
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE
CENTRO DE CIÊNCIAS EXATAS E DA TERRA

PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO
DOUTORADO ACADÊMICO EM CIÊNCIA DA COMPUTAÇÃO

The Effects of Continuous Integration on
Software Development: A Causal

Investigation

Eliezio Soares de Sousa Neto

Natal-RN, Brasil
2023

Eliezio Soares de Sousa Neto

The Effects of Continuous Integration on Software
Development: A Causal Investigation

Tese de Doutorado apresentado ao Pro-
grama de Pós-Graduação em Sistemas e Com-
putação do Centro de Ciências Exatas e
da Terra da Universidade Federal do Rio
Grande do Norte como requisito parcial para
a obtenção do título de Doutor em Ciência
da Computação. Área de Concentração: En-
genharia de Software

Advisor: Uirá Kulesza
Advisor: Daniel Alencar da Costa

Natal-RN, Brasil
2023

Universidade Federal do Rio Grande do Norte - UFRN
Sistema de Bibliotecas – SISBI

 Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial Prof. Ronaldo Xavier de Arruda - CCET

Elaborado por Joseneide Ferreira Dantas - CRB-15/324

 Sousa Neto, Eliezio Soares de.
 The effects of continuous integration on software development: a causal investigation /

Eliezio Soares de Sousa Neto . - 2023.
 139 f.: il.

 Orientação: Dr. Uirá Kulesza..
 Coorientação: Dr. Daniel Alencar da Costa.
Tese (doutorado) - Universidade Federal do Rio Grande do Norte, Centro de Ciências

Exatas e da Terra, Programa de Pós-Graduação em Sistemas e Computação. Natal, RN, 2023.

1. Computação - Tese. 2. Integração contínua - Tese. 3. Causalidade - Tese. 4. Qualidade
de software - Tese. 5. Continuous integration - Tese. 6. Causation - Tese. 7. Software quality -
Tese. I. Kulesza, Uirá. II. Costa, Daniel Alencar da. III. Título.

RN/UF/CCET CDU 004(043.2)

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE

CENTRO DE CIÊNCIAS EXATAS E DA TERRA
DEPARTAMENTO DE INFORMÁTICA E MATEMÁTICA APLICADA
PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO

Ata no. 118

ATA DA SESSÃO DE AVALIAÇÃO DE TESE DE DOUTORADO DO PROGRAMA DE

PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO.

Aos dezenove dias do mês de setembro de dois mil e vinte três (19/09/2023), às 17h30, por videoconferência, foi instalada a
Comissão Examinadora responsável pela avaliação da tese de doutorado intitulada “The Effects of Continuous Integration on

Software Development: A Causal Investigation”, como trabalho final apresentado pelo(a) candidato(a) ELIEZIO SOARES
DE SOUSA NETO ao Programa de Pós-Graduação em Sistemas e Computação, da Universidade Federal do Rio Grande do
Norte, e parte dos requisitos para obtenção do título de DOUTOR(A) EM CIÊNCIA DA COMPUTAÇÃO. A Comissão
Examinadora foi presidida pelo(a) professor(a) Dr. UIRÁ KULESZA (Orientador - UFRN) e contou com a participação de
Dr. DANIEL ALENCAR DA COSTA (Orientador - University of Otago - NZL), Dr. EDUARDO HENRIQUE DA SILVA

ARANHA (UFRN), Dr. MARCELO DE ALMEIDA MAIA (UFU), Dr. RODRIGO BONIFACIO DE ALMEIDA (UnB)
e Dr. SERGIO QUEIROZ DE MEDEIROS (UFRN) na qualidade de examinadores. A sessão teve a duração de 4 horas e a
Comissão emitiu o seguinte parecer: o trabalho e desempenho do candidato atenderam aos requisitos necessários a uma Tese
de Doutorado, tendo a Comissão Examinadora, portanto APROVADO o trabalho.

Examinador(a) Externo(a): Dr. DANIEL ALENCAR DA COSTA

__
Examinador(a) Interno(a): Dr. EDUARDO HENRIQUE DA SILVA ARANHA

__
Examinador(a) Externo(a): Dr. MARCELO DE ALMEIDA MAIA

__
Examinador(a) Externo(a): Dr. RODRIGO BONIFACIO DE ALMEIDA

__
Examinador(a) Interno(a): Dr. SERGIO QUEIROZ DE MEDEIROS

__
 Presidente: Dr. UIRÁ KULESZA

Discente: ELIEZIO SOARES DE SOUSA NETO

aleda46p
Daniel

Ao meu amado pai (in memoriam) que sempre viu e acreditou em um futuro que ainda
não existia. Que sorria para sonhos que pareciam distantes demais. Meu pai, que inspirou

e continua a inspirar a minha vida.

Agradecimentos

À Deus, criador de todas as coisas que, à sua semelhança, nos dotou de capacidade
criativa, de curiosidade e de sonhos. A Ele dedico meu intelecto, meu esforço e todos os
frutos, pois tudo é d’Ele, por Ele e para Ele. Que o título obtido com esta tese seja uma
ferramenta a disposição d’Ele para abençoar vidas.

À minha amada esposa Jéssica e à minha preciosa filha Laura, que me apoiaram
durante todo o processo, compartilhando as alegrias e desafios desta jornada. Abdicando do
melhor do meu tempo em muitas situações, mas sempre vivendo o sonho desse doutorado
junto comigo. Este trabalho também é de vocês. Obrigado.

Que a minha filha Laura encontre em mim e neste esforço uma memória valiosa de
que tudo é possível com dedicação e disciplina. Lembre-se sempre que o por quê deve vir
antes do como ou do quando. Viva por propósitos, entregue-se a Deus e será sempre bem
sucedida.

À minha mãe Lucimar e meu pai Misael (in memoriam), que sempre me apoiaram
incondicionalmente e cujo amor e incentivo continuam a inspirar minha jornada. Obrigado
por tanta vida compartilhada e por sempre terem dado tudo de si a nós. Este trabalho
está carregado de suas orações. Obrigado.

À minha irmã Mikaely, meus familiares e amigos, muito obrigado. Algumas vezes
não estive com vocês, mas vocês nunca desistiram de mim. Este trabalho tem muito da fé,
das orações e do apoio de vocês. Obrigado por celebrarem cada estudo, cada publicação,
cada defesa. Obrigado.

Ao meu estimado orientador Uirá Kulesza que apostou em mim, abriu portas e com
muita serenidade conduziu essa jornada pelas vias tortuosas da pesquisa acadêmica. Este
trabalho e seus frutos se devem muito a você. Também a meu co-orientador Daniel Alencar
da Costa que com seu apreço pela excelência me ajudou a extrair o melhor possível dos
recursos que eu tinha. Obrigado por todo o tempo e paciência investidos na construção
deste trabalho e na minha formação. Obrigado.

Ao Instituto Federal do Rio Grande do Norte, por fornecer os meios e oportunidades
que tornaram possível a pesquisa e a escrita desta tese. Sou profundamente grato pela
educação de qualidade que um dia recebi e por hoje exercer a docência nessa respeitosa e
centenária instituição.

Muito obrigado a todos que tornaram este trabalho possível.

“A fé e a razão caminham juntas, mas a fé vai mais longe.” — Agostinho de Hipona

Soli Deo Gloria.

Resumo

Integração Contínua (Continuous Integration—CI) é uma técnica de engenharia de software
comumente mencionada como um dos pilares das metodologias ágeis. CI tem como principal
objetivo reduzir o custo e o risco da integração de código entre times de desenvolvimento.
Para tal se preconiza a realização de commits frequentes para integrar o trabalho dos
desenvolvedores em um repositório de código e a frequente verificação de qualidade
através de builds e testes automatizados. Através do uso de CI espera-se que os times de
desenvolvimento possam detectar e corrigir erros rapidamente, melhorando a produtividade
dos times e a qualidade dos produtos de software desenvolvidos entre outros benefícios
apontados por pesquisadores e praticantes. Estudos anteriores sobre o uso de CI apontam
diversos benefícios em diversos aspectos do desenvolvimento de software, entretanto tais
associações não estão mapeadas como um todo e também não são suficientes para concluir
que CI seja de fato a causa de tais resultados.

