generated by coverage tools.

• Using mixed approach: 5.9% reported using a mixed approach, where coverage

monitoring was done using both traditional coverage reports and a cloud-based

service.

The remaining participants either did not know how to answer this question or

did not provide any feedback. However, it is noteworthy that none of the participants

explicitly declared that they do not monitor code coverage.

It is worth noting that out of the top 50 most popular Python software projects

hosted on GitHub, a significant majority (86%) use Coverage.py (Hora, 2021). However,

there is currently a trend towards presenting online coverage reports, integrating them

into CI/CD workflows, and facilitating code review. Tools like Codecov1 and Coveralls2

are capable of generating detailed coverage analysis for most programming languages,

making it easier for developers to monitor and analyze their code coverage. Our findings

are in line with this trend.

In question Q3.2, we further explored if the participants support the idea of

systematically monitoring code coverage in their CI pipelines. As shown in Figure 4.5,

35.6% of the participants responded positively, stating that they do support systematic

monitoring. On the other hand, 29.45% responded negatively, indicating that they do not

support it. 5.9% of participants said that it depends on the project context, and 29.4%

did not provide any answer.

Upon analyzing the responses of participants who did not support the systematic

1https://coverage.readthedocs.io
2https://coveralls.io

75

5.9%29.4% 29.4% 35.3%Q3.2

0 25 50 75 100
Percentage

Category
Yes
Depends
No
NA

Figure 4.5: Participants’ opinions on systematic code coverage monitoring in their CI
pipeline (Q3.2).

monitoring of code coverage in their CI pipeline, we found that the most commonly

cited reason was the high resource consumption and effort required to implement such a

process. P8 mentioned that "Not systematic. CI resources spend energy and we need to

save it". This observation is intriguing as it suggests that developers are not solely focused

on productivity in software development, but also on resource constraints concerns. Other

participants shared similar sentiments, with P7 stating that it requires "too much effort

compared to the gain", and P14 describing that it takes "a lot of time".

Analyzing the responses of participants who supported systematically monitoring

code coverage in their CI pipeline, the most frequently cited benefit was the ability to

detect unmaintained parts of the codebase. P4 highlighted the importance of systemati-

cally monitoring code coverage in the CI pipeline to avoid retaining dead branches of

code or untested parts, stating: "To ensure [we are] not keeping dead branches of code,

or untested parts". However, the potential for improving software quality was another

benefit mentioned, although no additional details were provided by respondents who

mentioned this benefit.

Lastly, we inquired about the tools and frameworks that participants have used to

monitor code coverage on a daily basis (Q3.3). The majority of respondents, representing

45.8% of all mentions, reported using Coverage.py. Tied for second place were PhpUnit,

JaCoCo, and OpenClover with 8.3%.

In the Q3.4 question of our survey, we aimed to determine whether code coverage

76

is considered useful when authoring or reviewing code. Our analysis revealed that 80%

of respondents considered code coverage during the authoring process, while 13.3% did

not. 6.7% of participants did not provide any answer. We found a similar result when

analyzing the use of coverage during the code review process. The majority of respondents

(86.7%) made use of code coverage when reviewing code, while only 6.7% did not consider

coverage information, and another 6.7% did not provide any response.

In question Q3.5, we examined whether participants believed that test suites

with high code coverage are more effective in finding faults or at least reducing the search

space for a bug. Our analysis of the responses revealed that 33.3% of participants stated

that test suites with high code coverage are more effective, while 26.7% declared that

they do not believe this to be the case. 6.7% mentioned that the effectiveness of high

code coverage test suites depends on test quality, and another 13.3% were unsure or did

not provide an answer. Figure 4.6 presents an overview of our results.

13.3%13.3% 26.7% 13.3% 33.3%Q3.5

0 25 50 75 100
Percentage

Category
Yes
Depends
Not Sure
No
NA

Figure 4.6: Participants’ views on the effectiveness of high code coverage test suites in
fault-finding (Q3.5).

Our analysis revealed technical reasons that could explain why some participants

did not consider code coverage as an effective test indicator or as a way to reduce the

search space for faults. Among these reasons, inadequate testing was cited as a common

issue. Participants mentioned that code coverage done by "dummy tests" is not helpful

and that tests with high coverage might miss edge cases or unexpected states that cause

faults. P10 argued that coverage only finds faults in simple, well-written standalone code,

which is not representative of most code. They believe that bugs tend to be in higher-level

77

logic and are caused by unexpected states from side effects, which code coverage does

not measure.

As we can see in Figure 4.6, we observed that some respondents had different

views regarding the effectiveness of code coverage in fault-finding. For instance, P15

mentioned that in their experience, achieving 100% code coverage requires re-reading the

code and creating test cases, P15 stated: "Yes. In my experience, that’s true. Getting

to 100% coverage requires re-reading the code and creating test-cases. That’s when most

obvious bugs are eliminated". Similarly, P12 noted that code coverage can flag bugs by

identifying untested code paths, "yes, I have observed that already coverage itself was

able to identify a bug by showing that a code path isn’t followed".

It is worth noting that most of participants suggested not to use high code

coverage as a stipulated quality target. As argued by P11, "No. High code coverage often

means that code is structured to be covered, and protect against dead code". This suggests

that while coverage may be useful in detecting dead code, it may not be adequate for

finding faults in live production code. Furthermore, P13 emphasized that the effectiveness

of code coverage in fault-finding also depends on the quality of tests written. As P13

stated, "It depends on the tests. You can write tests with 100% coverage but not test

for any edge cases where multiple paths are part of the problem". This highlights the

importance of considering the comprehensiveness of test cases rather than just the code

coverage percentage.

In question Q3.6, we asked participants about the code coverage metric they use.

The most common metric used by participants was Statement/Line Coverage with 39.1%,

with participants citing its simplicity and speed as reasons for its popularity. Branch/De-

cision Coverage and Functional Coverage tied for second place at 17.4%, followed by

Statement Frequency Coverage at 8.7% and Path Coverage at 4.3%. Additionally, 8.7%

of participants reported not using any coverage metric, while 4.3% did not provide an

78

answer.

These findings are consistent with those reported by Vassallo et al. (Vassallo et al.,

2016b), as we similarly found that statement coverage was the most commonly mentioned

metric among our survey respondents. This suggests that statement coverage remains a

widely recognized and valued measure of testing adequacy in software development.

Findings 4.3.1

Our study found that developers make use of coverage information both during

the code authoring stage and code reviews. According to the participants, code

coverage is useful for identifying trivial bugs, detecting uncovered code paths,

and potentially preventing bugs and controlling side effects when refactoring or

changing the code’s behavior, thus improving overall software quality. Additionally,

they systematically monitor code coverage, with the primary coverage metric being

statement/line coverage.

4.3.3 RQ5 - Does the adoption of Continuous Integration

increase the code coverage of software releases?

To address RQ5, we analyzed the claims made by participants in the results sec-

tion of our survey. While question Q4.0 directly asked if adopting Continuous Integration

increased code coverage, we also included the other questions from the "Study Results"

section to isolate certain variables and provide a more accurate answer.

In question Q4.0, we specifically inquired participants about the positive asso-

ciation between code coverage and CI, as identified in our study in Chapter 3. Figure

4.7 shows that 46.7% of respondents confirmed the increase in coverage is related to CI

adoption, while 6.7% disagreed with our result. 26.7% reported that they were unsure,

and 20% did not provide an answer.

79

20% 6.7% 26.7% 46.7%Q4.0

0 25 50 75 100
Percentage

Category
Yes
Not Sure
No
NA

Figure 4.7: Participants’ views on positive association between Coverage and CI (Q4.0).

Our findings from research questions RQ1 (Section 3.3.1) and RQ2 (Section

3.3.2) are in line with these outcomes, as we had hypothesized a positive association

between the increase of code coverage and CI, and the majority of participants confirmed

the existence of such a relationship.

20% 6.7% 26.7% 46.7%Q4.0

0 25 50 75 100
Percentage

Category
Yes
Not Sure
No
NA

Figure 4.8: Participants’ views association between coverage fluctuation and CI (Q4.1).

Our results, as presented in Figure 4.8, indicate that 46.7% of the participants

stated that CI has an impact on coverage fluctuation, while 6.7% did not agree with

this statement. 26.7% were unsure about the relationship, and 20% did not provide a

response. These findings are aligned with the results reported in Section 3.3.2.

One scenario that may arise in this landscape is the need to control code coverage

fluctuations due to project requirements. Some participants shared that their companies

set boundaries for code coverage percentages. For example, P9 mentioned that "I’ve

worked for companies that set boundaries for code coverage percentage. Under a certain

percentage didn’t allow any drop in coverage; within a certain range only permitted

fluctuation of +/- 1% coverage; above a certain percentage there was no concern about

slight changes in fluctuation. Drops in coverage were not permitted to be merged without

80

adding tests to improve code coverage". P15 shared a similar perspective, stating that

"If the project is enforcing a certain amount of coverage, there’s way less fluctuation".

Therefore, some projects may adopt policies to avoid significant code coverage fluctuations

after CI adoption.

The most frequently mentioned impact of CI on code coverage is related to

improved monitoring. Many participants highlighted that, in addition to project policies

that may require a certain level of code coverage for code contributions, CI makes it easy

to track changes in code coverage over time, enabling better maintenance. On the other

hand, participants who did not believe that CI had any impact on coverage fluctuations

generally did not provide detailed explanations.

To identify the factors that can impact software quality, we asked the participants

about any development, testing practices, techniques, or tools introduced after adopting

CI that they believed influenced the quality of their projects (Q4.2). We identified

four development and testing practices/techniques/tools that participants believe have

positively influenced the quality of their projects after adopting CI. These include

automatic tests, static analysis, functional tests, and continuous delivery.

Participants most frequently mentioned automated tests as a development or

testing practice that positively impacted their software quality. One participant men-

tioned that automated testing, although not specifically coverage, gave developers more

confidence to advance at a faster pace without fearing breaking anything in production.

Another respondent stated that being able to automatically test on many platforms and

specific problem areas, such as successful compilation and installation, helped improve

their software quality.

One participant provided an interesting insight into the use of functional tests,

stating that they go beyond just unit tests and include tests that represent real scenarios.

These tests are run in a simplified environment to reduce the cost of full integration

81

tests. The participant’s comment highlights the importance of testing not only individual

units but also the interactions between components in a real-world scenario. By using

functional tests, teams can gain a more comprehensive understanding of how their code

performs in practical situations, without incurring the high costs associated with full

integration testing. In addition, P5 mentioned the importance of continuous delivery,

stating that "CD as that has really put the spotlight on producing code that actually really

works on deployment". Finally, a participant mentioned mutation testing, a technique

that can test the quality of test suites by introducing faults into the code and observing

if the tests can detect them.

Regarding tools, the most commonly mentioned one was linter. Participants

highlighted its role in detecting and preventing coding errors and enforcing code quality

standards. There were also mentions of automated AST-based refactoring tools and auto-

mated code-style fixers. These tools were seen as helpful in improving code maintainability

and reducing technical debt.

As part of the study, we asked participants to examine the changes in code

coverage across successive versions of their projects, before and after the adoption of

continuous integration (CI) (Q4.3). We presented the variations in code coverage levels

in a chart and asked participants to identify the main reasons for such changes, including

broken tests, inadequate test culture, code refactoring, and test suite improvement.

An inadequate test culture was cited as the primary reason for negative vari-

ations in code coverage levels across successive versions, as reported by the majority

of respondents. This finding is consistent with the results of our manual investigation,

which was presented in Section 3.3.3. However, during our analysis, we encountered two

noteworthy quotes from participants P4 and P5.

According to a statement by P4, legacy code was the reason for variations in

coverage due to the effort required to set up tests for older code, as described by P4 :

82

"Legacy. Nobody wants to set up tests for older code, as it leads to much yack shaving... ".

There could be several reasons why people might avoid setting up tests for older code. One

reason could be that the code was written a long time ago, and the original developers

may no longer be available to guide how to set up the tests. Furthermore, inadequate

documentation can make it challenging to comprehend how the code operates and create

effective tests for it. Another reason is that testing older code can be time-consuming

and expensive. In some cases, it may require setting up an entirely new development

environment or toolchain, which can be a significant investment of time and resources.

Additionally, the code may not have been designed with testing in mind, making it

difficult to isolate individual components and write effective tests. Legacy code can also

lead to a phenomenon known as "yak shaving," which refers to the process of performing

a series of tasks that are not directly related to the desired outcome but are necessary to

achieve it. This can happen when working with older code because the code may depend

on outdated libraries or technologies or rely on specific hardware or infrastructure that

is no longer available. Consequently, developers may find themselves spending a lot of

time and effort "shaving yaks," i.e., dealing with these ancillary tasks, instead of actually

making progress on the code itself. It can be frustrating and time-consuming and may

discourage developers from working with older code in the first place.

P5 highlighted that fatigue can negatively impact code coverage levels as writing

tests can become monotonous and tedious over time. As P5 describes it, "As the novelty

of gamification fades, writing tests become a chore". This refers to the decreasing interest

or excitement that developers experience over the use of gamification techniques, such

as incorporating game-like elements in the process of writing tests. Several factors,

such as becoming accustomed to the technique or feeling that it is no longer effective,

may contribute to this decline in interest. Consequently, P5 is suggesting that the

initial motivation to write tests that was boosted by the gamification approach may

83

decline, leading to lower code coverage levels. Furthermore, P5 highlighted that writing

comprehensive tests can also be repetitive and unexciting, which can lead to a lack of

motivation and lower code coverage levels. These findings suggest the need for further

investigation into the impact of legacy code on code coverage and the required effort to

maintain high code coverage levels throughout the software lifecycle.