Portanto, este trabalho tem como objetivo investigar empiricamente tais efeitos da adoção
de CI no desenvolvimento de software sob uma perspectiva causal. Primeiro, nós realizamos
uma revisão sistemática de literatura para catalogar os achados de estudos que avaliaram
empiricamente os efeitos da adoção de CI. Após explorar o conhecimento já documentado
conduzimos dois estudos com o objetivo de aprofundar a compreensão a respeito de
dois desses aspectos supostamente afetados pela adoção de CI: qualidade de software e a
produtividade dos times de desenvolvimento. Nós pretendemos responder se há uma relação
causal entre a adoção de CI e os efeitos reportados na literatura. Para isso utilizamos
causal Direct Acyclic Graphs (causal DAGs) combinado a duas outras estratégias: revisão
de literatura e um estudo de mineração de repositório de software (Mining Software
Repository—MSR). Nossos resultados mostram um panorama dos efeitos de CI reportados
na literatura e apontam que há de fato uma relação causal entre CI e qualidade de software.

Palavras-chave: Integração Contínua. Causalidade. Impacto. Engenharia de Software.
Qualidade de Software. Produtividade.

Abstract

Continuous Integration (CI) is a software engineering technique usually mentioned as
one of the foundations of agile methodologies. The main objective of CI is to reduce
the cost and risk of code integration among development teams. For such, it preconizes
frequent commits to integrate the work from developers into a source code repository and
the frequent quality verification via automated builds and tests. Through CI usage, it is
expected that development teams can quickly detect and correct issues, improving team
productivity and software quality, among other benefits pointed out by researchers and
practitioners. Previous studies regarding CI usage highlight several benefits in software
development aspects. However, such associations are not mapped as a whole and are not
sufficient to conclude that CI is indeed the cause of such results.

Therefore, the main goal of this work is to investigate the effects of CI adoption on software
development from a causal perspective. First, we conducted a systematic literature review
to catalog the findings from studies that empirically evaluated the effects of adopting
CI. After exploring the existing state-of-the-art, we conducted two studies to deepen the
comprehension regarding two aspects supposedly impacted by CI: software quality and
teams’ productivity. We investigate if there is a causal relationship between CI adoption
and such literature-reported effects. For this purpose, we employ causal Direct Acyclic
Graphs (causal DAGs) combined with two other strategies: a literature review and a mining
software repository (MSR) study. Our results show a panoramic view of CI literature-
reported effects and point out that, indeed, there is a causal relationship between CI and
software quality.

Keywords: Continuous integration. Causation. Impact. Software Engineering. Software
Quality. Productivity.

List of Figures

Figure 1 – Thesis overview . 18
Figure 2 – In this picture, the ellipses are variables, the edges represent a rela-

tionship between variables, and the red dots above the edges represent
an “association flowing” between variables. (a) Fire is the common
cause of Heat and Smoke. Heat and Smoke are associated through Fire,
i.e., the “association flows” between Heat and Smoke through Fire. (b)
Conditioning on Fire, the association flow between Heat and Smoke is
blocked. (c) Conditioning on Fire, Smoke becomes associated only with
its descendent Smell. (d) Spark is a common cause of Fire and Smoke,
opening a backdoor path between these variables. Spark is a source of
confounding. 27

Figure 3 – Research methodology. Step 1: Search string definition; Step 2: Data
search; Step 3: Study selection; Step 4: snowballing; Step 5: snowballing
study selection; Step 6: Data extraction; Step 7: Disagreements reso-
lution; Step 8: Database import; Step 9: Quality Assessment; Step 10:
Quality assessment disagreements resolution; Step 11: Thematic synthesis. 32

Figure 4 – Diagram illustrating the inclusion and exclusion criteria employment,
presenting the number of remaining papers after each stage. 34

Figure 5 – (a) Histogram representing the proportion of primary studies using a
number of CI criteria; (b) Frequency of usage of each criteria; 42

Figure 6 – Themes and codes representing the studies claims. 43
Figure 7 – Conceptual class diagram of relationships between studies, claims, codes,

and themes. 44
Figure 8 – (a) Proportion of studies based on the type of projects they analyze; (b)

Proportion of studies that analyzed projects from specific domains (and
vice versa); . 56

Figure 9 – Boxplot and descriptive statistics of the projects that were analyzed by
our primary studies. 57

Figure 10 – (a) Proportion of studies according to data availability; (b) Proportion
of transparency over the years. 58

Figure 11 – Quality assessment scores per study type. 59
Figure 12 – Proportion and quantity of claims per study type; 62
Figure 13 – Claims quantity for each theme and study type. 62
Figure 14 – Claims related to the effects of CI on pull requests life cycle. 65
Figure 15 – Research method pipeline. 76
Figure 16 – Partial causal DAG for bug reports associations. 82

Figure 17 – Partial causal DAG for automated tests associations. 83
Figure 18 – Partial causal DAG for build attributes and their associations. 83
Figure 19 – Complete literature-based causal DAG for CI, Bug Reports and their

co-variables. 84
Figure 20 – Mining Software Repository Process 87
Figure 21 – Hypothetical causal DAG. 93
Figure 22 – Examples of causal DAG structure testing. 94
Figure 23 – Examples of causal DAG collider structure testing. 94
Figure 24 – Final literature-based DAG for CI, Bug Reports and their co-variables. 96
Figure 25 – (a) Causal structure (chain) involving Age, ContinuousIntegration, and

CommitFrequency as expressed in the literature-based causal DAG. (b)
The new proposed causal structure concerning Age, ContinuousIntegration,
and CommitFrequency after statistical validations. 99

Figure 26 – (a) Causal structure involving Age and TestsV olume as expressed in
the literature-based causal DAG. (b) The new proposed direct path
concerning Age and TestsV olume. 100

Figure 27 – (a) Causal paths between Age and Communication as expressed in
the literature-based causal DAG. (b) The new proposed directed path
between Age and Communication. 101

Figure 28 – (a) Causal paths between CommitFrequency and BugReports as ex-
pressed in the literature-based causal DAG. (b) The new proposed
directed path between CommitFrequency and BugReports. 102

Figure 29 – (a) Causal structure between Communication, and TestsV olume as
expressed in the literature-based causal DAG. (b) The new proposed
structure between Communication and TestsV olume after statistical
validations. The edge between CommitFrequency and IssueType was
inverted. 103

Figure 30 – Initial version of data-validated DAG for CI, Bug Reports and their
co-variables. 104

Figure 31 – (a) Causal paths between TestsV olume and Communication as ex-
pressed in the literature-based causal DAG. (b) The new proposed
direct path between TestsV olume and Communication. 105

Figure 32 – data-validated DAG for CI, Bug Reports and their co-variables. 105
Figure 33 – Publications by year and type of venue. 129
Figure 34 – Publications in main venues on (a) conferences, (b) Workshops, and (c)

Journals. 130

List of Tables

Table 1 – Continuous integration practices enumerated by Duvall et al. (DUVALL,
2013) and Fowler (FOWLER; FOEMMEL, 2006). 24

Table 2 – The digital libraries included in our search along with the number of
matches (before and after removing duplicates). 33

Table 3 – Fields of the extraction form. 36
Table 4 – Quality Assessment checklist . 39
Table 5 – Extracted claims from studies P25 and P74, from fields F1 and F2 of

the extraction form. 40
Table 6 – CI Services cited in the included studies. 43
Table 7 – Number of claims and studies that pertain to a theme. 44
Table 8 – Codes from the “development activities” theme. We show the number of

claims related to the code, the primary studies supporting it, the mean
and median of quality scores of such studies. 45

Table 9 – Codes from theme “Sofware Processes”. We show the number of claims
related to the code, the primary studies supporting it, the mean and
median of quality scores of such studies. 47

Table 10 – Codes from the “Quality Assurance” theme. We show the number of
claims related to the code, the primary studies supporting it, the mean
and median of quality scores of such studies. 50

Table 11 – Codes from the “Integration Patterns” theme. We show the number of
claims related to the code, the primary studies supporting it, the mean
and median of quality scores of such studies. 51

Table 12 – Codes from the “Issues & Defects” themes. We show the number of
claims related to the code, the primary studies supporting it, the mean
and median of quality scores of such studies. 53

Table 13 – Codes from the “Build Patterns” theme. We show the number of claims
related to the code, the primary studies supporting it, the mean and
median of quality scores of such studies. 54

Table 14 – Applications domains investigated in primary studies. 56
Table 15 – Quality Assessment per Kind of Study 60
Table 16 – Quality Assessment. 61
Table 17 – Methodological instruments applied in the studies to confirm findings. . 63
Table 18 – Claims related to the effects of CI developer confidence. 66
Table 19 – Claims related to the effects of CI on development productivity. 68
Table 20 – Connections identified in the literature about CI and software quality

variables. 78

Table 21 – Connections identified in the literature about bug reports. 79
Table 22 – Connections identified in the literature about bug resolution. 80
Table 23 – Connections identified in the literature about the resolution time. 80
Table 24 – Internal associations cataloged among the literature regarding the dis-

covered variables. 81
Table 25 – CI associations cataloged among the literature from the perspective of

test practices. 82
Table 26 – CI associations cataloged among the literature from the perspective of

build practices. 85
Table 27 – The CI service usage on the dataset and the classification criteria. . . . 88
Table 28 – Summary of the Data Set. 92
Table 29 – The results of the conditional independence tests for RQ2. 97
Table 30 – Conditional independence test for the relationship between Age and

CommitFrequency. 99
Table 31 – Conditional independence tests for the relationship between Age and

TestsV olume. 100
Table 32 – Conditional independence tests for the hypothesis related to relationship

between Age and Communication. 101
Table 33 – Unconditional independence tests for the hypothesis related to relation-

ship between Age and Communication. 101
Table 34 – Conditional independence tests for the hypothesis related to relationship

between Communication and TestsV olume. 103
Table 35 – The results of the conditional independence tests for RQ3. 104
Table 36 – The results of the conditional independence tests for RQ3. 106
Table 37 – Systematic Literature Reviews (SLRs) that related to our work. We show

the authors, focus, findings, number of included articles, and the year of
publication. 114

Table 39 – Primary Studies selected in the review. 137
Table 38 – Ranking of authors per publication number and his publications. 138

List of abbreviations and acronyms

CD Continuous Deployment

CDE Continuous Delivery

CI Continuous Integration

DAG Directed Acyclic Graph

ESE Empirical Software Engineering

IMGD Integrated Model of Group Development

ISO International Organization for Standardization

MWW Mann-Whitney-Wilcoxon test

MSR Mining Software Repository

OSS Open-Source Software

PR Pull Request

RDD Regression Discontinuity Design

SLR Systematic Literature Review

TDD Test-Driven Development

UFRN Universidade Federal do Rio Grande do Norte

XP eXtreme Programming

List of symbols

→ Causation

⊥̸⊥ Not independent

⊥⊥ Independent

| Conditioned on

⇒ Implies

Contents

1 Introduction . 17
1.1 Problem Statement . 17
1.2 Thesis Proposal . 18

1.2.1 Study 1: What are the reported effects of CI on software develop-
ment? . 19

1.2.2 Study 2: What is CI’s empirically observable causal effect on soft-
ware quality? . 20

1.3 Thesis Contributions . 20
1.4 Thesis Organization . 21

2 Background . 22
2.1 Continuous Integration . 22

2.1.1 Continuous Integration Practices 23
2.2 Software Quality . 25
2.3 Common Cause Principle . 26
2.4 Causal Directed Acyclic Graphs (Causal DAGs) 26

2.4.1 d-Separation and the Testable Implications of the DAGs 28
2.4.2 Backdoor Paths and Confounding 29

3 Systematic Literature Review on The Effects of Continuous Integra-
tion on Software Development . 30
3.1 Research Method . 30

3.1.1 Research questions . 30
3.1.2 Search strategy . 32
3.1.3 Study Selection . 33

3.1.3.1 Selection Criteria . 33
3.1.3.2 Screening of papers . 34

3.1.4 Data Extraction . 35
3.1.5 Quality Assessment . 37
3.1.6 Synthesis . 39

3.2 Results . 41
3.2.1 RQ1: What are the existing criteria to identify whether a

software project uses CI? . 41
3.2.2 RQ2: What are the reported claims regarding the effects

of CI on software development? 43
3.2.2.1 Development Activities 45
3.2.2.2 Software Process . 47
3.2.2.3 Quality Assurance . 50

3.2.2.4 Integration Patterns . 51
3.2.2.5 Issues & defects . 53
3.2.2.6 Build Patterns . 54

3.2.3 RQ3: Which empirical methods, projects and artifacts are
used in the studies that investigate the effects of CI on
software development? . 55
3.2.3.1 Projects analyzed . 55
3.2.3.2 Availability of Artifacts 57
3.2.3.3 Study Quality and Methodologies 58

3.3 Discussion . 63
3.3.1 CI Environment and Study Results 63
3.3.2 Research Opportunities . 64

3.3.2.1 Integration Patterns . 64
3.3.2.2 Development Activities 66

3.4 Threats to validity . 69
3.4.1 Search Strategy . 69
3.4.2 Screening Papers . 69
3.4.3 Data Extraction . 70
3.4.4 Quality Assessment . 70
3.4.5 Data Synthesis . 70

3.5 Conclusion . 71
3.5.1 Results and Implications . 71
3.5.2 Open questions for Practitioners and Researchers 73

4 Continuous Integration and Software Quality: A Causal Explanatory
Study . 74
4.1 RESEARCH METHOD . 76

4.1.1 What does the literature proclaim about CI and software
quality? . 77
4.1.1.1 Literature Review . 77
4.1.1.2 DAG Building . 86

4.1.2 RQ2. Is the causal effect of CI on software quality empiri-
cally observable? . 86
4.1.2.1 Collecting Data & Empirical Analysis 87
4.1.2.2 DAG Implications Testing 92

4.1.3 RQ3.What would be an accurate causal theory for CI? . . 93
4.2 Results . 95

4.2.1 RQ1. What are the existing criteria to identify whether a software
project uses CI? . 95

4.2.2 RQ2. What are the reported claims regarding the effects of CI on
software development? . 96

4.2.3 RQ3. Which empirical methods, projects and artifacts are used in
the studies that investigate the effects of CI on software development? 98
4.2.3.1 The relationship between Age and CommitFrequency . 98
4.2.3.2 The relationship between Age and TestsV olume 99
4.2.3.3 The relationship between Age and Communication . . 100
4.2.3.4 The relationship between CommitFrequency and BugReport

. 102
4.2.3.5 The relationship between Communication and TestsV olume 102
4.2.3.6 Data-Validated Causal DAG 103

4.3 Discussion . 106
4.3.1 Implications for researchers . 107
4.3.2 Practical implications . 109

4.4 Threats To Validity . 109
4.5 Conclusion . 110

5 Related Work . 112
5.1 Systematic Literature Reviews in CI . 112
5.2 Software Quality in CI . 113

6 Conclusions . 116
6.1 Contributions and Findings . 116

6.1.1 Study 1: What are the reported effects of CI on software develop-
ment? (Chapter 3) . 116

6.1.2 Study 2: What is CI’s empirically observable causal effect on soft-
ware quality? (Chapter 4) . 118

6.2 Future Work . 119

References . 120
APPENDIX A Systematic Literature Review on The Effects of Con-

tinuous Integration on Software Development 129
A.1 Demographic attributes . 129
A.2 Selected Studies . 130

17

1 Introduction

Continuous integration (CI) is a software engineering practice that aims to reduce
the costs and risks related to code integration among distributed teams through frequent
code integration and synergic practices, such as automated tests, frequent builds, and
immediately fixing a broken build, among others (BECK; ANDRES, 2004; FOWLER;
FOEMMEL, 2006; DUVALL; MATYAS; GLOVER, 2007; STåHL; BOSCH, 2014a). CI
has increased popularity in a broad range of domains in the recent decades (BECK;
ANDRES, 2004; FOWLER; FOEMMEL, 2006; DUVALL; MATYAS; GLOVER, 2007;
STåHL; BOSCH, 2014a).

The literature points out several potential benefits related to CI, such as risk
reduction, greater confidence in the software product, ease of locating and fixing bugs,
improvements in project predictability, team communication, software quality, and gains in
team productivity, among others (FOWLER; FOEMMEL, 2006; DUVALL, 2013; STåHL;
BOSCH, 2013; VASILESCU et al., 2015; SOARES et al., 2022). In an increasingly globalized
scenario and distributed software development teams, the potential of CI attracts even more
attention from the industry since the distributed character demands strong coordination
and control from software development teams facing temporal, geographical, and socio-
cultural challenges (KAUSAR; AL-YASIRI, 2015; PEHMÖLLER; SALGER; WAGNER,
2021; PHALNIKAR; DESHPANDE; JOSHI, 2009; HOLMSTROM et al., 2006).

The CI popularity has also caught the attention of the software engineering research
community. Several studies investigated CI practices (VASSALLO; PALOMBA; GALL,
2018; YU et al., 2016; PINTO et al., 2018), and associated environments & tools (STAHL;
BOSCH, 2014; ZAMPETTI et al., 2017; JOHANSSEN et al., 2018). Other studies have
focused on the potential benefits of CI on the delivery time of pull requests (BERNARDO;
COSTA; KULESZA, 2018), on build health (EMBURY; PAGE, 2019), and in software
development (STåHL; BOSCH, 2013). There are also studies exploring challenges (DEB-
BICHE; DIENéR; SVENSSON, 2014a), long builds (GHALEB; COSTA; ZOU, 2019),
build failures (RAUSCH et al., 2017), and anti-patterns (VASSALLO et al., 2019) linked
to CI usage. Some studies investigated new practices introduced to CI (ROGERS, 2004;
VOLF; SHMUELI, 2017; MEEDENIYA; RUBASINGHE; PERERA, 2019) in different
project settings.