Regarding positive variations, the primary reason was found to be the maturing

process of the project. We also found some mentions to enforce coverage policy after CI

adoption.

Findings 4.3.2

Most of the participants (46.7%) attributed the increase in code coverage to the

adoption of CI. However, this impression could have arisen from testing practices,

techniques, or tools not necessarily related to CI. Therefore, we asked participants

if they adopted any practices after adopting CI. All mentioned practices fell under

the umbrella of CI practices, which strengthens their claim about the association

between CI and coverage. In addition, upon analyzing our answers, participants

also associated coverage fluctuation with the proper use of CI practices.

4.4 Limitations

As an empirical study, our work has several limitations that need to be considered.

Firstly, our conclusions are based on a limited number of respondents. Although our

participants have diverse backgrounds and expertise, including CI adoption experience,

they also share certain characteristics, such as having many years of software development

experience.

Additionally, a significant limitation of our study is the low number of responses,

which limits the generalizability of our findings. Further investigations with larger sample

84

sizes are needed to confirm and extend our results. Besides, our participants are open-

source contributors, so our findings may not be generalizable to developers working in

other contexts, such as companies or organizations that produce non-open-source software

systems.

Regarding the ethical implications of our email invitations, we are confident

that the risks and discomforts associated with the invitations are minimal. We took

precautions to protect the developers’ privacy by not sharing their email addresses and

ensuring that each developer was only invited once. Additionally, each developer was

free to choose whether or not to participate in the survey. Finally, the developers were

unaware of the total number of invitations sent and thus were not subject to any potential

issues related to mass email campaigns.

4.5 Implications

This work has implications for different kinds of stakeholders. Here we discuss

some of them.

Relevance for Researchers

In our study, we investigated the utilization of code coverage information in CI

projects and identified its significant role in the authoring and reviewing process. These

findings suggest a promising direction for future research to explore the potential benefits

of code coverage information during these stages in more detail.

Participants in our study indicated that the increase in code coverage values, as

observed in response to RQ1 (see Section 3.3.1), is linked to the CI adoption. This finding

strengthens our overall conclusions. Furthermore, we suggest that future research should

explore whether the evolution of code coverage is generally correlated with adherence to

CI practices. According to our participants, the observed increase in code coverage values

85

is attributed to test automation. However, further research is required to substantiate this

conclusion. Another potential avenue for future research could investigate the effectiveness

of coverage policies to avoid significant coverage fluctuations.

To expand on our findings, our study revealed that developers encounter chal-

lenges in maintaining code coverage for legacy code. This highlights the need for future

research to investigate strategies and techniques that can help improve coverage for

legacy codebases.

Relevance for Practitioners

In our study, we explored how code coverage information is utilized in CI projects

and found that it plays a significant role during the authoring and reviewing process.

Moreover, our findings suggest that participants believe that leveraging code coverage

can enhance software quality, identify uncovered code paths, and potentially prevent

bugs. This investigation is particularly crucial for decision-makers such as team leaders,

as it can provide insights on how to explore code coverage information to achieve better

software quality.

In our study, we perceived a lack of testing culture as the main reason for notable

code coverage negative variation, which might motivate practitioners to place additional

care in providing testing courses and tools.

Relevance for Tool builders

Our findings suggest that developers take code coverage information into con-

sideration during the authoring and review process. In addition, our work also reveals

that there are multiple factors that can contribute to changes in code coverage levels

(see Section 3.3.3 for additional context). To address this challenge, tool builders should

strive to provide developers with more comprehensive coverage information that not only

shows what changed but also explains why coverage levels have increased or decreased.

86

Our study also has implications for tool builders who create code coverage tools

and services. We identified that developers struggle to determine the reasons why code

coverage may increase or decrease. While current tools show the change in coverage,

they do not provide an explanation for the change. If developers are aware of how their

coverage is changing and are not expecting it to change based on their latest pull request,

they can then evaluate whether their tests are unreliable or if their latest change impacted

the system coverage in unexpected ways. Therefore, tool builders can explore ways to

provide more informative and transparent code coverage data to help developers better

understand the reasons behind the changes in coverage.

4.6 Conclusions

In our survey study, we aimed to explore the relationship between code coverage

and CI by identifying the most active developers from our CI dataset and conducting a

qualitative research analysis. Our findings unveiled several intriguing insights into the

relationship between code coverage and CI, including some less obvious ones such as a

lack of testing culture and the use of coverage during the authoring and review process.

For future research, we plan to broaden the scope of our study by gathering

more responses from a wider range of projects, including those that do not use CI. We

also aim to seek out additional CI projects to increase the number of responses in both

sets. Additionally, we plan to conduct semi-structured interviews with a selected group

of developers from our CI dataset to gain further insights and validate our findings.

Furthermore, we intend to triangulate our results with additional data sources to increase

the robustness of our conclusions.

Another avenue for future research could be to investigate the impact of code

coverage on software maintenance and evolution, and whether it can improve the under-

standability and maintainability of code. Finally, another possible direction for future work

87

is to explore other code coverage metrics and techniques to gain a more comprehensive

understanding of their usefulness in the context of CI.

88

5 Investigating Discussions on Code

Coverage in CI-Enabled Projects:

An Exploratory Document

Analysis

Previous research has demonstrated the benefits of continuous integration (CI)

in enhancing the overall quality of software projects (Soares et al., 2022). However, the

actual interplay between executing automated builds on a CI server and coverage remains

unexplored. We aim to address this gap by empirically investigating the interplay between

pull request discussions and the use of code coverage in CI projects.

This chapter represents the second part of our two-part qualitative study on

the relationship between CI and code coverage. In Chapter 4, we presented a initial

exploratory analysis.

Building upon the positive association between Continuous Integration (CI) and

code coverage demonstrated in our quantitative study (Chapter 3), we seek to delve

deeper into the specific aspects of code coverage that developers discuss during pull

requests. Since pull requests trigger CI builds, by gaining insights into the discussions

regarding code coverage during pull request conversations, we can better understand

89

developers’ approaches to code coverage in the context of CI, identify challenges they

encounter, and explore effective strategies to address these challenges.

In the next section, Section 5.1, we explain the design of our empirical study.

The study procedure is described in Section 5.2. Section 5.3 presents the results and

discussions. The threats to the validity are discussed in Section 5.5. Finally, we draw

conclusions and avenues for future work in Section 5.6.

5.1 Study Setup

In this section, we explain the design of our study. We describe the data collection

process and the adopted methodology for each investigated research question. Figure 5.1

provides an overview of all steps involved in our project selection approach, which are

described over the next subsections.

Figure 5.1: An overview of our methodology.

5.1.1 Projects Selection

To carry out our empirical investigation, we need to generate a dataset containing

many pull request discussions from different consolidated projects that adopted CI at

some point in their history. The dataset should exclude non-relevant projects (e.g.,

90

projects with sporadic traces of activity and contributions). The projects in the CI

dataset presented in Section 3.2.1 fulfilled all these requirements. However, at the time

of our study, the authors of the Faker.js project initiated a new project from scratch and

removed the old project from GitHub. Because of that, we removed this project from our

final dataset (Step 1 of the Figure 5.1).

5.1.2 Data Collection

In Step 2 (Figure 5.1), our goal was to collect the pull request discussions for

each project. Since all projects are hosted on GitHub, we used the GitHub Restful API1

to collect all data associated with its pull requests.

Each pull request contains a series of conversations (i.e., comments) discussing a

few topics concerning the committed code. We consider the whole sequence of conversa-

tions associated with a pull request and the pull request itself as a document. We collect

1,008,588 conversation documents from 104.785 users for our study.

All collected data were saved in a relational database to facilitate future querying.2

5.1.3 Data Filtering

Since our aim is to investigate the discussions about code coverage among

developers, we need to filter the documents that contain such discussions. To identify

these code coverage-related conversations from the documents, we have crafted the

following regular expressions:

"(\y(test(s)?) | (\ycover)” (5.1)

The above regular expression searches for words related to tests and coverage.

1https://developer.github.com/v3/
2The relational database used was PostgreSQL 15.2

91

Specifically, it matches the word "test" or "tests" surrounded by word boundaries, or the

word "cover" also surrounded by word boundaries. The \y in the regular expression is

used to match word boundaries, ensuring that the regular expression matches only the

exact word forms specified. For example, the regular expression will match "coverage" or

"covering", but not "discovery", because the word boundary modifier at the beginner of

(\ycover) part. The | operator allows the regular expression to match either the first or

the second expression.

Consequently, any document that satisfies the aforementioned regular expression

is considered eligible for analysis. Following the implementation of these filters, Step 3 in

Figure 5.1 reveals that 91,256 documents remained out of the original 1,008,588 selected

documents. However, not all matched documents are necessarily related to coverage

discussions. In other words, the regular expression may produce false-positive errors.

We manually inspected each candidate document to eliminate any erroneous

matches in Step 4, as shown in Figure 5.1. At last, a dataset comprising 26,210 documents

was assembled after applying all steps.

5.2 Analysis Procedure

Our objective is to gain insight into the topics and issues discussed by developers

regarding code coverage. To achieve this, we transitioned from the quantitative domain

and adopted a qualitative approach called Document Analysis (Bowen, 2009). One of

the primary advantages of this approach is that documents are considered "unobtrusive"

and "non-reactive", indicating that they remain stable and can be read and reviewed

numerous times without being impacted by the research process (Bowen, 2009).

Our document analysis methodology, depicted in Figures 5.2 and 5.3, comprises

two main phases: (i) an inductive phase; and (ii) a deductive phase.

92

5.2.1 Inductive Phase

The first phase employs an inductive approach to identify the main discussion

topics among developers regarding code coverage. To this end, we considered a represen-

tative sample with a confidence level of 95% and a confidence interval of 5%, resulting in

samples with 380 documents selected from a population of 26,210 documents.

Figure 5.2: An overview of the Inductive phase.

Subsequently, the main and the secondary coder independently scrutinized all

the selected pull request discussions from the same sample and created themes based on

the topics discussed in these pull requests. At last, the main coder discussed the themes

and their meanings with the secondary coder. After several iterations and reflections, a

complete set of themes was generated (see Section 5.3.1 for the complete set of themes).

5.2.2 Deductive Phase

Once the set of themes is created (see Section 5.3.1), the second phase uses

the generated themes to guide our deductive analysis. In this deductive analysis, the

main coder and a third coder independently assessed all documents from the another

representative sample (i.e., a different sample than the one used in the inductive phase).

Unlike the previous phase, this phase focuses on measuring the accuracy of our perception

of the debate within a pull request comment.

Given that our dataset involves a multi-rater multi-label scenario, we employed

both Fleiss’s Kappa (Hripcsak and Heitjan, 2002) and Krippendorff’s Alpha (𝛼) (Krip-

93

Figure 5.3: An overview of the deductive phase.

pendorff, 1970) as measures of inter-rater reliability. Fleiss’s Kappa assesses the level of

agreement among raters when multiple categories are being evaluated and considers the

possibility of chance agreement. It can accommodate nominal, ordinal, or interval data

and is specifically designed for situations in which there are multiple raters and categories

that may only partially agree with one another. Similarly, Krippendorff’s Alpha is a

versatile agreement measure that can handle any level of measurement (nominal, ordinal,

interval, or ratio) and any number of raters. Like Fleiss Kappa, it is capable of handling

partially agreeing raters. Krippendorff’s Alpha offers the advantage of managing missing

data, which is especially helpful in cases where certain items have not been rated by all

raters.

In conclusion, both Fleiss Kappa and Krippendorff’s Alpha are suitable inter-

rater reliability measures for cases where multiple raters and multiple categories are

being assessed and can accommodate partial agreement among raters.

In the context of a multi-label problem where N documents need to be anno-

tated using themes from a set of themes, we adopted the subsequent methodology for

calculating agreement for multi-label annotation. First, we selected a weighted agreement

coefficient, such as Krippendorff’s Alpha and/or Fleiss Kappa, to measure the extent

of agreement among annotators. Next, we determined the method for computing the

distance between two sets of themes. Among the potential alternatives, we considered

94

the MASI distance (Bannard and Callison-Burch, 2005) and Jaccard Jaccard (Salton

and McGill, 1986).

Jaccard distance measures the dissimilarity between two sets by calculating the

ratio of the size of the intersection of the sets to the size of their union. It ranges from 0

(complete similarity) to 1 (complete dissimilarity) (Weng et al., 2008). The formula for

Jaccard distance is:

𝐽(𝐴, 𝐵) = 1 − |𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

Where A and B are two sets, |𝐴 ∩ 𝐵| is the size of their intersection, and |𝐴 ∪ 𝐵|

is the size of their union.

MASI distance is a variation of Jaccard distance that calculates the similarity

between two sets by taking into account the size and overlap of their segments (Frantzi

and Ananiadou, 2000). It ranges from 0 (complete similarity) to 1 (complete dissimilarity).

The formula for MASI distance is:

𝑀𝐴𝑆𝐼(𝐴, 𝐵) = |𝐴 ∩ 𝐵|
|𝐴| + |𝐵| − |𝐴 ∩ 𝐵|

where A and B are two sets, |𝐴 ∩ 𝐵| is the size of their intersection, |𝐴| is the

size of set A, and |𝐵| is the size of set B. MASI distance penalizes for false positives, i.e.,

items that are present in one set but not in the other, and false negatives, i.e., items that

are present in the other set but not in the current set.

The following Table 5.1 summarizes the results obtained for Fleiss Kappa and

Krippendorff’s Alpha, using the Jaccard and MASI distances.