1.1 Problem Statement

Over the last years, the software engineering research community has produced many
studies related to the CI impact. Among the vast literature, Michael Hilton and colleagues
presented two studies with an association between CI and high-quality code and tests,

Chapter 1. Introduction 18

leading to less time to identify and reject problematic pull requests (HILTON et al., 2016;
HILTON et al., 2017). Several studies related CI to earlier bug catching and an increased
number of issues and bugs resolved (KAYNAK; ÇILDEN; AYDIN, 2019; RAHMAN et
al., 2018; PINTO et al., 2018). Bogdan Vasilescu et al. showed that CI improves teams’
productivity without compromising code quality (VASILESCU et al., 2015). Similarly,
Jadson Santos et al. presented an association of CI sub-practices with software quality and
teams’ productivity (SANTOS; COSTA; KULESZA, 2022). In addition to these, other
studies also demonstrate the association with teams’ productivity (STåHL; BOSCH, 2013;
PARSONS; RYU; LAL, 2007). Although correlation studies are valuable, causal studies
can provide deeper insights and empower stakeholders to make better decisions, such as
adopting or not CI in their teams (PEARL et al., 2000).

This thesis explores the existing literature limitations, especially the lack of causal
studies on the effects of CI on software development. To understand how CI influences
the delivery of software products, this thesis investigates the potential causal relationship
between CI and software quality and CI.

1.2 Thesis Proposal

This thesis aims to identify the reported claims regarding the effects of CI on
software development and to propose a deeper investigation into some of these claims,
approaching them from a causal perspective. To accomplish this goal, we propose three
studies as shown in Figure 1.

Figure 1 – Thesis overview

Study 1 (1.2.1) explores the current literature on CI and maps the reported effects
of CI adoption on software development. In subsequent studies, we investigate the mapped

Chapter 1. Introduction 19

relationships of CI with the reported effects from a causal perspective. In Study 2 (1.2.2),
we investigate the potential causal relationship between CI and software quality.

1.2.1 Study 1: What are the reported effects of CI on software
development?

Current research has cataloged the findings in the literature concerning continuous
integration, delivery, and deployment (LAUKKANEN; ITKONEN; LASSENIUS, 2017;
SHAHIN; BABAR; ZHU, 2017; STåHL; BOSCH, 2013). However, no systematic study
summarizes all the potential benefits and cons of using CI (i.e., the effects of adopting
CI on the development process). This kind of study could better inform practitioners
and researchers about the potential of using CI and future research avenues. We aim
to investigate how the existing research evaluated CI and its results. Additionally, we
also intend to investigate the criteria used to identify whether a given project uses CI
or not—which is essential for designing empirical studies related to CI—, and what the
research methodologies applied in the existing studies to evaluate the potential effects of
adopting CI.

Our work is a systematic literature review (SLR) (KEELE et al., 2007) of the
existing empirical evidence regarding the effects of CI in diverse software development
activities. In this way, we consider a diverse set of empirical methods and associations
with CI, i.e., the effects of CI on variables such as test coverage, bugs reported, and
team communication, among others. Assuming this variability in the empirical methods
and diversity of variables, we do not perform a meta-analysis. Instead, we present an
interpretive SLR to draw a picture of the reported benefits and cons of adopting CI and
collate the claims made about CI in the existing literature, systematically assessing these
claims’ strengths. In this way, this work offers meaningful and relevant evidence-based
support for practitioners, organizations, and researchers.

We discuss the findings regarding the effects of CI and their evidence across six
themes: development activities, software process, quality assurance, integration patterns,
issues & defects, and build patterns. These findings provide researchers and practitioners
with (i) state-of-the-art empirical claims related to the effects of CI while collating
their existing evidence; and (ii) insights regarding the interrelation between research
methodologies, quality assessment and themes, which delineate potential future studies.

The results of this study are essential for knowing the effects associated with CI,
and then we can investigate them under a causal perspective in the following studies.

Chapter 1. Introduction 20

1.2.2 Study 2: What is CI’s empirically observable causal effect
on software quality?

Study 1 revealed that the existing literature reported several benefits associated
with CI usage. Among other associations, CI is associated with improvements in testing
practices, better quality assurance, and reduced issue reports, among others (SOARES et
al., 2022). This study aims to investigate the potential causal relationship between CI and
software quality to understand the CI influence on delivering software products.

To study the causal relationship between CI and software quality, we use an
approach that consists of five interconnected stages. In Stage 1, we conduct a literature
review to understand the variables that can play a role in the relationship between CI
and software quality, as well as marginal associations. With these variables, in Stage 2,
we define a comprehensive causal DAG (i.e., a graphical-statistical technique - to enable
us to draw domain assumptions and infer causal conclusions in a later stage (HERNáN;
ROBINS, 2010)).

Having a causal DAG containing a sufficient set of variables to analyze the relation-
ship between ContinuousIntegration and BugReport (we consider bug reports a proxy
for software quality, similar to a previous study from Vasilescu et al. (VASILESCU et al.,
2015)), we can proceed with Stage 3. This stage consists of mining software repositories
to collect observational data on the variables of the DAG, allowing us to apply the d-
Separation rules (PEARL; JUDEA, 1994) and evaluate the raised set of testable statistical
implications from the DAG built in Stage 1 (d-Separation is explained in Section 2.4.1).

Stage 4 verifies the statistical implications of the causal DAG by performing
(un)conditional independence tests on our dataset. Finally, in Stage 5, we analyze the hy-
potheses that failed in Stage 4 (i.e., statistical implications from the supposed relationships
between the variables not supported by the data) and propose a new causal DAG. The
DAG expresses the causal paths between CI and bug reports and which other variables
play relevant causal influences.

1.3 Thesis Contributions

This thesis presents a set of contributions through two studies. In study 1, we
present findings about the benefits of CI usage. CI is mentioned as a success factor
in software projects (Section 3.2.2.2), improving productivity, efficiency, and developer
confidence (Sections 3.2.2.1 and 3.3.2.2). CI promotes benefits in the development process
(Section 3.2.2.2) and potentializes pull-based development by improving and accelerating
the integration process (Section 3.2.2.4).

Study 1 also shows indications that CI positively influences the way developers work
(Section 3.2.2.4) and demonstrates a perceived provision of transparency and continuous

Chapter 1. Introduction 21

quality inspections (Section 3.2.2.3). In addition, the studies credit CI to an improvement
in the time to find and fix issues and a decrease in defects reported (Section 3.2.2.5).

On the other hand, Study 1 shows drawbacks of CI usage, such as the introduction
of complexity to the project, requiring more effort and discipline from developers, and
negatively impacting developers’ perceived productivity (Sections 3.2.2.1 and 3.3.2.2).
Some of the included studies also discuss the false sense of confidence, i.e., when developers
blindly rely on flaky tests (Sections 3.2.2.1 and 3.3.2.2). Studies also report that CI may
prolong the pull request lifetime (Section 3.2.2.4).

The study 2 assess empirically the causal effect of CI on software quality. We built
a literature-based causal DAG expressing such a relationship (Section 4.2.1) and mined
software repositories to assess the literature-based causal DAG empirically, analyzing 12
activity months from 148 software projects (Section 4.2.2). After analyzing the testable
implications from the literature-based causal DAG with our dataset, we proposed a new
data-validated causal DAG (based on a hybrid literature-data approach) expressing the
relationship between CI, software quality, and the relevant variables (Section 4.2.3).

With the causal analysis, we find that CI has a positive causal effect on bug reports
and influences developers’ communication, reinforcing bug report benefits. On the other
hand, the developers’ overconfidence is a concern in CI environments and could negatively
affect bug reports. CI also has an impact on Merge Conflicts and commit frequency.

It is essential to notice that commit frequency, test volume and communication
are interrelated, and all of them affect Bug Report. In the same way, Age is an important
source of confounding effects since it relates to test volume, commit frequency, continuous
integration, communication, and bug report.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 describes essential
concepts covered in the thesis scope. Chapter 3 presents our systematic literature review
(Study 1) and their findings. Chapter 4 presents the causal explanatory study on CI and
software quality (Study 2). Chapter 5 situates the thesis concerning other related studies.
Finally, Chapter 6 draws the conclusions, implications, and future work.

22

2 Background

This chapter provides concepts, definitions, techniques, and approaches to under-
stand this thesis better. We present definitions of Continuous Integration (CI) in Section
2.1, regarding software quality in Section 2.2, and background material regarding causal
DAGs in Section 2.4.

2.1 Continuous Integration

Continuous Integration (CI) is one of the practices of eXtreme Programming (XP)
methodology proposed by Beck K (BECK; ANDRES, 2004). The overarching goal of CI is
to reduce the cost of integrating the code developed by different developers in a team (or
different teams) by making integration a daily practice. For example, there must be no
more than a couple of hours between code integration. While CI compels the code to be
collective and the knowledge to be shared more, CI’s main benefit is the reduced risk of a
big and cumbersome integration (e.g., after days, weeks, or months of work developed)
(BECK; ANDRES, 2004).

To properly employ CI, at least four mechanisms are required: (i) a version control
system, (ii) a build script, (iii) a feedback mechanism, and (iv) a process for integrating the
source code changes (DUVALL, 2013). Modern distributed version control systems (VCS),
especially those based on Git, have grown in popularity because of social coding platforms,
such as GitHub (VASILESCU et al., 2015), which have fostered collaborative software
development. Within these popular social coding platforms, several services have been
proposed to support CI (e.g., TravisCI, CircleCI and Jenkins), easing the automation
of build pipelines, which are triggered by source code changes on the VCS (HILTON et
al., 2016).

Studies have reported an increasing number of projects adopting the continuous
integration practice (HILTON et al., 2016), and some of such studies bring up evidence
showing changes in the practice of these projects, such as higher commit frequency and an
increase in test automation (ZHAO et al., 2017).

Duvall et al. (DUVALL, 2013) advocate that CI is the centerpiece of software
development, ensuring the health and determining software quality. To get the benefits
of CI, the authors argue that developers should implement a set of sub-practices daily,
whereas implementing only a fraction of the practices is not enough to employ CI. Fowler,
in his definition of CI, also mentions a series of critical practices to make CI effective
(FOWLER; FOEMMEL, 2006) (see Table 1).

Nevertheless, some authors have studied differences in implemented CI processes
and demonstrated a lack of consensus regarding these CI processes, which results in many

Chapter 2. Background 23

CI variants (STåHL; BOSCH, 2014b; VIGGIATO et al., 2019). Ståhl & Bosch (STåHL;
BOSCH, 2014b) identified variation points from 16 out of 22 clusters of CI practices and
argue that it is necessary to investigate which kind of continuous integration a project
applies when analyzing or assessing projects. Viggiato et al. (VIGGIATO et al., 2019)
suggested that continuous integration may not always be homogeneous, i.e., CI may
have different usages across different domains. Studies still suggest the inclusion of other
practices to potentialize benefits, Vassalo C et al. (VASSALLO; PALOMBA; GALL, 2018),
for example, suggest adding “continuous refactoring” as a CI best practice as it is useful
to control the increasing complexity of the changes.

On top of that, there is a discussion regarding existing confusion around the
definition of Continuous Integration (CI), Continuous Delivery (CDE), and Continuous
Deployment (CD), or still, the recent emphasis on DevOps shedding light on the integration
between software development and its operational deployment (SHAHIN; BABAR; ZHU,
2017; FITZGERALD; STOL, 2014). A conservative perspective presents these continuous
practices as sequential and well-defined techniques, i.e., CI as a foundation for CDE in
such a manner that an organization should implement a reliable CI practice to adopt CDE,
in the same way, to implement CD an organization should implement CDE (SHAHIN;
BABAR; ZHU, 2017). Fitzgerald B & Stol K (FITZGERALD; STOL, 2014), in turn,
defends a holistic view —“Continuous ∗”— including Business Strategy & Planning,
Development, and Operations, in which CI incorporates CDE, and CD.

Therefore, the variability around the continuous practices and the dynamic nature
of the employed practices in continuous integration leads to a potentially endless variation
of CI implementations and a lack of consensus on an exact definition of CI. Considering
the lack of consensus regarding an exact definition of CI, in our research, we focus on the
practices discussed by Duvall et al. (DUVALL, 2013) and Fowler (FOWLER; FOEMMEL,
2006)for one main reason. While other authors reveal the variability around continuous
integration, they often do not provide concrete guidelines as to what should be considered
CI or not. Conversely, Duvall et al. (DUVALL, 2013) and Fowler (FOWLER; FOEMMEL,
2006) present a concrete minimum number of practices that projects should adopt in order
to be considered as using CI.

2.1.1 Continuous Integration Practices

Table 1 shows an overview of the practices proposed by Duvall et al. (DUVALL,
2013) and those reported by Fowler (FOWLER; FOEMMEL, 2006). The practices proposed
by Duvall are shown in the second column, while the third column shows the practices
reported by Fowler. In the first column, we organize the CI practices into four groups: (i)
integration, (ii) test, (iii) build, and (iv) feedback.

“Commit code frequently” is the practice of integrating code changes as “early
and often” as possible to a “single source code repository” (e.g., GitHub, GitLab, or

Chapter 2. Background 24

Table 1 – Continuous integration practices enumerated by Duvall et al. (DUVALL, 2013)
and Fowler (FOWLER; FOEMMEL, 2006).

Duvall et al. practices (DUVALL, 2013) Fowler practices (FOWLER; FOEMMEL, 2006)
Integration
Practices

Commit code frequently Everyone commits to the mainline every day
- Maintain a single source repository

Test
Practices

Write automated developer tests Make your build self-testing
All tests and inspections must pass Test in a clone of the production environ-

ment

- Make it easy for anyone to get the
latest executable

- Automate deployment

Build
Practices

Don’t commit broken code Automate the build

Run private builds Every commit should build the mainline
on an integration machine

Fix broken builds immediately Fix broken builds immediately
- Keep the build fast

Feedback
Practices

Avoid getting broken code Everyone can see what’s happening

Bitbucket). This practice is central to CI because it prevents a complex integration—
an integration that requires more time and effort—while treating potential integration
problems (DUVALL, 2013; FOWLER; FOEMMEL, 2006).

When it comes to testing, CI bears the principle that “all tests and inspections
must pass”. This practice advocates that not only tests must pass but also the inspections
related to coding and design standards (e.g., test coverage, cyclomatic complexity, or
others). Ideally, the tests and inspections should be triggered in an automated fashion.
Therefore, CI requires developers to “write automated development tests”, “making the
builds to become self-testing”, which enables a fully automated build process that provides
meaningful feedback (DUVALL, 2013; FOWLER; FOEMMEL, 2006).

Still regarding tests, Fowler recommends to “test the software in a clone of the
production environment” to mitigate the risk of not identifying problems occurring only
within the production environment. For this reason, Fowler also proposes the “automated
deployment”—to prepare test-environments automatically—and the practice of “making it
easy for anyone to get the latest executable”—so that anyone has easy access to the current
state of development (FOWLER; FOEMMEL, 2006).

Concerning building practices, the team must follow the “don’t commit broken
code” practice. To do so, it is vital to employ the “automate the build” practice. The
build automation consists of empowering the team with scripts that fully manage the
build process, from dependency managers (e.g., Maven, Gradle, NuGet, or Bundler)
and tests to a database schema, or other required tool. Once a consistent build script
is set, developers should “run private builds” that emulate an integration build in their
workstation, ensuring a well-succeeded build process before integrating their changes into
the central repository (i.e., the mainline) (DUVALL, 2013; FOWLER; FOEMMEL, 2006).

Additionally, Fowler recommends that “every commit should build the mainline on
an integration machine”, i.e., a change sent to the mainline repository must trigger a build

Chapter 2. Background 25

process in a dedicated server. It is also important to “keep the build fast”, so the dedicated
server can be effective to give rapid feedback, helping developers to “fix broken builds
immediately”. Regarding build duration, the eXtreme Programming (XP) recommends a
limit of 10 minutes. Builds that take more than 10 minutes may lead the development
team to give up on using CI (FOWLER; FOEMMEL, 2006; BECK; ANDRES, 2004).

“Fix broken builds immediately” is cited both by Fowler and Duvall et al. A build
may break due to a compilation error, a failed test, or several other reasons. When a
build is broken, the development team must focus on fixing the build before any other
implementation activity—the build should always be on green.

There are also CI practices related to feedback. One example is the practice “every-
one can see what’s happening”, which makes communication clear and transparent within
or across development teams. The immediate feedback from CI allows the development
team to “avoid getting broken code”. In other words, a developer can check the current
build status before performing a checkout (or pull) (FOWLER; FOEMMEL, 2006; BECK;
ANDRES, 2004).