Table 5.1: Inter-rater reliability measures.
Measure Jaccard MASI
Fleiss Kappa 0.6437 0.6159
Krippendorff’s Alpha 0.6288 0.6032

95

Krippendorff’s alpha and Fleiss Kappa are both metrics that measure inter-

rater agreement, with their values ranging from -1 to 1. A value of 1 represents perfect

agreement between the raters, while a value of 0 suggests that the raters are guessing

randomly. Negative values indicate that the raters are systematically disagreeing, which

means that they are not able to come to a consensus on the coding of the data. While there

is no consensus on the cutoff values to use for subjective labels like ‘strong’ agreement

when interpreting Krippendorff’s alpha and Fleiss’ Kappa, some standard guidelines have

been proposed in the literature. In this study, we adopt the interpretation presented in

Table 5.2 (Koo and Li, 2016).

Table 5.2: Interpretation of Krippendorff’s alpha and Fleiss’s Kappa coefficients.
Coefficient Interpretation

0-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement
0.81-1.00 Almost perfect agreement

The results demonstrate substantial agreement across all metrics used (Table

5.1). As a result, we have been able to consolidate the theme set and achieve a high level

of alignment in the meaning of each theme. Finally, the main coder used the final set of

themes to assess all documents in the dataset.

5.3 Results

In this section, we report on the themes that emerged from our document analysis

(Section 5.3.1) and provide an in-depth analysis of each theme (Section 5.3.2).

96

5.3.1 Summary of Themes

In this section, we provide a summary of the themes that emerged from our

document analysis of pull request discussions related to code coverage. These themes were

identified through an inductive analysis of a representative sample of 380 pull request

discussions, gathered from a larger dataset of 26,210 pull request discussions. The themes

represent the key topics and issues that developers discussed in relation to code coverage.

By summarizing these themes, we aim to provide a high-level overview of the main

findings of our study and highlight the most salient points for further discussion and

analysis.

Coverage Measurement. This theme emerges whenever there is an explicit

indication of the need to measure the coverage or coverage report found at issues or pull

requests. This theme represents 16.93% of all mentions.

Coverage Maintenance. Whether there was an effort related to maintaining

or improving coverage. Out of all mentions, 6.06% pertain to this theme.

Encourage Coverage. Whenever there are clear discussions related to encour-

aging coverage. For example, discussions about identifying or requesting to solve a lack

of coverage, requests for coverage tools, etc. We highlighted that 0.53% of all mentions

are classified under this theme.

Reflecting on Coverage. This theme denotes discussions that revolve around

the overall system coverage, such as discussions about coverage level status. This theme

provides insights into how developers evaluate the coverage of a system as a whole and

can reveal patterns or trends in how they approach and think about code coverage. We

pointed out that this theme makes up 1.44% of all mentions.

Coverage Debt. Coverage debt is a term commonly used in software develop-

ment to describe the gap between the actual code coverage achieved by a software project

and the expected or desired level of coverage. This theme emerges whenever there is an

97

explicit indication that the current coverage level is insufficient, but developers fail to

address it due to constraints such as a lack of resources or time to develop and maintain

tests. Our analysis revealed that this theme constitutes 0.22% of all mentions.

Lack of coverage. Whenever there was a report of a lack of coverage. This

theme means that developers recognize that certain features of the software are not

tested, and as a result, potential bugs or errors may remain undetected. It is essential to

distinguish lack of coverage from coverage debt, as the former denotes an issue where

a particular aspect of the software has not been tested, while the latter indicates the

accumulation of gaps in test coverage over time due to various factors, such as resource

limitations or inadequate test design. We drew attention to the fact that this theme

accounts for 0.38% of all mentions.

Coverage Constraints: This theme arises when there are limitations in the

coverage environment that impose restrictions on activities related to code coverage. It is

worth noting that 0.06% of all mentions are attributed to this theme.

Coverage Configuration. This theme refers specifically to the process of

setting up and configuring the coverage analysis tool that will be used to measure code

coverage during testing or existing practices. This can include selecting the appropriate

tool, configuring its settings, and integrating it with the development environment. Our

analysis revealed that this theme constitutes 0.97% of all mentions.

Coverage Support. This theme refers to discussions or actions related to

improving the effectiveness and efficiency of the tools used to measure code coverage. It

can include identifying new tools or features to support coverage analysis, improving the

integration of existing tools with the development environment, or providing training

and support to developers to help them better use the tools. We drew attention to the

fact that this theme accounts for 0.06% of all mentions.

Coverage Computation. Coverage computation is the process of measuring

98

the level of code coverage achieved by software testing. This theme emerges whenever

there are clear discussions on how coverage should be computed. Our analysis revealed

that this theme constitutes 0.03% of all mentions.

Coverage Scope. This code denotes the scope in which coverage will be

calculated. It refers to the extent or range of code that is subject to testing or measurement

in a software project. For example, we will only perform coverage on this module, not

the others. This theme represents 0.03% of all mentions.

Coverage Strategy. This code emerges when there is a plan or guideline for

achieving a desired level of code coverage. It may specify the types of tests to be used,

such as unit tests, integration tests, or functional tests, as well as the coverage metric,

such as branch coverage, path coverage, etc. Additionally, it may also define a schedule

for achieving coverage goals. Out of all mentions, 0.12% pertain to this theme.

Coverage Inquiry. Whenever there were questions or uncertainties related to

code coverage. These discussions aim to clarify and address any issues or gaps related to

code coverage. By addressing these questions, developers can ensure that the coverage

process is comprehensive. This theme represents 0.39% of all citations.

Coverage Challenge. This theme refers to difficulties or obstacles that devel-

opers encounter when attempting to achieve a certain level of code coverage in a software

project, which are unrelated to external constraints in the coverage environment. Our

analysis revealed that this theme constitutes 0.47% of all mentions.

Coverage Threshold. This theme refers to conversations or debates among

developers regarding the minimum acceptable level of code coverage for a given software

project or component. These discussions typically involve establishing a coverage threshold,

the minimum percentage of code that automated tests should cover. Coverage threshold

discussions aim to establish a common understanding among team members about the

level of testing required to ensure quality and reduce the risk of defects in the software.

99

Out of all mentions, 0.01% pertain to this theme.

Unknown. Whenever there is not enough information to classify a document.

This theme represents 1.03% of all mentions.

Unrelated. This theme is used to indicate the presence of a document that is

unrelated to the research and was not filtered out by the screening process. 72.46% of all

mentions are classified under this theme.

5.3.2 In-Depth Analysis of Themes

After identifying the themes that emerged from our document analysis, we now

present an in-depth analysis of each theme. Our aim in this section is to provide a

detailed understanding of the discussion topics (themes) related to code coverage that

developers discussed in pull request discussions. For each theme, we discuss the frequency

of occurrence, the context in which it was mentioned, and the main points that emerged

from our analysis. By delving into each theme, we hope to shed light on the different

perspectives and experiences related to code coverage in software development projects

To ensure a more targeted discussion in this subsection, we will exclude the

Unrelated and Unknown themes from our analysis, as they represent false positives

and unclassified documents, respectively. By excluding these themes, we aim to focus our

analysis on the documents directly related to code coverage, reducing the dataset noise.

Thus, in this section, we only considered the 6,949 documents from 26,210 documents.

Figure 5.4 presents a visualization of the discussion topics (themes) that emerged

from our inductive analysis (detailed in Section 5.2). The main object of analysis, which is

the code coverage, is situated at the center (or root) of the network. The second-level (or

axial) themes are related to discussions on Coverage Strategy, Coverage Issues, Coverage

Report, Coverage Discussions, Coverage Tools, and Coverage Maintenance. The third-level

themes are more specific and are grouped based on their relationship with the second-level

100

themes. Table 5.3 shows the high-level themes and their definitions, except for Coverage

Strategy and Coverage Maintenance, which are defined in Section 5.3.1.

Figure 5.4: An overview of themes that emerged from our inductive analysis.

5.3.3 Coverage Report

The Coverage Report axial theme encompasses reports generated manually or

automatically that indicate the percentage of code covered by tests. In our dataset, we

identified 4537 (17.31%) citations related to this theme, with 4438 (63.87%) citations

relating to Coverage Measurement and 99 (1.42%) to Lack of Coverage.

For instance, we encountered comments expressing concerns about no coverage

at all:"This module (and basically all of mpl_toolkits) currently has no test coverage",

101

Table 5.3: High-level Themes emerged from the Document Analysis.
High-level themes Description
Coverage Report This theme refers to reports that can be generated manually

or automatically, indicating the percentage of code covered by
tests.

Coverage Issues Denotes problems or challenges related to achieving or main-
taining adequate test coverage in software development.

Coverage Discussion Refers to debates and reflections about the current level of code
coverage and the possible implications of it. These discussions
can involve topics such as identifying areas of the codebase
that require additional testing and analyzing the impact of
test coverage on software quality

Coverage Tools This theme refers to conversations or debates among developers
about the different coverage tools or coverage support tools.

low coverage levels, such as: "Numbers are scary low: 50% line coverage, 55% function

coverage, and 23% branch coverage", and positive feedback about good coverage levels,

such as: "Code coverage for this is solid. The only areas to consider improving are: -

Core/HermitePolynomialApproximation - 79% - lots of important looking math is not

called. - DynamicScene/CzmlDefaults.js - 80% - no call to createVisualizers". We also

observed several comments celebrating 100% coverage, such as: "Coverage is 100%, and

all the comments have been addressed. Let me know if there is anything else".

These comments indicate that developers place importance on both overall

coverage and patch coverage. It is worth noting that patch coverage exhibits significant

variability across different projects. Notably, the correlation between patch coverage and

overall coverage, as pointed out by Hilton, Bell, and Marinov (2018), is not evident.

Remarkably, we discovered that certain projects employ distinct coverage metrics,

as mentioned in the initial comment. These metrics can concentrate on specific aspects

of code coverage, such as statement coverage, branch coverage, or path coverage. By

utilizing multiple metrics, projects aim to achieve a more comprehensive understanding

of their codebase and ensure that different coverage criteria are effectively addressed.

Our analysis indicated that the overwhelming majority of coverage reports,

102

approximately 92%, were automatically generated by tools designed to monitor code

coverage, with Codecov3 and Coveralls4 being the most commonly used ones. These tools

perform similar tasks by commenting on pull requests about code coverage.

For projects that adopt these tools, we observed a slight increase in the median

number of comments on merged pull requests. This increase may be attributed to

contributions reducing code coverage, leading to discussions between maintainers and

contributors. We can identify these through the presence of comments related to "lack of

coverage" and "encourage coverage" during the discussions.

Notably, the increase in comments was most pronounced in the initial phase

after the bot adoption, as contributors may have been unfamiliar with the tools’ feedback.

Interestingly, we observed that the median number of comments on merged pull requests

tends to decrease each month after this initial phase. Our observations are inline with the

results report by Wessel et al. (Wessel et al., 2020). The authors reported that after the

adoption of the code review bot, they observed a slight increase in the median number

of comments on merged pull requests. This increase could be due to contributions that

significantly decreased the code coverage, leading to discussions between maintainers and

contributors. This effect was most pronounced in the initial phase after the bot adoption,

as contributors might be unfamiliar with the bot’s feedback. Therefore, we believe that

we detected a similar phenomenon.

In summary, the analysis of the Coverage Report axial theme revealed that

coverage reports, which indicate the percentage of code covered by tests, played a

significant role in the discussions during pull requests. A substantial number of citations

were related to coverage measurement and the lack of coverage. The comments expressed

concerns about no coverage, low coverage levels, positive feedback about good coverage

levels, and celebrations of 100% coverage. These comments indicate that developers place

3https://github.com/marketplace/codecov
4https://github.com/coveralls

103

importance on monitoring overall and patch coverage. Additionally, the analysis indicated

that most coverage reports (approximately 92%) were automatically generated by tools

specifically designed to monitor code coverage. Popular tools like Codecov and Coveralls

were commonly used for this purpose. These tools comment on pull requests about code

coverage, facilitating discussions between maintainers and contributors. Therefore, based

on the findings, it can be concluded that projects do actively monitor code coverage and

engage in discussions related to coverage issues during the pull request process.

Findings 5.3.1

We found evidence that some CI projects are monitoring code coverage, as indicated

by the presence of automatic coverage reports and a substantial number of citations

related to coverage measurement and the lack of coverage. This observation is

consistent with the self-reported monitoring practices of developers mentioned in

our qualitative study (see Chapter 4).

5.3.4 Coverage Issues

The high-level Coverage Issues theme identifies, through PR discussions, debates,

and reflections among developers, the challenges (Coverage Challenge), uncertainties

(Coverage Inquiry) or constraints (Coverage Constraint) related to code coverage in soft-

ware development. Coverage Issues theme comprises only 0.92% of the topics, indicating

that while code coverage is a well-known topic, it is not a significant issue in most of the

projects analyzed.

The Coverage Challenge is the most prevalent issue identified in the Coverage

Issue high-level theme, accounting for 1.76% of all mentions. One of the most common

challenges reported by developers is related to the integration between Continuous

Integration (CI) and coverage tools. For instance, one developer encountered issues

104

generating coverage data using the lcov tool, as shown in the quote, "I’m not entirely sure

what is going on. In travis.yml I’m trying with tape which generates lcov data, but it seems

to fail somewhere". Another developer split tests to avoid timeouts caused by enabling

coverage reports, as indicated in "Split vyos tests to avoid timeouts with coverage".

These examples highlight developers’ significant challenges in seamlessly integrat-

ing their CI systems and coverage tools. The lack of tool integration emerges as a prevalent

challenge developers face, reinforcing the findings of our previous survey study (Chapter

4). During interviews, participants expressed a strong desire for enhanced integration

between their CI systems and coverage tools. These sentiments further underscore the

importance of addressing the issue of tool integration to streamline the development and

testing processes and improve overall code coverage practices.

In addition to the aforementioned challenges, developers encounter difficulties

when dealing with enabled coverage reports for browsers, determining when tests are

completed, and notifying workers of completion, as mentioned in "enabled coverage reports

for browsers Solves #8632: Yes. You still need to figure out when the tests have completed

and notify the worker of completion". The quote, "With coverage enabled, the 2016 hosts

are getting close to the group limits and sometimes even exceed the timeouts", highlights

the challenge of enabling coverage while encountering timeouts and exceeding group

limits.

Moreover, while CI tools offer flexibility in their usage, they often require

extensive configuration, even for simple workflows. This complexity is further amplified

when integrating with coverage tools, making the process more challenging for developers.

In light of these challenges, developers must carefully navigate the complexities

of enabling coverage reports, managing test completion, and integrating coverage tools

within their CI workflows. Finding effective solutions and streamlining the configuration

process can help alleviate these difficulties and facilitate seamless integration between CI

105

and coverage tools.

Finally, the quote, "To my knowledge, we are working through some testing

decisions about how we will properly test both process models without overloading the CI

infrastructure, but still get enough coverage", highlights the challenge of balancing testing

needs and CI infrastructure. The developer is trying to test both process models without

overloading the CI infrastructure while still ensuring enough coverage.

Interestingly, our findings reveal that developers often face trade-offs between

test execution speed and coverage accuracy. Nevertheless, the incorporation of extra

tests within the CI pipeline may decrease the overall efficiency of the process, which is

also viewed as a concern by developers. Rothermel et al. identified a trade-off between

accurately testing code and managing build times as a challenge (Rothermel et al., 1999).

This trade-off also affects coverage reports. Tool developers can assist developers by

creating tools to conveniently execute subsets of their testing suites (Yoo and Harman,

2012).

Another frequently encountered problem is related to coverage services, as

evidenced by comments such as (I) "Coveralls seems to have issues again", (II) "Coveralls

seems to be drunk", (III) "Code coverage with Coveralls won’t work correctly anymore", and

(IV) "The coverage results are not uploaded at all now". Surprisingly, issues with traditional

coverage tools like coverage.py and Istanbul were less common. Our analysis suggests

that both CI services and code coverage tools have significant room for improvement.

This finding is consistent with the results reported by Zampetti et al. (Zampetti

et al., 2019), who also found that CI pipeline misconfiguration was a common topic in

Pull Request discussions.

In the Coverage Inquiry theme, which accounts for 1.48% of all mentions, we

did not identify any predominant topic. We found debates about coverage services and

tools similar to the previous theme. However, we noticed some discussions about how to

106

interpret the coverage reports generated by the tools. For example, developers questioned

the reason for coverage reports dropping even though it had increased ("Not sure why

coveralls is complaining of coverage dropped, as it actually increases...? !"). Another

issue was that Istanbul sometimes showed code as not covered by tests ("Besides that,

for some reason Istanbul shows as if my code is not covered by the tests I wrote. Any

ideas?"), leading to confusion. These comments often stemmed from misunderstandings

about coverage concept and how local changes made in a pull request can affect the

overall coverage.

The literature shows no correlation between patch coverage and overall coverage

(Hilton, Bell, and Marinov, 2018). In other words, having high patch coverage does not

necessarily increase non-patch coverage.

Moving on to the Coverage Constraint theme, it denotes constraints in the

coverage environment that limits the developers’ activities regarding coverage. The most

common constraints were related to compatibility issues or other limitations in the

development, as shown in the following quotes: "Add ansible-test constraint to avoid

coverage 5.0+" and "Update constraints for coverage on Python 3.8". It is worth noting

that 0.24% of all mentions are attributed to this theme.

We found some quotes emphasizes the challenges of testing GUIs, particularly

in terms of ensuring good test coverage due to the complexity of managing multiple GUI

frameworks in the test process. For instance: "We do not have good test coverage on the

UI interaction (which is why the bug slipped in!) because GUI testing is just hard to begin

with and due to difficulty in managing multiple GUI frameworks in the test process..

Testing GUI (Graphical User Interface) can be challenging due to the complex

interaction between the user and the system. Unlike testing individual functions or

methods, GUI testing involves testing how users interact with the system through various

inputs, events, and navigation. This complexity requires consideration of various factors,

107

such as data validation, screen layout, and error handling. GUI testing is time-consuming

and requires specialized tools and techniques to ensure complete coverage of all possible

user scenarios and system states. Testers must ensure that the GUI is tested under

different conditions, such as different screen resolutions and input devices. Additionally,

GUI testing is more susceptible to changes in the user interface design, making it necessary

to update and maintain test cases as the system evolves.

One noteworthy quote that stands out is: "Coverage could show more than just

a line number. This. I like all the new fancy null coalescing functionality that PHP now

has, but I very much dislike how it hides coverage PCOV can’t generate path coverage,

but even if it could, I don’t think that Codecov supports it". This quote not only highlights

a limitation of Codecov on supporting PHP’s coalescing functionality, but also raises

a broader issue with how we perceive and interpret code coverage. It underscores the

importance of not relying solely on code coverage ratios as a measure of testing quality

and instead considering other factors that could impact the reliability of our tests, such

as non-deterministic behavior and changes to covered statements.

Findings 5.3.2

Developers commonly report challenges related to integrating coverage tools with

Continuous Integration (CI), with compatibility issues between local and CI server

environments being a critical factor in coverage within CI environments. Our

findings related to Study 1 / RQ3 (see Section 3.3.3) support it, as we identified

integration problems as a main reason for decreased coverage and observed several

mentions of compatibility issues.

108

5.3.5 Coverage Discussion

We have consolidated the Reflections on Coverage and Encourage Coverage

themes into an axial theme called Coverage Discussion because both themes represent

debates around the ideal coverage level. By examining the conversations and debates

surrounding code coverage, we can gain insights into how developers use the coverage

information and implement code coverage practices.

In our dataset, we identified 517 (1.97%) citations related to this theme, with

377 (5.43%) citations relating to Reflections on Coverage and 140 (2.01%) to Encourage

Coverage.

The Reflections on Coverage themes group comments or feedback from developers

on the current state or effectiveness of code coverage. These reflections may include

observations, insights, or critiques on the current coverage, suggestions for improving

it, or discussions about how to interpret or use coverage metrics. For example, the

comment "I guess that a lesson learned from all this is that test coverage is high but not

totally effective." indicates that code coverage alone is not always a reliable effectiveness

indicator.

Research studies typically prioritize evaluating the effectiveness of fault prediction

criteria and identifying approaches that can detect the most faults. However, from a

developer’s perspective, the more common question is whether it is worthwhile to allocate

additional effort to improve a specific test suite (Gopinath, Jensen, and Groce, 2014).

We also found comments indicating that code coverage provides developers with

a sense of confidence, such as in the comments "I guess the best way to be convinced that

it’s correct would be to have enough test coverage, especially since it’s easy to verify if

an indefinite integral is correct." and "And will be worth the effort spent in coverage -

especially since our notification system has been a bit dodgey."

Most of the comments within the Reflections on Coverage theme are related to

109

discussions about the level of code coverage achieved in the project. These discussions

may include observations or critiques about the current coverage level, suggestions for

how to improve coverage, or debates about the appropriate level of coverage to aim

for. For example, comments such as " Code coverage for this is solid. The only areas to

consider improving are ... ", "Coverage is great", and "I don’t believe we should strive for

100% test coverage. It’s really not about the percentage, but more about covering what

needs to be covered and maintaining that.".

We can deduce that developers engage in discussions regarding the desired level

of testing for each project and consider the allocation of resources necessary to achieve a

specific coverage level. Some projects may prioritize extensive and thorough testing, even

if it results in slower execution times. On the other hand, some developers express the view

that achieving 100% test coverage may not be necessary, emphasizing the importance of

covering what needs to be covered and maintaining that level. According to the literature

(Chen et al., 2020), a higher level of code coverage, which typically necessitates larger

test sets, is associated with an increased probability of detecting faults. Consequently,

developers may take this into consideration when determining the appropriate level of

testing and allocating resources for their projects.

Regarding the Encourage Coverage theme, the majority of comments are related

to encouraging developers to provide more coverage. However, we also found comments

indicating that developers consider patch coverage during the code review process. For

example, one comment stated, "Yes. There are a few significant lines that are not covered.

(I left comments above.) Since this is new code, the best time to get it covered is while

all the code is fresh in mind." This suggests that covering newly added code as soon

as possible is a good practice, which shows that coverage debt, a theme also found in

our analysis, should be avoided. When new code is added to a project but not covered

by tests, it creates a gap in the test coverage that represents coverage debt. This debt

110

will need to be paid off eventually by writing tests to cover the code, but the longer it

remains uncovered, the higher the risk of undetected errors or bugs. Therefore, addressing

coverage debt as soon as possible by writing tests for newly added code can help to

reduce the risk of bugs and improve overall code quality.

During our analysis, we came across comments that pertained to incidental

code coverage. This term refers to the unintentional coverage of code that occurs when

tests designed for other purposes inadvertently cover additional code. It is important to

notice that incidental coverage is considered a false positive, as it can create a deceptive

perception of adequate testing quality. An example of this situation is when our test suite

executes all of our code, but there are certain routines or segments that lack dedicated

tests. This undermines the accuracy of the coverage metric since it may give a false

impression of comprehensive testing. We came across a comment illustrating the challenge

of managing incidental coverage in practice: "I would also like to remove the dependency

on these tests. However, they currently provide incidental code coverage for parts of

Ansible that are not covered by other tests. Once the ansible-base migration has been

completed, we can start working on replacing these (and other tests), providing intentional

coverage.".

The mentioned comment implies that incidental coverage can be advantageous in

certain scenarios. For instance, incidental coverage can be helpful if the goal is to achieve

100% coverage. However, relying solely on incidental coverage falls short of harnessing the

full potential of the test suite. It is important to recognize that changes or improvements

made to the application can occur without the reassurance of a comprehensive regression

suite. Therefore, while incidental coverage may offer some benefits, it should not be

considered as the primary method of testing code, as it may leave gaps in test coverage

and pose risks in maintaining code quality.

111

Findings 5.3.3

• Considering the discussions about coverage, the most common comments

are related to coverage levels, which reinforce our impression about coverage

monitoring as mentioned in the previous section. In addition, these concerns

were also expressed by developers during the survey (Section 4.3.3).

• In addressing Study 1 - RQ3 (section 3.3.3), we did not identify any discernible

coverage prioritization for newly added code over preexisting uncovered code.

Although some participants mentioned the importance of covering new lines,

the frequency of such comments (approximately 0.14%) was not significant

enough to suggest a systematic movement towards prioritizing new code

coverage. Our findings suggest that the coverage of new code is not a dominant

concern in the surveyed projects.

5.3.6 Coverage Tools

The axial theme Coverage Tools refers to conversations or debates among de-

velopers about the different tools available for measuring and supporting code coverage

in software development. These discussions may include topics such as the benefits and

limitations of different coverage tools, how to configure and integrate coverage tools into

the development process, and best practices for using coverage tools effectively.

In our dataset, we identified 268 (1.02%) citations related to this theme, with

253 (3.64%) citations relating to Coverage Configuration and 15(0.22%) to Coverage

Support.

The theme of Coverage Configuration, which deals with configuring code coverage,

was the most frequently discussed, comprising 94.40% of the comments in regarding

Coverage Tools axial theme. Many of these comments focused on issues related to the

112

Coverall and Codecov tools, which are the most commonly used coverage servers in the

market. Despite their popularity, developers still encounter challenges in configuring

these tools effectively. The quotes "removing coveralls support for Ruby 1.9.2 in hopes of

fixing #1921" and "Disable coveralls on travis with jruby" describe two actions taken to

address issues related to Coveralls. In the first case, support for Ruby 1.9.2 was removed

in the hopes of resolving a specific problem. In the second case, Coveralls was disabled

on Travis, a CI platform, when running with JRuby.

The remaining of comments in the Coverage Configuration theme were related

to coverage tools specific to each project and programming language, such as Istanbul

and Coverage.py. For example, in the quote "Backport PR #22326: CI: ban coverage 6.3

that may be causing random hangs in fork test", the proposed change involves banning

the use of version 6.3 of the Coverage.py tool in the CI environment due to its tendency

to cause "random hangs" during "fork tests".

The existing literature has already recognized the trade-off between flexibility

and simplicity that developers encounter (Hilton, Nelson, et al., 2017). This trade-off

requires developers to strike a balance between harnessing the flexibility and power

offered by highly configurable coverage and embracing the ease of use associated with

simplicity. In general, systems that are overly configurable tend to have a negative impact

on usability (Xu et al., 2015).

We identified 15 (0.22% of all mentions) comments related to the Coverage

Support theme, as described in Section 5.3.1, which pertains to the underlying tools and

infrastructure that support the coverage environment. Some examples of these comments

include: "It turns out that the tool can be used to convert multiple JSON files at once, so

it is not necessary to try and merge all coverage files!" and "Try using phpdbg to speed up

coverage build.". These comments suggest that developers are actively seeking ways to

improve the efficiency their coverage tools and processes.

113

Findings 5.3.4

• Our investigation revealed that configuring the coverage environment poses

a challenge for both the use of coverage services and traditional coverage

methods. These findings align with those presented for Study 2 - RQ4 (Section

4.3.2), where developers reported that monitoring coverage in the CI pipeline

may not be worth the effort.