2.2 Software Quality
Quality is a complex concept that may represent a subjective or a concrete concern.

Garvin, David A (GARVIN, 1984) points out several approaches to answer what quality
is:

Five major approaches to the definition of quality can be identified: (1)
the transcendent approach of philosophy; (2) the product-based approach
of economics; (3) the user-based approach of economics, marketing, and
operations management; and (4) the manufacturing-based and (5) value-
based approaches of operations management (GARVIN, 1984).

Quality is frequently defined as “conformance to requirements” (HOYER; Y., 2001).
Not so far, the software development industry traditionally defined software quality as
“fit for purpose” or “conforming to specification” (BARNEY et al., 2012). In this sense, a
lot of research on software quality aims to improve individual aspects of software quality,
such as maintainability, security, or usability, while there are several models of software
quality to support the software development process (BARNEY et al., 2012).

According to ISO/IEC 25010:2011 (International Organization for Standardization,
2011) the characteristics defined by the quality models are relevant and “provide consistent
terminology for specifying, measuring, and evaluating system and software product quality.”
As stated by Ian Sommerville (SOMMERVILLE et al., 2011), measuring some quality
attributes directly is impossible since their specification cannot be non-ambiguous and
is challenging to measure. Measurement concerns the derivation of a numeric value or a
profile for an attribute of a software component, system, or process, with which we can
evaluate the software methods, tools, and processes (SOMMERVILLE et al., 2011).

Chapter 2. Background 26

Previous research works investigate quality issues using the number of bug reports
as a metric for quality assessment (KHOMH et al., 2012; VASILESCU et al., 2015). In
this work, we adopt a similar strategy considering bug reports as a proxy for software
quality in study 2 (Chapter 4).

2.3 Common Cause Principle

Reichenbach’s Common Cause Principle (PENROSE; PERCIVAL, 1962) states
that given two statistically dependent variables X and Y , if one is not a cause of the
other, then they may share a common cause Z, as shown in Fig. 2(a). Conditioning on
the common cause Z, then X and Y become independent. For example, Fig. 2(a) shows
an association “flowing” (the red dots above on the edges represent an “association flow”)
between Heat and Smoke. They are associated because they share a common cause,
which is Fire. Fig. 2(b) shows the interrupted flow when conditioning on Fire, i.e., in the
absence of Fire (i.e., Fire=0), there is no association between Heat and Smoke.

Therefore, if the famous adage states that “correlation does not imply causation”
(i.e., statistical associations are not sufficient to determine causal relationships), on the
other hand, “there is no causation without association.” The common cause principle
establishes a relationship between statistical properties (i.e., association) and causal
structures (PETERS; JANZING; SCHöLKOPF, 2017). In this way, it is possible to infer
the existence of causal links from statistical dependencies (i.e., functional relationships
between the variables) (PETERS; JANZING; SCHöLKOPF, 2017). To infer causation,
Pearl (PEARL et al., 2000) proposed employing a causal modeling framework based on
causal Directed Acyclic Graphs (causal DAGs). In the following subsections, we explain
the theory proposed by Pearl because we apply his proposed theory in our study.

2.4 Causal Directed Acyclic Graphs (Causal DAGs)

Pearl (PEARL et al., 2000) argues that nature possesses causal mechanisms that,
if described in detail, are deterministic functional relationships between variables. Some
of these variables are unobservable, e.g., sometimes we see the smoke causing a fire
alarm to be activated, but we can not see the fire. However, it is the fire that causes the
existence of smoke. Pearl describes the causal discovery task as an induction game that
contributes to identifying (from available observations or interventions) the organization
of the mechanisms in the form of an acyclic causal structure (PEARL et al., 2000). This
causal structure is called a Directed Acyclic Graph (DAG). A DAG has: (i) nodes - that
are variables with directed edges and no directed cycles; and (ii) edges that represent
functional relationships between variables (see Fig. 2(a)) (PEARL et al., 2000; SPIRTES;
GLYMOUR; SCHEINES, 1993; HERNáN; ROBINS, 2010).

Chapter 2. Background 27

Figure 2 – In this picture, the ellipses are variables, the edges represent a relationship
between variables, and the red dots above the edges represent an “association
flowing” between variables. (a) Fire is the common cause of Heat and Smoke.
Heat and Smoke are associated through Fire, i.e., the “association flows” between
Heat and Smoke through Fire. (b) Conditioning on Fire, the association flow
between Heat and Smoke is blocked. (c) Conditioning on Fire, Smoke becomes
associated only with its descendent Smell. (d) Spark is a common cause of Fire
and Smoke, opening a backdoor path between these variables. Spark is a source
of confounding.

In turn, Pearl and Verma (PEARL; VERMA, 1995) defined a Causal Markov
Condition stating that a DAG should have a node distribution N = {N1, ..., Nn} such
that, for each j, Nj is independent of its non-descendants conditioning on its parents
(PEARL et al., 2000; HERNáN; ROBINS, 2010; SPIRTES; GLYMOUR; SCHEINES, 1993).
Considering the example of Fig. 2(c), the Markov Condition implies that, if conditioning
on the parent Fire, Smoke becomes independent of all other variables on the DAG, except
its descendent Smell. That means that Smoke exists (Smoke = 1), but there is not
necessarilly Heat, because we condition on Fire (Fire = 0).

Reichenbach’s Common Cause Principle (see section 2.3) and the Markov Condition
imply that a causal DAG should contain the common causes of any pair of variables
(PEARL et al., 2000; HERNáN; ROBINS, 2010). Thus, to build a sufficient causal DAG of
a phenomenon, it is essential to know the significant common causes among the variables
involved in that phenomenon, i.e., if two variables Heat and Smoke in the DAG share a
common cause Fire, then Fire should be represented in the DAG, as shown in Fig. 2(c).
Since this is a recursive criterion, in Fig. 2(d), Spark should be present since it is a
common cause of Fire and Smoke.

Discovering causal structures to build a DAG that correctly describes a phenomenon,
i.e., the set of variables a DAG should contain and the relationships between variables,
is challenging. There are at least three strategies to obtain a DAG: prior knowledge,
guessing-and-testing, or discovery algorithms (SHALIZI, 2021). Prior knowledge is a
source to build causal DAGs, but since there is a link between causal structures and
statistical properties (see section 2.3), it is possible to test the correctness of a built DAG
if we have access to observational data. Section 2.4.1 details the statistical properties and

Chapter 2. Background 28

their testable implications.

2.4.1 d-Separation and the Testable Implications of the DAGs

A helpful approach to visually understand DAGs is to assume that associations
“flow” through the edges of the DAG (HERNáN; ROBINS, 2010). Using the illustration
from Fig. 2(a), the association flows freely between Heat and Smoke. However, intervening
on the values of Fire (as in the Fig. 2(b)), this flow may be interrupted since it represents
a common cause for Heat and Smoke (HERNáN; ROBINS, 2010). A set of graphical
rules, called d-separation, were formalized by Pearl (PEARL; JUDEA, 1994) to infer
associational conclusions from causal DAGs.

D-separation is a set of graphical rules defining whether a path in the DAG
is blocked or open. To understand the rules, we consider three structural patterns: (i)
Chain: Fire → Smoke → Smell (see Fig. 2(c)); (ii) Fork: Heat ← Fire → Smoke (see
Fig. 2(a)); and (iii) Collider: Humidity → Heat ← Fire (see Fig. 2(c)). In the chain,
Fire and Smell are dependent (Fire ⊥̸⊥ Smell) but become independent (i.e., blocked),
conditioning on Smoke (Fire ⊥⊥ Smell | Smoke). In the fork, Heat and Smoke are
dependent (Heat ⊥̸⊥ Smoke) unless we condition on Fire (Heat ⊥⊥ Smoke | Fire). In
the collider, Humidity and Fire are independent (Humidity ⊥⊥ Fire) because a collider
blocks the association flow. Conditioning on the collider (or one of its descendants) opens
that flow, making Humidity and Fire dependent(e.g., Humidity ⊥̸⊥ Fire | Heat). We
provide a summary below:

• Chain: X → Z → Y ⇒ X ⊥̸⊥ Y and X ⊥⊥ Y | Z

• Fork: X ← Z → Y ⇒ X ⊥̸⊥ Y and X ⊥⊥ Y | Z

• Collider: X → Y ← Z ⇒ X ⊥⊥ Z and X ⊥̸⊥ Z | Y

Based on these d-Separation rules, all DAGs have a consequent set of testable
statistical implications. These statistical implications inferred from the graphical analysis
allow us to verify if the structure of a DAG is consistent with an empirical dataset
through conditional independence tests on the data. Pearl (PEARL et al., 2000) defines a
causal model as a pair M =< D, ΘD > consisting of a causal structure D and a set of
parameters ΘD compatible with D. Thus, relying on d-Separation rules and a representative
dataset, the causal DAG technique also allows building a causal structure through both
guessing-and-testing as well as discovery algorithms (SHALIZI, 2021).