• Developers seek coverage tools that balance high flexibility and ease of setup

and maintenance. However, there is a trade-off between these two objectives,

as increasing configurability introduces complexity while simplification aims

to reduce complexity.

5.3.7 Coverage Strategy

The axial theme of Coverage Strategy encompasses all discussions related to

the approach, plan, or guidelines that a development team employs to attain a desired

level of code coverage. It is composed of two sub-themes: Coverage Scope and Coverage

Computing.

In the Coverage Strategy theme, we identified discussions primarily focused on

determining the appropriate coverage metric, as exemplified by the following comment:

"We should definitely test method coverage somewhere. That would be a good place to test

if cdef class methods are properly covered, and, thus, we’d test cdef classes in combination

with coverage."; deciding on the best approach to achieve coverage, as illustrated by: "Split

each C# module into its own test target, making it easier to determine what is covered

and to separate them from the repository in the future.". The developers also suggest

how to effectively address coverage, as evident in the following quote: "There should be 3

separate status indicators: (1) Overall library coverage, (2) Percent of coverage for the

114

changes, (3) Number of lines covered in the tests" which indicate that the developers are

actively seeking ways to improve their coverage monitoring practices. This theme stands

out as it represents 0.73% of all mentions.

We discovered 8 (0.12%) occurrences related to the Coverage Scope debates. For

instance, comments such as "We should only measure coverage for one Python version.

The slow tests probably shouldn’t be counting toward coverage anyway", "Maybe we should

only do coverage testing for the non-slow tests on one Python version", and "Code-coverage

scope is limited to codes under whitelist config" provide insight into the type of code that

is intentionally excluded from coverage reports. Moreover, we identified some comments

highlighting flawed coverage reports, such as "One disturbing thing I notice is that core

tests cover a small percentage of the code; the actual coverage is much higher when

other non-core code uses the core. It seems like the tests for a given module should

address coverage or else when non-core (for example) tests are changed you could be

changing the coverage of the codebase." These comments expose potential issues with

coverage analysis that could be harmful to the project.

The Coverage Computing theme accounted for 12 (0.17%) of the total citations

and encompasses discussions related to the computation and interpretation of code

coverage metrics. This theme also involves the Coverage Threshold theme, which pertains

to establishing a minimum acceptable level of code coverage.

The discussions related to the Coverage Computing theme highlights the chal-

lenges that developers face when trying to compute the coverage metric. An example of

a discussion related to the Coverage Computing theme is: "Despite adjusting limits and

boundaries, these tests sometimes fail. Continuously increasing the coverage threshold

undermines the purpose of these tests, and instead, we can skip them when generating

coverage." The comment suggests that despite adjusting the limits and boundaries, the

tests sometimes fail. The person who made the comment also suggests that continuously

115

increasing the coverage threshold undermines the purpose of these tests, which is to

ensure adequate test coverage. Instead, the comment suggests that developers should

skip the tests that fail to achieve the desired coverage level when generating coverage

metrics. This comment reflects a common concern among developers about the trade-offs

between test coverage and the costs of maintaining and updating test suites.

We also identified 3 (0.04%) citations that fell under the Coverage Threshold

Discussions theme. These comments focused on debates surrounding the appropriate

level of coverage threshold. For instance, one comment suggested setting the threshold at

-0.01%, which would force developers to pay attention and merge coverage-decreasing

pull requests sparingly.

Findings 5.3.5

Within the Coverage Strategy theme, we observed that discussions primarily cen-

tered around determining the most appropriate coverage metric to use. This finding

aligns with our expectations since, in Study 2 - RQ4 for questions Q3.5 and Q3.6

(see Section 4.3.2), developers reported varying coverage metrics and expectations

regarding their usage. These differences in opinion can lead to debates among

developers as they consider which metric is most appropriate for a given project,

considering the project’s goals and constraints. As such, our results highlight the

importance of carefully considering which coverage metric to use and engaging in

collaborative discussions with other developers to ensure that the chosen metric

aligns with the project’s needs.

5.3.8 Coverage Maintenance

The Coverage Maintenance axial theme captures the actions taken by developers

to attain the desired level of code coverage, as seen in examples such as "Improved Code

116

Coverage from 54.55% to 77.27% for ...", "Added a regression test to ensure we don’t

do this in the future.", and "Improved Coverage for Series module". We identified 1647

occurrences (22.68% of the total) related to this theme.

The Coverage Maintenance theme consists of the Coverage Debt theme, which

refers to comments about coverage debts, or gaps between the actual coverage level

and the expected or desired level of coverage. Out of the total occurrences within the

Coverage Maintenance axial theme, 58 (which represents 3.52%) were related to coverage

debts. We identified two main reasons for these coverage debts: (1) the difficulty of

writing tests, as evidenced by comments like "I haven’t found any test that currently

evaluates this function, so adding a test case wasn’t as easy as expected. Because of this,

I provided this fix without any test.", "Please let me know if you have any solution to

this so I can increase the test coverage.", and "The test coverage for finding the roots of

quartic polynomials and finding the grazing altitude location are around 70%-80% because

it’s difficult to come up with equations/rays for all cases."; and (2) the effort required

to maintain the tests, as demonstrated by comments such as "Covering tests for CLI

outputs is not that worthwhile and too hard to maintain. Otherwise, we’d have to add

tests for every error message we display too.", and "Writing a test for it might be more

trouble than it’s worth though [...]".

117

Findings 5.3.6

The coverage maintenance theme represents the second most recurrent topic,

accounting for 22.87% of all comments. This result is in line with both our quanti-

tative study (see Chapter 3) and survey (see Chapter 4), as it reflects the actions

taken by developers to improve coverage. These studies predicted a significant

volume of such actions, given that we detected an increase in coverage. Therefore,

this finding corroborates the results of both studies. Additionally, we observed

a reduced number of discussions related to coverage debt. This was an expected

result, given that our findings from RQ1 (Section 3.3.1) indicate that CI projects

tend to stabilize at higher coverage levels.

5.4 Implications

This work has implications to different kinds of stakeholders. Here we discuss

some of them.

Relevance for Research

Our research opens avenues for future empirical studies that address projects that

have not adopted Continuous Integration (CI) practices. By examining the discussions

on code coverage in pull requests from both types of projects and comparing the results

with those of this study, we can identify potential differences in development practices

and priorities. Specifically, we can investigate whether there is a significant difference

in the emphasis placed on coverage between the two groups and gain insights into how

NOCI projects approach and use coverage. This analysis can shed light on which CI

practices effectively impact coverage and help explain why NOCI projects may struggle

to maintain high coverage levels.

118

Relevance for Practitioners

We have identified several themes related to code coverage in the comments of

pull requests. By pinpointing common themes related to coverage, our research can assist

practitioners in understanding the intricacies involved in achieving and sustaining an

adequate code coverage level, and in devising strategies for enhancing their coverage

practices. Furthermore, our research can help practitioners discover tools and practices

that can be employed to boost their code coverage efforts.

In additional, tool developers can leverage our research findings to better un-

derstand the practical needs and challenges of developers related to code coverage. By

considering these insights, tool builders can improve their tools to provide more effective

solutions for monitoring, maintaining, and enhancing code coverage.

5.5 Threats to the Validity

5.5.1 Construct Validity Threats

The construct validity of a research design refers to its accuracy in measuring

what it claims to measure. Potential threats to construct validity are primarily related

to the data collection process. To mitigate this threat, we relied on a validated and

consolidated dataset from a previous study (Nery, Costa, and Kulesza, 2019).

5.5.2 Internal Validity Threats

Internal threats are concerned with the ability to draw conclusions from the

relationship between the dependent variable (code coverage) and independent variables.

In terms of our qualitative analyses, it is important to acknowledge that there

is always the potential for bias resulting from the authors’ subjective experiences. It is

possible that different experiences could lead to different themes emerging from the data.

119

However, we employed rigorous qualitative methods to mitigate these potential threats,

such as recruiting multiple coders and calculating inter-rater agreement measures. To

establish a common vocabulary and standardize the understanding of the themes, we

conducted both deductive and inductive phases on a sample with a 95% confidence level

and a 5% interval. Once the themes were confirmed by two independent coders, the main

coder applied them to the entire dataset.

Moreover, it is important to recognize that inductive analysis is an ongoing

process and the emergent themes may not be exhaustive. Therefore, the themes identified

in our study should be taken as a foundational framework that can be further refined

and improved by future researchers.

In conclusion, while our approach may not be flawless due to our lack of technical

or domain knowledge comparable to that of a developer from our chosen projects, we are

still able to assess the topics debated when analyzing pull request comments.

5.5.3 External Validity Threats

External threats represent the extent to which we can generalize our results to

other environments (e.g., other software projects).

The open-source projects analyzed in this study are hosted on the GitHub

platform and use Travis-CI as their continuous integration (CI) service. It is important to

note that our findings are limited to the context of these specific projects. Further research

is required to replicate our study and explore whether the results can be generalized to

other projects with varying characteristics.

5.6 Conclusions

Our research focuses on investigating the relationship between code coverage

and continuous integration (CI) by analyzing qualitative data. To achieve this goal,

120

we conducted a document analysis of 30 CI projects using a two-step approach: an

inductive analysis and a deductive analysis. We found several themes related to code

coverage in the comments of pull requests, representing the key issues and topics that

developers discuss regarding code coverage. These themes include Coverage Measurement,

Coverage Maintenance, Encourage Coverage, Reflecting on Coverage, Coverage Debt, Lack

of Coverage, Coverage Constraints, Coverage Configuration, Coverage Support, Coverage

Computation, Coverage Scope, Coverage Strategy, Coverage Inquiry, Coverage Challenge,

and Coverage Threshold. By analyzing these themes, we gained valuable insights into

how developers approach and think about code coverage and identified potential gaps

and issues related to code coverage in software development projects.

121

6 Related Work

In this chapter, we review previous studies related to continuous integration

and code coverage, providing a comprehensive understanding of the current state of the

related work and identifying gaps that this thesis aims to address.

This chapter discusses previous work on CI and code coverage, highlighting the

strengths and limitations of different approaches. We begin by reviewing studies that

investigate the impact of CI on software development, including its effects on quality,

productivity, and team collaboration (Section 6.1). We then discuss research that focuses

specifically on code coverage (Section 6.2).

6.1 Previous CI Studies

Several authors have listed a set of practices and principles related to CI (Duvall,

Matyas, and Glover, 2007; Vasilescu, Schuylenburg, et al., 2014; Soares et al., 2022),

and existing research have used these practices/principles to evaluate the usage of CI in

software projects.

Felidré et al. (Felidré et al., 2019) observed, through the analysis of 1,270 open

source projects using TravisCI, that about 60% of the studied projects did not follow

adequate CI practices. They studied four bad practices: (1) performing infrequent commits

to the mainline repository; (2) building a project with poor test coverage; (3) allowing

the build to remain in a broken state for long periods; and (4) using CI with long build

122

durations. They observed that 748 (60%) projects face infrequent commits, and the

average code coverage for 51 projects was 78%.

Elaszhary et al. (Elazhary et al., 2021) also discuss the benefits and challenges of

CI practices. The authors found that CI practices are broadly implemented but how they

are implemented varies depending on the project context and their perceived benefits.

Santos et al. (Santos, Alencar da Costa, and Kulesza, 2022) studied how CI

sub-practices may influence the productivity and quality of open-source projects. They

analyzed the build duration, build activity, build health, the length of time to fix a

broken build, and the commit activity sub-practices, in 90 open-source projects, over a

period of two years. The authors found a correlation between build activity and commit

activity with the number of merged pull requests. They also found a correlation between

build activity, build health, and time to fix broken builds with the number of bug-related

issues. The authors also report that projects with the best values for CI sub-practices

face fewer CI-related problems.

Bernardo et al. (Bernardo, Costa, and Kulesza, 2018) empirically investigated

the impact of adopting CI on the time-to-market of new features. The authors analyzed

162,653 PRs from 87 GitHub projects to explore the factors that affect the delivery

time of these PRs. They reported that only 51.3% of the projects merged pull requests

faster before adopting CI. The authors also observed that the number of PR submissions

increased considerably after CI adoption. They reported that CI might not necessarily

reduce the time to deliver features.

Vasilescu et al. (Vasilescu, Yu, et al., 2015) studied the quality and productivity

outcomes regarding CI on GitHub. The authors analyzed the code quality (e.g., the

number of bug reports raised in a project each month) and team productivity (e.g.,

efficiency on pull request integrations). Their findings reveal that CI improves productivity

without reducing code quality. Zhao et al. (Zhao et al., 2017) empirically investigated

123

the impact of CI in development practices. They studied the CI transition of projects

using an RDD model, exploring variables such as commit frequency, code churn, pull

request closing, and issue closing. They concluded that PRs are more frequently closed

after adopting Travis CI.

Compared to previous studies, our research provides a comprehensive and in-

depth analysis of the relationship between Continuous Integration (CI) and code coverage,

both qualitatively and quantitatively. Unlike prior works, our primary focus is to examine

the coverage evolution in CI projects and determine whether CI have any impact. Thus,

our study complements existing research by providing a novel perspective on the empirical

body of knowledge related to CI.

Zampetti et al. (Zampetti et al., 2019) investigated the relationship between Pull

Request discussions and Continuous Integration build failures. Although the quantitative

analysis showed that the build status had limited impact on PR merging, the qualitative

analysis highlighted that PR discussions primarily focused on testing and static analysis

issues, with a significant number of discussions revolving around CI pipeline configuration

problems. The study emphasized the challenges in configuring and maintaining a CI

pipeline, which may lead to maintenance difficulties or unnecessary build failures despite

the advantages of automated continuous builds. Similar to previous studies, we utilized

pull request discussions as a primary data source for our qualitative analysis. However, our

approach differed from prior research which focused on how developers use CI outcomes

and build logs during code review. Instead, we examined discussions related to code

coverage within pull request discussions. Additionally, we conducted a quantitative study

to complement our previous work and provide an overview of how coverage evolves when

adopting CI practices.