This study aims to understand how Continuous Integration affects Software Qual-
ity. We use a combination of two approaches: (i) prior knowledge to draw the existing
assumptions; and (ii) guessing-and-testing to obtain a final causal structure. To introduce
more rigor, we consider prior knowledge by gathering it from the existing literature and

Chapter 2. Background 29

drawing an initial DAG with assumptions regarding the influence of CI on software quality.
Afterward, we refine our understanding by applying guessing-and-testing that relies on
the statistical implications that we derive from the initial DAG and their validations by
using our dataset, i.e., we collect data by mining software repositories. Section 4.1 details
these methodological steps.

2.4.2 Backdoor Paths and Confounding

A common source of bias is due to common causes between two variables, such as
the presence of a cause Spark shared by the treatment Fire and the outcome Smoke (see
Fig. 2(d)). This common cause results in a path between Fire and Smoke that is not a
direct edge. The path is through the back door, i.e., Fire← Spark → Smoke generating
another association flow between the treatment Fire and the outcome Smoke. We refer
to this kind of structure as a backdoor path, and the bias caused by the backdoor path as
confounding.

Causal DAGs have grown in popularity in several fields (econometrics, epidemiology,
and climate science, among others). Greenland, Pearl, and Robins (GREENLAND; PEARL;
ROBINS, 1999a) present causal DAGs as a tool for identifying variables that must be
measured and controlled to obtain unconfounded causal effect estimates for epidemiologic
research. Shmueli (SHMUELI, 2010) sees causal DAGs as a common causal inference
method for testing causal hypotheses on observational data.

30

3 Systematic Literature Review on
The Effects of Continuous Integra-
tion on Software Development

An earlier version of this chapter appears in Volume 27, issue 3, from May
2022 of Empirical Software Engineering (SOARES et al., 2022).

3.1 Research Method

The main goal of our study is to provide a holistic view for researchers and practi-
tioners regarding how Continuous Integration (CI) can influence the software development
phenomena (both in terms of potential benefits and cons). Therefore, we conduct a Sys-
tematic Literature Review (SLR) of studies that investigated the potential effects of CI on
software development. To evaluate the scientific rigor of our target studies, we investigate
the methodologies that were employed in these studies. The purpose of this investigation
is better to understand the strength of the existing scientific claims and inform the reader
accordingly. We also consider how our target studies determined whether their subject
projects used CI or not. Identifying whether a project uses CI is a crucial step in any study
evaluating the effects of adopting CI as this is how empirical comparisons regarding CI
vs. non-CI can be performed. To conduct our SLR, we follow the guidelines provided by
Kitchenham & Charters (KEELE et al., 2007).

The next subsections describe our review protocol (KEELE et al., 2007). Section
3.1.1 describes the rationale behind our research questions. Section 3.1.2 details the search
mechanisms that we perform. Section 3.1.3 describes the inclusion and exclusion criteria
and the screening process. Section 3.1.4 describes the data extraction details, while Section
3.1.5 explains how we assess the quality of the studies. Finally, Section 3.1.6 reveals the
procedures that we use to synthesize the collected data.

3.1.1 Research questions

To fulfill the goal of our study, we address the following research questions (RQs):
RQ1: What are the existing criteria to identify whether a software

project uses CI?
Rationale. Several authors have listed a set of practices or principles related

to CI (DUVALL, 2013; FOWLER, 2020; STåHL; BOSCH, 2014b; ZHAO et al., 2017;

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 31

VIGGIATO et al., 2019). Some of these practices include: “commit code frequently”, “test
automation”, “run private builds”, “all tests and inspections must pass”, and “fix broken
builds immediately”. However, evidence exists that many CI projects do not adopt many
of these practices.

For example, Felidré et al. (FELIDRé et al., 2019) analyzed 1,270 open-source
projects using TravisCI (the most used CI server). They observed that about 60% of the
projects do not follow proper CI practices. For example, some projects have infrequent
commits, low test coverage, and 85% of projects take more than four days to fix certain
builds. Therefore, in RQ1, we investigate which criteria have been applied in the studies
to identify whether the subject projects employ CI or not. This investigation is important
because it has a direct impact on the quality of the data. For example, if a project is
deemed to be using CI, but performs infrequent commits and takes a long time to fix
builds, the empirical results observed to such a project would not reflect proper CI usage.

RQ2: What are the reported claims regarding the effects of CI on
software development?

Rationale. Most practitioners adopt CI practices with the expectation of increasing
the quality of software development (LEPPäNEN et al., 2015). Researchers have reported
the benefits of applying CI (FOWLER; FOEMMEL, 2006; DUVALL, 2013), such as risk
reduction, decrease in repetitive manual processes, readily deployable software, improved
project visibility, greater confidence in the software product, and easiness of locating and
removing defects.

To help practitioners and researchers, from an evidence-based software engineering
effort (KITCHENHAM; DYBå; JøRGENSEN, 2004), this RQ aims to collect, organize,
and compare the empirical investigations related to CI performed by existing studies, while
highlighting the assumptions and claims associated with these empirical investigations.

RQ3: Which empirical methods, projects and artifacts are used in the
studies that investigate the effects of CI on software development?

Rationale. As observed by Easterbrook S et al. (EASTERBROOK et al., 2008),
there is a lack of guidance regarding which methods to apply in Empirical Software Engineer-
ing (ESE) studies—which leads many researchers to select an inappropriate methodology.
Rodríguez-Pérez et al. (RODRIGUEZ-PéREZ; ROBLES; GONZáLEZ-BARAHONA, 2018)
investigated the reproducibility aspects of ESE through a case study. According to their
investigations, 39% of the analyzed papers did not provide sufficient data or documentation
to support the reproduction of the studies. To better understand the methodologies applied
in the ESE field concerning CI, in this RQ, we shed light on the methods, evaluations,
domains, and kinds of projects that are investigated in our target studies.

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 32

11

THEMATIC SYNTHESIS

10

DISAGREEMENTS RESOLUTION

RESOLUTION
BY

CONSENSUS
(TWO READERS)

8

4

SNOWBALLING

+ 80
PAPERS3

STUDY SELECTION

79
PAPERS2

DATA SEARCH

759
PAPERS1

SEARCH STRING
"continuous

integration” AND
("impact" OR “outcome"

OR "evaluation" OR
"effect" OR

"relationship" OR
"influence" OR

"importance" OR
“consequence" OR

7

DISAGREEMENTS RESOLUTION

RESOLUTION
BY

CONSENSUS
(TWO READERS)

6

DATA EXTRACTION

EXTRACTION
BY TWO

READERS

IMPORT DATA

IMPORT
DATA TO

THE
DATABASE

CODES
AND

THEMES

5

STUDY SELECTION

101 PAPERS

9

QUALITY ASSESSMENT

CHECKLIST
BY TWO

READERS

Figure 3 – Research methodology. Step 1: Search string definition; Step 2: Data search;
Step 3: Study selection; Step 4: snowballing; Step 5: snowballing study selection;
Step 6: Data extraction; Step 7: Disagreements resolution; Step 8: Database
import; Step 9: Quality Assessment; Step 10: Quality assessment disagreements
resolution; Step 11: Thematic synthesis.

3.1.2 Search strategy

The search process of our SLR consists of the first six steps shown in Figure 3.
Step 1–Definition of the search string (section 3.1.2); Step 2–Delimitation of the search
mechanisms (section 3.1.2); Steps 3 to 5–Papers screening (section 3.1.3.2).

Search String. Our goal is to find studies that evaluate continuous integration
and find the pros or cons of adopting CI in any software development activity. Therefore,
we use generic words that express the act of evaluating CI. We craft a string to fetch
papers containing the term “continuous integration” and another word that expresses
“impact” or “effect” in the title, abstract, or keywords. The terms we used were:

1. “continuous integration”

2. (“impact” OR “outcome” OR “evaluation” OR “effect” OR “relationship” OR
“influence” OR “importance” OR “consequence” OR “study”)

Items 1 and 2 were combined with a boolean operator “AND” to match studies
with both item 1 and at least one term from item 2. In this way, our search is denoted by
the logical expression:

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 33

• 1 AND 2

To operationalize our search string in different search engines, we first perform
our search using only item 1. Once the results are obtained, i.e., papers containing
“continuous integration” on the title, abstract, or keywords, we use scripts to filter out
papers not satisfying item 2. The scripts used in this process are available in our digital
appendix (SOARES et al., 2021).