Pinto et al. (Pinto et al., 2018) conducted a survey of 158 users of continuous

integration systems to investigate the benefits and problems associated with their use.

124

The findings revealed that developers are uncertain about how to define a successful

build, often due to factors such as flaky tests or misconfigured CI jobs.

A survey conducted among 152 developers at a large financial organization by

Vassallo et al. (Vassallo et al., 2016b) investigated their adoption of Continuous Integration

and delivery pipeline in their development activities, focusing on managing technical

debt and test automation practices. The survey results provide insights into the adoption

of agile methods in practice and challenge common assumptions and findings from other

studies in some cases. In addition, the authors found that statement coverage was the

most frequently mentioned coverage metric. Specifically, 84% of the respondents reported

striving for a coverage level of at least 80% when considering statement coverage. Similar

to Vassallo et al. (Vassallo et al., 2016b), we conducted a survey with developers. However,

our study aimed to gather insights into how developers utilize coverage information during

pull requests, contrasting with their investigation of the impact of continuous integration

on code quality and testing practices. Moreover, we analyzed the growth of code coverage

to gain insights into whether it has been increasing or decreasing since before CI was

adopted. This allowed us to understand further the impact of CI on code coverage in the

studied projects.

To the best of our knowledge, our work is the first to focus exclusively on

investigating the evolution of code coverage by (i) comparing the trends in coverage

evolution in both NOCI and CI projects, (ii) applying multiple regression models to

analyze potential effects of an intervention (in our case, the adoption of CI), and (iii)

conducting a qualitative study to complement the quantitative analyses.

6.2 Previous Coverage Studies

Code coverage is a topic largely explored in existing literature (Hilton, Bell, and

Marinov, 2018; Ivanković et al., 2019; Nery, Costa, and Kulesza, 2019; Aghamohammadi,

125

Mirian-Hosseinabadi, and Jalali, 2021; Kochhar et al., 2017). Many coverage criteria

have been proposed, such as statement, branch, and path coverage (Aghamohammadi,

Mirian-Hosseinabadi, and Jalali, 2021).

Grano et al. (Grano et al., 2019) presented a study about the possibility of using

source-code metrics to predict the coverage achieved by test data generation tools using

a Random Forest Regressor. The authors studied 79 factors belonging to four categories

that might correlate with branch coverage. Our work also aims to evaluate the code

coverage of CI projects, but instead of predicting a possible branch coverage for a specific

software version, we study the association between the adoption of CI and code coverage.

Zaidman et al. (Zaidman, Van Rompaey, Deursen, et al., 2011; Zaidman, Van

Rompaey, Demeyer, et al., 2008) studied whether production code and developer test

code co-evolve. They investigated the version system, code coverage reports, and code size

metrics of software projects. The authors examined class coverage, method coverage, and

statement coverage for two Java projects. The findings reveal that code coverage positively

correlates with the percentage of test code in the system. Our research complements their

work (Zaidman, Van Rompaey, Deursen, et al., 2011; Zaidman, Van Rompaey, Demeyer,

et al., 2008) by investigating the relationship between code coverage and CI adoption.

Hilton et al. (Hilton, Bell, and Marinov, 2018) performed a large-scale study

about code coverage evolution over 7,816 builds of 47 projects. The authors observed

that simply measuring the change to statement coverage does not capture the nuances

of code evolution. Thus, fine-grained analysis (i.e., changed statements in commits) is

needed to better capture coverage changes over time. Our work differs from their work

by investigating the relationship between CI and code coverage evolution for a period of

2 years. Differently from our work, Hilton et al. (Hilton, Bell, and Marinov, 2018) only

considered the last 250 commits of the projects, which may not capture the evolution of

code coverage over time.

126

Hora (Hora, 2023) investigated code that is excluded from coverage reports. The

author analyzed popular Python projects to investigate commit messages and coverage

documentation. The author also computed test coverage by running test suites. The

main findings reveal that (1) over 1/3 of the projects perform coverage exclusion; (2)

75% of the code is already created using the exclusion feature; (3) developers exclude

non-runnable, debug-only, defensive code, platform-specific and conditional importing;

(4) most code is excluded because it is already untested, low-level, or complex; and (5)

code exclusion may impact test coverage. Unlike our work, the author’s focus was on

analyzing practices related to the exclusion of code coverage.

The closest work to ours is the study by Nery et al. (Nery, Costa, and Kulesza,

2019). The authors studied the relationship between CI and test ratio, and coverage. They

compared 82 projects that eventually adopted CI (CI projects) and 82 projects never

adopted CI (NOCI projects). The authors observed that the adoption of CI is associated

with a consistent increase of test ratio. They also reported that test ratio is largely

explained by the project inherent context rather than by the source code or development

process. However, regarding code coverage, their study analyzed a small number of

projects and versions (10 CI projects and 10 NOCI projects), which, unfortunately, yields

little empirical evidence to support their results. Also, the work by Nery at al. (Nery,

Costa, and Kulesza, 2019) did not employ the RDD analysis, which is more appropriate

for checking the potential effects of an intervention (in our case, the adoption of CI).

Lastly, our work investigated the type of changes that impact the code coverage in

different directions (e.g., addition of new and uncovered lines vs. deletion of existing and

uncovered lines) instead of considering code coverage as a single-dimensional measure.

Finally, our work distinguishes itself from theirs by incorporating a qualitative study.

Including qualitative research methods provides a unique perspective and adds depth

to our findings. By delving into pull request discussions about coverage, we uncovered

127

valuable insights about how code coverage is used and its main issues.

While previous studies have primarily focused on understanding how code

coverage impacts code quality, our present study investigates the impact of adopting

continuous integration on code coverage using a mixed-method approach of qualitative

and quantitative analyses. Our quantitative approach aims to identify patterns and trends

in the coverage evolution; while the qualitative study captured the experiences, opinions,

and attitudes of developers regarding coverage.

128

7 Conclusions

The potential advantages of implementing Continuous Integration (CI) have

drawn the attention of researchers, who have studied its benefits in various aspects

of software development. Despite the significant progress made, there are still several

assumptions in the community that have not been empirically investigated. In this thesis,

we conducted empirical studies to explore the impact of adopting CI on code coverage. In

the following sections, we highlight the contributions of this thesis and suggest promising

directions for future research.

7.1 Contributions and Findings
Thesis Statement

While the association between CI and higher code coverage seems intuitive, given

the emphasis on automated testing, the long-term relationship between CI and

code coverage remains unexplored empirically.

The overarching goal of this thesis investigates the relationship between Con-

tinuous Integration (CI) and code coverage, exploring the extent to which developers’

perceptions of the benefits of CI align with empirical evidence. Through an empirical

study, this research seeks to provide insights into the impact of adopting CI on code

coverage and to identify factors that influence this relationship. The findings of this

129

study can inform practitioners in adopting effective tools and practices for improving

code coverage in software development projects.

To conduct our research, we analyzed data from 60 GitHub projects, surveyed

team members involved in these projects, and conducted a document analysis of pull

request discussions. Our research seeks to address the following questions:

Study 1 – The Impact of the Adoption of Continuous

Integration on Code Coverage

• RQ1 - What are the evolution trends of code coverage within CI and

NOCI Projects? Our results show that the adoption of CI is associated with

positive code coverage trends. We found that 50% of CI projects reveal rising trends

in code coverage. In contrast, only 10% of NOCI projects reveal rising code coverage

trends.

• RQ2 - Is there a significant correlation between CI and code coverage

values? Our analysis demonstrates a statistically significant increase in code

coverage following the adoption of CI. We observed a D value of 0.12710, indicating

a significant enhancement in coverage as a result of CI implementation.

• RQ3 - What types of code changes affect the code coverage of CI and

NOCI projects? Our results show that projects that eventually adopt CI have a

significantly higher number of code changes that increase coverage.

Study 2 – Uncovering the Relationship Between Continuous

Integration and Code Coverage: An Exploratory Investigation

• RQ4 - How the code coverage information is used in the CI projects?

According to our study, developers make use of code coverage information during

130

both the code authoring stage and code reviews, finding it valuable for identifying

trivial bugs, detecting uncovered code paths, and enhancing software quality by po-

tentially preventing bugs and controlling side effects when refactoring or modifying

code behavior.

• RQ 5 - Does the adoption of Continuous Integration increase the code

coverage? After investigating the increase in code coverage following the adoption

of CI, we sought to rule out the possibility that other testing practices could be

responsible for the observed effects. To this end, we asked participants whether

they had adopted any new testing practices in addition to CI, and found that all

of the reported practices (e.g. automated tests and build, all tests and inspections

must pass, and code review.) were indeed part of CI. This finding reinforces the link

between CI and code coverage. Furthermore, participants identified fluctuations in

coverage as being linked to the correct use of CI practices.

Study 3 – Investigating Discussions on Code Coverage in

CI-Enabled Projects: An Exploratory Document Analysis

After thoroughly analyzing the comments in pull requests, we identified several

key themes that encompass the primary discussions and issues related to code coverage.

By exploring the extracted themes, we gained valuable insights into how developers

approach and address code coverage and the potential obstacles and deficiencies in

software development projects related to code coverage.

We observe that our some of our quantitative findings are corroborated by our

qualitative findings after performing our studies. According to our statistical models that

are used in Chapter 3, reveal a positive association between CI and a higher code coverage

rate. Our survey of participants in Section 4.3.3 also supports this conclusion, despite

some differing opinions. Although there was some controversy among our participants, it

131

is worth noting that the majority reported conducting coverage monitoring (see Section

4.3.2). This perception was further supported by our qualitative document analysis

(see Chapter 5). This was evident from the presence of automatic coverage reports

and active discussions between maintainers and contributors regarding coverage levels.

In addition, our qualitative analysis provides us with a deeper understanding of our

quantitative findings. For instance, we discovered that although the adoption of CI

is generally associated with an increase in code coverage, some projects experienced

significant declines in coverage across multiple versions during the after-CI period (see

Section 3.3.2). Our qualitative findings shed light on the reasons behind this coverage

fluctuation, revealing that some developers attributed it to a lack of adequate testing

culture within the team (see Section 3.3.3).

Our study provides empirical evidence that the use of continuous integration

can lead to an increase in code coverage over the long term.

7.2 Future Work

The studies that are performed in this thesis pave a way for several future work

possibilities. We outline some venues for future work below.

• Replication. Replication studies are essential to further validate the findings of

this thesis and generalize them to other contexts. Future work could replicate

the studies performed in this thesis using other datasets, enabling us to test the

robustness of our results. Additionally, future studies could focus on identifying the

most critical CI practices that impact code coverage evolution, which can guide

software development teams in improving their testing strategies.

• Tooling. Future work could focus on the development of tools to improve the

practice of CI and code coverage.Our study identified several challenges related to

132

coverage tools and services that could be addressed by tool builders, such as better

tool integration between CI and coverage, better reports/visualization support,

debugging assistance, and better notification. Additionally, developing better tools

that automate the tracking and reporting of coverage metrics or provide real-time

feedback on coverage during code changes could improve developers’ adherence

to coverage standards and facilitate the identification of code areas in need of

additional testing.

• Qualitative Study. While our quantitative analysis sheds light on the relationship

between adopting continuous integration and increasing code coverage, a more

comprehensive understanding of the underlying reasons for this relationship could

be gained through a new qualitative study. Such a study could involve comparing

the experiences of non-CI projects with those of the projects in our study to identify

potential differences in practices and factors that contribute to changes in code

coverage levels. This could provide valuable insights into how CI practices can

be further improved and optimized to promote sustained improvements in code

coverage.

7.3 Publications

In this section, we provide a comprehensive list of all the publications that have

resulted during my PhD journey, including also some publications that were not directly

related to this PhD thesis.

1. J. D. S. Silva, D. A. Da Costa, U. Kulesza, G. Sizílio, J. G. Neto, R. Coelho, M.

Nagappan. "Unveiling the Relationship Between Continuous Integration

and Code Coverage". In: Proceedings of the 20th International Conference on

Mining Software Repositories (MSR). ICSME ’23. Melbourne, Australia: IEEE,

133

2023 (page 28).

2. J. D. S. Silva, J. G. Neto, U. Kulesza, G. Freitas, R. Rebouças, R. Coelho, 2021.

Technical Debt Tools: A Systematic Mapping Study. ICEIS (2), pp.88-98.

3. J. D. S. Silva, J. G. Neto, U. Kulesza, G. Freitas, R. Rebouças, R. Coelho. Ex-

ploring Technical Debt Tools: A Systematic Mapping Study. In Enterprise

Information Systems: 23rd International Conference, ICEIS 2021, Virtual Event,

April 26–28, 2021, Revised Selected Papers (pp. 280-303). Cham: Springer Interna-

tional Publishing.

134

References

Aghamohammadi, Alireza, Seyed-Hassan Mirian-Hosseinabadi, and Sajad Jalali. “State-

ment frequency coverage: A code coverage criterion for assessing test suite effec-

tiveness”. In: Information and Software Technology 129 (2021), p. 106426. issn:

0950-5849. doi: https://doi.org/10.1016/j.infsof.2020.106426. url: https:

//www.sciencedirect.com/science/article/pii/S0950584920301841 (pages 3,

11, 13, 15, 24, 39, 125, 126).

Ahmed, Iftekhar, Rahul Gopinath, Caius Brindescu, Alex Groce, and Carlos Jensen.

“Can Testedness Be Effectively Measured?” In: Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering. FSE

2016. Seattle, WA, USA: Association for Computing Machinery, 2016, pp. 547–558.

isbn: 9781450342186. doi: 10.1145/2950290.2950324. url: https://doi.org/10.

1145/2950290.2950324 (pages 12, 39).

Bannard, Colin and Chris Callison-Burch. “Token and type: Combining distributional

and taxonomic cues in similarity judgments”. In: Proceedings of the 20th national

conference on Artificial intelligence-Volume 1 (2005), pp. 1149–1154 (page 95).

Beck, Kent and Erich Gamma. Extreme programming explained: embrace change. addison-

wesley professional, 2000 (page 2).

Beller, Moritz, Georgios Gousios, and Andy Zaidman. Oops, my tests broke the build: An

analysis of travis ci builds with github. Tech. rep. PeerJ Preprints, 2016 (page 40).

135

https://doi.org/https://doi.org/10.1016/j.infsof.2020.106426
https://www.sciencedirect.com/science/article/pii/S0950584920301841
https://www.sciencedirect.com/science/article/pii/S0950584920301841
https://doi.org/10.1145/2950290.2950324
https://doi.org/10.1145/2950290.2950324
https://doi.org/10.1145/2950290.2950324

Bernardo, João Helis, Daniel Alencar da Costa, and Uirá Kulesza. “Studying the impact

of adopting continuous integration on the delivery time of pull requests”. In: 2018

IEEE/ACM 15th International Conference on Mining Software Repositories (MSR).

IEEE. 2018, pp. 131–141 (pages 3, 34, 37, 60, 123).

Berndt, Donald J and James Clifford. “Using dynamic time warping to find patterns in

time series.” In: KDD workshop. Vol. 10. 16. Seattle, WA. 1994, pp. 359–370 (page 41).

Boehm, B.W. and P.N. Papaccio. “Understanding and controlling software costs”. In:

IEEE Transactions on Software Engineering 14.10 (1988), pp. 1462–1477. doi: 10.

1109/32.6191 (page 11).

Bowen, Glenn A. “Document analysis as a qualitative research method”. In: Qualitative

research journal 9.2 (2009), pp. 27–40 (pages 21–23, 92).

Boyatzis, Richard E. Transforming qualitative information: Thematic analysis and code

development. sage, 1998 (page 24).

Braun, Virginia and Victoria Clarke. “Using thematic analysis in psychology”. In: Quali-

tative research in psychology 3.2 (2006), pp. 77–101 (page 23).

Braun, Virginia and Victoria Clarke. “Reflecting on reflexive thematic analysis”. In:

Qualitative research in sport, exercise and health 11.4 (2019), pp. 589–597 (pages 23,

25, 26).

Braun, Virginia and Victoria Clarke. “Can I use TA? Should I use TA? Should I not

use TA? Comparing reflexive thematic analysis and other pattern-based qualitative

analytic approaches”. In: Counselling and Psychotherapy Research 21.1 (2021), pp. 37–

47 (page 24).

Braun, Virginia, Victoria Clarke, Nikki Hayfield, and Gareth Terry. Handbook of Research

Methods in Health Social Sciences. Ed. by Pranee Liamputtong. Singapore: Springer

Singapore, 2018, pp. 1–18. isbn: 978-981-10-2779-6. doi: 10.1007/978-981-10-2779-

136

https://doi.org/10.1109/32.6191
https://doi.org/10.1109/32.6191
https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1007/978-981-10-2779-6_103-1

6_103-1. url: https://doi.org/10.1007/978-981-10-2779-6_103-1 (pages 24,

27, 28).

Brooks, Joanna, Serena McCluskey, Emma Turley, and Nigel King. “The utility of

template analysis in qualitative psychology research”. In: Qualitative research in

psychology 12.2 (2015), pp. 202–222 (page 28).

Brooks Jr, Frederick P. The mythical man-month: essays on software engineering. Pearson

Education, 1995 (page 16).

Cassee, N., B. Vasilescu, and A. Serebrenik. “The Silent Helper: The Impact of Continuous

Integration on Code Reviews”. In: 2020 IEEE 27th International Conference on

Software Analysis, Evolution and Reengineering (SANER). Los Alamitos, CA, USA:

IEEE Computer Society, 2020, pp. 423–434. doi: 10 . 1109 / SANER48275 . 2020 .

9054818. url: https://doi.ieeecomputersociety.org/10.1109/SANER48275.

2020.9054818 (page 46).

Chen, Yiqun T., Rahul Gopinath, Anita Tadakamalla, Michael D. Ernst, Reid Holmes,

Gordon Fraser, Paul Ammann, and René Just. “Revisiting the Relationship Between

Fault Detection, Test Adequacy Criteria, and Test Set Size”. In: 2020 35th IEEE/ACM

International Conference on Automated Software Engineering (ASE). 2020, pp. 237–

249 (page 110).

Clarke, Victoria and Virginia Braun. “Thematic analysis: a practical guide”. In: Thematic

Analysis (2021), pp. 1–100 (page 27).

Cook, T.D. and D.T. Campbell. Quasi-experimentation: Design & Analysis Issues for

Field Settings. Houghton Mifflin, 1979. isbn: 9780395307908. url: https://books.

google.com.br/books?id=BFNqAAAAMAAJ (page 46).

Duvall, Paul M, Steve Matyas, and Andrew Glover. Continuous integration: improving

software quality and reducing risk. Pearson Education, 2007 (pages 2, 3, 16, 17, 122).

137

https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1007/978-981-10-2779-6_103-1
https://doi.org/10.1109/SANER48275.2020.9054818
https://doi.org/10.1109/SANER48275.2020.9054818
https://doi.ieeecomputersociety.org/10.1109/SANER48275.2020.9054818
https://doi.ieeecomputersociety.org/10.1109/SANER48275.2020.9054818
https://books.google.com.br/books?id=BFNqAAAAMAAJ
https://books.google.com.br/books?id=BFNqAAAAMAAJ

Elazhary, Omar, Colin Werner, Ze Shi Li, Derek Lowlind, Neil A Ernst, and Margaret-

Anne Storey. “Uncovering the benefits and challenges of continuous integration prac-

tices”. In: IEEE Transactions on Software Engineering (2021) (page 123).

Felidré, Wagner, Leonardo B. Furtado, Daniel Alencar da Costa, Bruno Cartaxo, and

Gustavo Pinto. “Continuous Integration Theater”. In: 2019 ACM/IEEE International

Symposium on Empirical Software Engineering and Measurement, ESEM 2019, Porto

de Galinhas, Recife, Brazil, September 19-20, 2019. IEEE, 2019, pp. 1–10 (pages 2, 4,

17, 60, 122).

Fowler, Martin and Matthew Foemmel. “Continuous integration”. In: Thought-Works)

http://www. thoughtworks. com/Continuous Integration. pdf 122 (2006), p. 14 (page 3).

Frantzi, Katerina T and Sophia Ananiadou. “Automatic recognition of multi-word terms:

the C-value/NC-value method”. In: Proceedings of the 1st international conference on

Natural Language Processing and Industrial Applications. Springer. 2000, pp. 58–68

(page 95).

Fugard, Andi and H Potts. Thematic analysis. Sage, 2020 (page 23).

Gligoric, Milos, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Mohammad Amin

Alipour, and Darko Marinov. “Comparing Non-Adequate Test Suites Using Coverage

Criteria”. In: Proceedings of the 2013 International Symposium on Software Testing

and Analysis. ISSTA 2013. Lugano, Switzerland: Association for Computing Machinery,

2013, pp. 302–313. isbn: 9781450321594. doi: 10.1145/2483760.2483769. url:

https://doi.org/10.1145/2483760.2483769 (page 12).

Gopinath, Rahul, Carlos Jensen, and Alex Groce. “Code Coverage for Suite Evaluation

by Developers”. In: Proceedings of the 36th International Conference on Software

Engineering. ICSE 2014. Hyderabad, India: Association for Computing Machinery,

2014, pp. 72–82. isbn: 9781450327565. doi: 10.1145/2568225.2568278. url: https:

//doi.org/10.1145/2568225.2568278 (pages 11, 12, 39, 109).

138

https://doi.org/10.1145/2483760.2483769
https://doi.org/10.1145/2483760.2483769
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/2568225.2568278

Grano, Giovanni, Timofey V Titov, Sebastiano Panichella, and Harald C Gall. “Branch

coverage prediction in automated testing”. In: Journal of Software: Evolution and

Process 31.9 (2019), e2158 (page 126).

Guest, Greg, Kathleen M MacQueen, and Emily E Namey. Applied thematic analysis.

sage publications, 2011 (page 24).

Guo, Yunfang and Philipp Leitner. “Studying the impact of CI on pull request delivery

time in open source projects—a conceptual replication”. In: PeerJ Computer Science 5

(2019), e245 (pages 3, 60).

Hilton, Michael, Jonathan Bell, and Darko Marinov. “A large-scale study of test cover-

age evolution”. In: Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering. ACM. 2018, pp. 53–63 (pages 5, 39, 50, 102, 107,

125, 126).

Hilton, Michael, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.

“Trade-offs in continuous integration: assurance, security, and flexibility”. In: Proceed-

ings of the 2017 11th Joint Meeting on Foundations of Software Engineering. ACM.

2017, pp. 197–207 (pages 3, 113).

Hilton, Michael, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. “Usage,

Costs, and Benefits of Continuous Integration in Open-Source Projects”. In: Proceedings

of the 31st IEEE/ACM International Conference on Automated Software Engineering.

ASE 2016. Singapore, Singapore: Association for Computing Machinery, 2016, pp. 426–

437. isbn: 9781450338455. doi: 10.1145/2970276.2970358. url: https://doi.org/

10.1145/2970276.2970358 (pages 2, 3, 17).

Homès, Bernard. Fundamentals of software testing. John Wiley & Sons, 2013 (page 14).

Hora, Andre. “What Code Is Deliberately Excluded from Test Coverage and Why?”

In: 2021 IEEE/ACM 18th International Conference on Mining Software Repositories

(MSR). IEEE. 2021, pp. 392–402 (pages 4, 75).

139

https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/2970276.2970358

Hora, Andre. “Excluding code from test coverage: practices, motivations, and impact”.

In: Empirical Software Engineering 28.1 (2023), pp. 1–33 (page 127).

Hripcsak, George and Daniel F Heitjan. “Measuring agreement in medical informatics

reliability studies”. In: Journal of biomedical informatics 35.2 (2002), pp. 99–110

(page 93).

Humble, Jez and David Farley. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. 1st. Addison-Wesley Professional, 2010.

isbn: 0321601912 (pages 4, 16).

Hyman, Ray. “Quasi-experimentation: Design and analysis issues for field settings (book)”.

In: Journal of Personality Assessment 46.1 (1982), pp. 96–97 (page 17).

Imbens, Guido W. and Thomas Lemieux. “Regression discontinuity designs: A guide

to practice”. In: Journal of Econometrics 142.2 (2008). The regression discontinuity

design: Theory and applications, pp. 615–635. issn: 0304-4076. doi: https://doi.

org/10.1016/j.jeconom.2007.05.001. url: https://www.sciencedirect.com/

science/article/pii/S0304407607001091 (pages 46, 60).

Inozemtseva, Laura and Reid Holmes. “Coverage is Not Strongly Correlated with Test

Suite Effectiveness”. In: Proceedings of the 36th International Conference on Software

Engineering. ICSE 2014. Hyderabad, India: Association for Computing Machinery,

2014, pp. 435–445. isbn: 9781450327565. doi: 10.1145/2568225.2568271. url:

https://doi.org/10.1145/2568225.2568271 (pages 12, 14).

Ivanković, Marko, Goran Petrović, René Just, and Gordon Fraser. “Code coverage at

Google”. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering.

2019, pp. 955–963 (pages 4, 12, 125).

140

https://doi.org/https://doi.org/10.1016/j.jeconom.2007.05.001
https://doi.org/https://doi.org/10.1016/j.jeconom.2007.05.001
https://www.sciencedirect.com/science/article/pii/S0304407607001091
https://www.sciencedirect.com/science/article/pii/S0304407607001091
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271

Kate, Rohit J. “Using dynamic time warping distances as features for improved time series

classification”. In: Data Mining and Knowledge Discovery 30.2 (2016), pp. 283–312

(page 41).

Kelly J., Hayhurst, Veerhusen Dan S., Chilenski John J., and Rierson Leanna K. A

Practical Tutorial on Modified Condition/Decision Coverage. Tech. rep. 2001 (page 14).

Kitchenham, Barbara A, Shari Lawrence Pfleeger, Lesley M Pickard, Peter W Jones,

David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. “Preliminary guidelines

for empirical research in software engineering”. In: IEEE Transactions on software

engineering 28.8 (2002), pp. 721–734 (page 65).

Kochhar, Pavneet Singh, David Lo, Julia Lawall, and Nachiappan Nagappan. “Code

coverage and postrelease defects: A large-scale study on open source projects”. In:

IEEE Transactions on Reliability 66.4 (2017), pp. 1213–1228 (page 126).

Koo, Terry K. and M. Y. Li. “Guideline of selecting and reporting intraclass correlation

coefficients for reliability research”. In: Journal of chiropractic medicine 15.2 (2016),

pp. 155–163 (page 96).

Krippendorff, Klaus. “Estimating the reliability, systematic error and random error of

interval data”. In: Educational and psychological measurement 30.1 (1970), pp. 61–70

(page 93).

Laukkanen, Eero, Maria Paasivaara, and Teemu Arvonen. “Stakeholder Perceptions of

the Adoption of Continuous Integration – A Case Study”. In: 2015 Agile Conference.

2015, pp. 11–20. doi: 10.1109/Agile.2015.15 (pages 2, 16).

Lee, David S and Thomas Lemieux. “Regression discontinuity designs in economics”. In:

Journal of Economic Literature 48.2 (2010), pp. 281–355 (pages 20, 21).

Macbeth, Guillermo, Eugenia Razumiejczyk, and Rubén Daniel Ledesma. “Cliff’s Delta

Calculator: A non-parametric effect size program for two groups of observations”. In:

Universitas Psychologica 10.2 (2011), pp. 545–555 (page 60).

141

https://doi.org/10.1109/Agile.2015.15

Mahdieh, Mostafa, Seyed-Hassan Mirian-Hosseinabadi, Khashayar Etemadi, Ali Nosrati,

and Sajad Jalali. “Incorporating fault-proneness estimations into coverage-based test

case prioritization methods”. In: Information and Software Technology 121 (2020),

p. 106269. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2020.106269.

url: https://www.sciencedirect.com/science/article/pii/S0950584920300197

(page 11).

Merriam, Sharan B. Case study research in education: A qualitative approach. Jossey-Bass,

1988 (pages 22, 23).

Milligan, Glenn W and Martha C Cooper. “An examination of procedures for determining

the number of clusters in a data set”. In: Psychometrika 50.2 (1985), pp. 159–179

(page 41).

Nery, Gustavo Sizilio, Daniel Alencar da Costa, and Uirá Kulesza. “An Empirical Study

of the Relationship between Continuous Integration and Test Code Evolution”. In:

2019 IEEE International Conference on Software Maintenance and Evolution (ICSME).

IEEE. 2019, pp. 426–436 (pages 5, 32, 34, 36–38, 40, 60, 119, 125, 127).

Neuendorf, Kimberly A. “The content analysis guidebook”. In: SAGE Publications (2016)

(page 23).

Perry, Dewayne E, Adam A Porter, and Lawrence G Votta. “Empirical studies of software

engineering: a roadmap”. In: Proceedings of the conference on The future of Software

engineering. ACM. 2000, pp. 345–355 (page 61).

Pinto, Gustavo, Fernando Castor, Rodrigo Bonifacio, and Marcel Rebouças. “Work

practices and challenges in continuous integration: A survey with Travis CI users”. In:

Software: Practice and Experience 48.12 (2018), pp. 2223–2236 (pages 3, 57, 124).

Rajan, Ajitha, Michael W Whalen, and Mats PE Heimdahl. “The effect of program

and model structure on MC/DC test adequacy coverage”. In: Proceedings of the 30th

International Conference on Software engineering. 2008, pp. 161–170 (page 14).

142

https://doi.org/https://doi.org/10.1016/j.infsof.2020.106269
https://www.sciencedirect.com/science/article/pii/S0950584920300197

Rothermel, G., R.H. Untch, Chengyun Chu, and M.J. Harrold. “Test case prioritization:

an empirical study”. In: Proceedings IEEE International Conference on Software

Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business Change’ (Cat.

No.99CB36360). 1999, pp. 179–188. doi: 10.1109/ICSM.1999.792604 (page 106).

Salton, Gerard and Michael J McGill. “Introduction to modern information retrieval”.

In: (1986) (page 95).

Salvador, Stan and Philip Chan. “Toward accurate dynamic time warping in linear time

and space”. In: Intelligent Data Analysis 11.5 (2007), pp. 561–580 (page 41).

Santos, Jadson, Daniel Alencar da Costa, and Uirá Kulesza. “Investigating the Impact

of Continuous Integration Practices on the Productivity and Quality of Open-Source

Projects”. In: Proceedings of the 16th ACM / IEEE International Symposium on

Empirical Software Engineering and Measurement. ESEM ’22. Helsinki, Finland: As-

sociation for Computing Machinery, 2022, pp. 137–147. isbn: 9781450394277. doi:

10.1145/3544902.3546244. url: https://doi.org/10.1145/3544902.3546244

(page 123).

Silva, José Diego Saraiva da, Daniel Alencar Da Costa, Uirá Kulesza, Gustavo Sizílio,

José Gameleira Neto, Roberta Coelho, and Mei Nagappan. “Unveiling the Relationship

Between Continuous Integration and Code Coverage”. In: Proceedings of the 20th Inter-

national Conference on Mining Software Repositories (MSR). ICSME ’23. Melbourne,

Australia: IEEE, 2023 (page 30).

Smith, Edward, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas

Zimmermann. “Improving developer participation rates in surveys”. In: 2013 6th

International workshop on cooperative and human aspects of software engineering

(CHASE). IEEE. 2013, pp. 89–92 (page 65).

Smith, Joanna and Jill Firth. “Qualitative data analysis: the framework approach”. In:

Nurse researcher 18.2 (2011) (page 28).

143

https://doi.org/10.1109/ICSM.1999.792604
https://doi.org/10.1145/3544902.3546244
https://doi.org/10.1145/3544902.3546244

Soares, Eliezio, Gustavo Sizilio, Jadson Santos, Daniel Alencar da Costa, and Uirá

Kulesza. “The effects of continuous integration on software development: a systematic

literature review”. In: Empirical Software Engineering 27.3 (2022), pp. 1–61 (pages 3,

4, 59, 89, 122).

Someoliayi, Khashayar Etemadi, Sajad Jalali, Mostafa Mahdieh, and Seyed-Hassan

Mirian-Hosseinabadi. “Program state coverage: a test coverage metric based on executed

program states”. In: 2019 IEEE 26th International Conference on Software Analysis,

Evolution and Reengineering (SANER). IEEE. 2019, pp. 584–588 (pages 14, 15).

Ståhl, Daniel and Jan Bosch. “Experienced benefits of continuous integration in indus-

try software product development: A case study”. In: The 12th iasted international

conference on software engineering,(innsbruck, austria, 2013). 2013, pp. 736–743

(page 3).

Terry, Gareth, Nikki Hayfield, Victoria Clarke, and Virginia Braun. “Thematic analysis”.

In: The SAGE handbook of qualitative research in psychology 2 (2017), pp. 17–37

(page 26).

Tibshirani, Robert, Guenther Walther, and Trevor Hastie. “Estimating the number of

clusters in a data set via the gap statistic”. In: Journal of the Royal Statistical Society:

Series B (Statistical Methodology) 63.2 (2001), pp. 411–423 (page 41).

Vanoverberghe, Dries, Jonathan de Halleux, Nikolai Tillmann, and Frank Piessens. “State

Coverage: Software Validation Metrics beyond code coverage-extended version”. In:

CW Reports, volume CW610 15 (2011) (pages 15, 39).

Vasilescu, Bogdan, Stef van Schuylenburg, Jules Wulms, Alexander Serebrenik, and Mark

G.J. van den Brand. “Continuous Integration in a Social-Coding World: Empirical

Evidence from GitHub”. In: 2014 IEEE International Conference on Software Mainte-

nance and Evolution. 2014, pp. 401–405. doi: 10.1109/ICSME.2014.62 (pages 2, 16,

122).

144

https://doi.org/10.1109/ICSME.2014.62

Vasilescu, Bogdan, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir Filkov.

“Quality and productivity outcomes relating to continuous integration in GitHub”. In:

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.

ACM. 2015, pp. 805–816 (pages 3, 123).

Vassallo, Carmine, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale Panichella,

Massimiliano Di Penta, and Andy Zaidman. “Continuous Delivery Practices in a

Large Financial Organization”. In: 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME). 2016a, pp. 519–528. doi: 10.1109/ICSME.2016.

72 (page 3).

Vassallo, Carmine, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale Panichella,

Massimiliano Di Penta, and Andy Zaidman. “Continuous delivery practices in a

large financial organization”. In: 2016 IEEE International Conference on Software

Maintenance and Evolution (ICSME). IEEE. 2016b, pp. 519–528 (pages 79, 125).

Weng, Jian, Xiaohua Li, Yalou Liu, and Jiliang Tang. “Topic detection using non-negative

matrix factorization and semantic similarity”. In: Proceedings of the 2008 international

conference on Web search and data mining. ACM. 2008, pp. 237–248 (page 95).

Wessel, Mairieli, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A

Gerosa. “Effects of adopting code review bots on pull requests to oss projects”. In:

2020 IEEE international conference on software maintenance and evolution (ICSME).

IEEE. 2020, pp. 1–11 (page 103).

Wilks, D.S. Statistical Methods in the Atmospheric Sciences. Academic Press. Elsevier

Science, 2011. isbn: 9780123850225. url: https://books.google.com.br/books?

id=IJuCVtQ0ySIC (page 60).

Xu, Tianyin, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and Rukma

Talwadker. “Hey, You Have given Me Too Many Knobs!: Understanding and Dealing

with over-Designed Configuration in System Software”. In: Proceedings of the 2015 10th

145

https://doi.org/10.1109/ICSME.2016.72
https://doi.org/10.1109/ICSME.2016.72
https://books.google.com.br/books?id=IJuCVtQ0ySIC
https://books.google.com.br/books?id=IJuCVtQ0ySIC

Joint Meeting on Foundations of Software Engineering. ESEC/FSE 2015. Bergamo,

Italy: Association for Computing Machinery, 2015, pp. 307–319. isbn: 9781450336758.

doi: 10 . 1145 / 2786805 . 2786852. url: https : / / doi . org / 10 . 1145 / 2786805 .

2786852 (page 113).

Yin, Robert K. “Discovering the future of the case study. Method in evaluation research”.

In: Evaluation practice 15.3 (1994), pp. 283–290 (pages 22, 23).

Yoo, S. and M. Harman. “Regression Testing Minimization, Selection and Prioritization:

A Survey”. In: Softw. Test. Verif. Reliab. 22.2 (2012), pp. 67–120. issn: 0960-0833.

doi: 10.1002/stv.430. url: https://doi.org/10.1002/stv.430 (page 106).

Zaidman, Andy, Bart Van Rompaey, Serge Demeyer, and Arie Van Deursen. “Mining

software repositories to study co-evolution of production & test code”. In: 2008 1st

international conference on software testing, verification, and validation. IEEE. 2008,

pp. 220–229 (page 126).

Zaidman, Andy, Bart Van Rompaey, Arie van Deursen, and Serge Demeyer. “Studying

the co-evolution of production and test code in open source and industrial developer

test processes through repository mining”. In: Empirical Software Engineering 16.3

(2011), pp. 325–364 (page 126).

Zampetti, Fiorella, Gabriele Bavota, Gerardo Canfora, and Massimiliano Di Penta.

“A study on the interplay between pull request review and continuous integration

builds”. In: 2019 IEEE 26th international conference on software analysis, evolution

and reengineering (SANER). IEEE. 2019, pp. 38–48 (pages 106, 124).

Zhao, Yangyang, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bogdan

Vasilescu. “The impact of continuous integration on other software development prac-

tices: a large-scale empirical study”. In: Proceedings of the 32nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering. IEEE Press. 2017, pp. 60–71

(pages 37, 46, 123).

146

https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1002/stv.430
https://doi.org/10.1002/stv.430

Zhu, Hong, Patrick A. V. Hall, and John H. R. May. “Software Unit Test Coverage

and Adequacy”. In: ACM Comput. Surv. 29.4 (1997), pp. 366–427. issn: 0360-0300.

doi: 10.1145/267580.267590. url: https://doi.org/10.1145/267580.267590

(pages 13, 14).

147

https://doi.org/10.1145/267580.267590
https://doi.org/10.1145/267580.267590

	List of Figures
	List of Tables
	Contents
	Introduction
	Problem Statement
	Current Research Limitations
	Thesis Proposal
	Thesis Contributions
	Thesis Organization

	Background
	Software Testing
	Code Coverage
	Continuous integration
	Regression Discontinuity Design
	Document Analysis
	Thematic Analysis
	Coding Reliability Thematic Analysis
	Reflexive Thematic Analysis
	Codebook Thematic Analysis

	The Impact of the Adoption of Continuous Integration on Code Coverage
	Research Questions
	Study Setup
	Subject Projects
	Collecting Versions
	Collecting Coverage

	Results
	RQ1 - What are the evolution trends of code coverage within CI and NOCI Projects?
	RQ2 - Is there a significant correlation between CI and code coverage values?
	RQ3 - What types of code changes affect the code coverage of CI and NOCI projects?

	Discussions and Implications
	Implications for Practitioners
	Implications for Researchers

	Threats to the Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions

	Uncovering the Relationship Between Continuous Integration and Code Coverage: An Exploratory Investigation
	Research Questions
	Study Design
	Study Results
	Demographics Analysis
	RQ4 - How the code coverage information is used in the CI projects?
	RQ5 - Does the adoption of Continuous Integration increase the code coverage of software releases?

	Limitations
	Implications
	Conclusions

	Investigating Discussions on Code Coverage in CI-Enabled Projects: An Exploratory Document Analysis
	Study Setup
	Projects Selection
	Data Collection
	Data Filtering

	Analysis Procedure
	Inductive Phase
	Deductive Phase

	Results
	Summary of Themes
	In-Depth Analysis of Themes
	Coverage Report
	Coverage Issues
	Coverage Discussion
	Coverage Tools
	Coverage Strategy
	Coverage Maintenance

	Implications
	Threats to the Validity
	Construct Validity Threats
	Internal Validity Threats
	External Validity Threats

	Conclusions

	Related Work
	Previous CI Studies
	Previous Coverage Studies

	Conclusions
	Contributions and Findings
	Future Work
	Publications

	References