Data Search. Regarding the selection of digital libraries, we considered Chen
et al. (LERO, 2010) recommendations and included the main publishers’ sites and one
index engine. Table 2 shows the number of papers we retrieved from each digital library.
We apply the search string in each digital library separately and store the results in
spreadsheets. As a result, our first search (i.e., step 2 from Fig. 3) resulted in 759 papers.

Table 2 – The digital libraries included in our search along with the number of matches
(before and after removing duplicates).

Database # of matches % # without duplicates %
IEEE Xplore 169 22.27 130 27.14
ACM Digital Library 121 15.94 117 24.43
SpringerLink 53 6.98 53 11.06
Wiley Online Library 4 0.53 4 0.84
ScienceDirect 12 1.58 12 2.51
SCOPUS 400 52.70 163 34.03

759 479

3.1.3 Study Selection

After performing the first search, we proceed with the study selection step. In
this section, we present our selection criteria (Section 3.1.3.1) and the process of paper
screening (Section 3.1.3.2).

3.1.3.1 Selection Criteria

In this step, we apply the inclusion and exclusion criteria based on our RQs. This
step is necessary to aim for relevant papers retrieved from the studied digital libraries. We
apply our inclusion and exclusion criteria in steps 3, 4, and 5 (see Figure 3).

As our work aims to collect evidence reported in the literature regarding the
effects of continuous integration (CI) on software development, we are interested in finding
empirical studies reporting an evaluation of CI projects or CI project settings (e.g.,
employees and organization characteristics). To maintain rigor in our analyses, our selected
studies must meet a minimum set of quality criteria to provide our review with reliable
evidence (we present our quality criteria with more details in Section 3.1.5). Given that
most international and high-quality research venues in software engineering use English

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 34

as their official language (e.g., ICSE, FSE and TSE), we excluded papers not written in
English. Our aim for high-quality and international venues in software engineering is also
a mechanism to maintain the rigor of our analyses.

Our inclusion criteria are the following: (i) the studies must be empirical primary
studies; (ii) be peer-reviewed papers; and (iii) show that CI adoption may (or may not)
have an effect on any aspect of software development. Our exclusion criteria are the
following: (i) studies must not be duplicates; (ii) studies must investigate the effects of CI
instead of proposing a new tool or a new practice for CI; (iii) papers must be written in
English. Figure 4 shows the number of papers removed after applying each criterion.

Figure 4 – Diagram illustrating the inclusion and exclusion criteria employment, presenting
the number of remaining papers after each stage.

3.1.3.2 Screening of papers

Figure 3 shows an overview of our screening steps. In Steps 1 and 2, we apply our
search string (Section 3.1.2) onto the referred digital libraries, obtaining 759 papers. By
applying the exclusion criteria 1 in Step 3, we obtain 479 distinct papers (see Table 2 and
Figure 4).

In Step 3, we perform a reading of the 479 papers. Two authors read the title and
abstract of each study and judged them based on the inclusion and exclusion criteria.
By using the Cohen Kappa statistic (COHEN, 1968), we obtain a score of 0.72, which

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 35

represents a substantial agreement. Afterward, a third author checks the disagreements
(there are 34 disagreements) and resolves each one. As a result, a total of 79 papers were
obtained at the end of Step 3.

Since the screening of papers is a step based on explicit inclusion and exclusion
criteria, we decided to apply an arbitration disagreement resolution strategy involving a
third researcher to check and break a tie in each disagreement. At this step, most of the
disagreements (there are 34) are about whether CI is the primary investigation topic of
the study. For example, we have an occurrence regarding the study entitled “Moving from
Closed to Open Source: Observations from Six Transitioned Projects to GitHub” (P69) on
the inclusion criteria 3, since apparently, it does not investigate CI directly. However, the
arbiter voted for inclusion, and the paper does present findings on CI.

In the next step (Step 4 in Fig. 3), we perform a backward snowballing, collecting 80
references of the selected studies, which contain the term “continuous integration”—both in
the title or abstract. Next, in step 5, two authors read the title and abstract and apply the
inclusion and exclusion criteria. At this stage, we include 22 additional papers. We achieved
an agreement rate of 0.76 (Cohen Kappa), signaling a substantial agreement between
authors. Afterward, we repeated the dispute resolution process with the arbitration of the
third researcher, which resulted in 101 studies at the end of Step 5. Figure 4 presents this
process in detail with a column for the first cycle — column “round 1”, and another for
the snowballing process.

Appendix A.2 lists the selected papers. The files containing the lists of papers on
each step are available in our digital repository. A backup of the relational database that
we use in our SLR is also available (SOARES et al., 2021).

3.1.4 Data Extraction

The extraction process consists of three steps: meta-data retrieval, data extraction,
and disagreement resolution. An automated process retrieves the meta-data, which includes
the title, authors, year, and publication venue of the studies. We use a reference management
tool named Mendeley1 to support the meta-data extraction. Mendeley exports the meta-
data in an XML format. We then use a script to read Mendeley’s XML files and store the
meta-data into our database.

Two authors extracted data by reading all 101 studies while collecting relevant
data (Step 6 in Figure 3). When a paper is completely read by each author, they both
submit a form containing the data extracted from that paper. For this purpose, we use
a web form containing the fields that are shown in Table 3 (KEELE et al., 2007). Next,
we export the data from the forms into a .csv file. Then, we run a script to import the
extracted data into our database.
1 Available at https://www.mendeley.com/

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 36

Table 3 – Fields of the extraction form.
Extraction Form Fields Sub items

F1 What are the claims presented
in the paper?

F2

What are the variables related
to each claim?
(And, if it is not clear, what
is the meaning of each variable?)

Controlled Experiments
Case Studies
Survey Research
Action Research

F3 What kind of study was performed
to evaluate the claim?

MSR
F4 How the claim was evaluated?

F5 How many projects were involved
in the study?

F6
Are there open-source, industry,
or both classes
of projects involved in the study?

F7 Is the study focused on a specific
domain area? which one?

F8 Does the study have the artefacts
available?

F9.1 Integration Frequency
F9.2 Automatic Build
F9.3 Build Duration
F9.4 Automated Tests
F9.5 Test Coverage
F9.6 Integration on Master
F9.7

What kind of criteria was considered
to determine CI adoption?

CI SERVICE

Our script automatically checks for the consistency of data provided by the authors.
If our script identifies that the two authors extracted different data for a given paper, the
script generates a diff containing the different content beside each other. The diff files
support the resolution of disagreements (Step 7 on Figure 3), in which both authors would
check the diff files and reach a consensus regarding which data should be extracted and
imported into the database (step 8 on Figure 3).

Examples of inconsistencies include typing errors, misunderstandings of extracting
the data, or regarding the study interpretation. Given this interpretative nature, we adopt
a consensus disagreement resolution strategy involving both researchers in this step— data
extraction. They assess the paper in a virtual meeting to discuss item by item the paper
details and then confirm the extracted data in a new form to import.

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 37

3.1.5 Quality Assessment

Following the recommendations from Kitchenham & Charters (KEELE et al., 2007),
we developed a quality checklist to assess the quality of each of the individual selected
primary studies. Our quality assessment aims to understand the quality differences in
the collected evidence, supporting the weighting of their claims. Thus, considering the
heterogeneity of the selected studies, in terms of study types and the outcomes investigated,
we adopt the framework proposed by Dybå et al. (DYBå; DINGSøYR; HANSSEN, 2007).
This framework was proposed for the quality assessment of both qualitative and quantitative
empirical research.

Therefore, we adapt the Dybå et al. (DYBå; DINGSøYR; HANSSEN, 2007) checklist
(see Table 4) composed of 11 questions among four quality criteria: (i) quality of reporting
(3 questions — Q2 to Q4); (ii) rigor (4 questions — Q5 to Q8); (iii) credibility (3 questions
— Q1, Q9, and Q10); (iv) relevance (1 question — Q11). Questions Q2, Q3, Q5, Q7, Q8,
and Q11 are verbatim from Dybå et al. (DYBå; DINGSøYR; HANSSEN, 2007). The
remaining five questions were inspired by examples from Kitchenham & Charters (KEELE
et al., 2007) and Dybå et al. (DYBå; DINGSøYR; HANSSEN, 2007), maintaining the
adequacy to the framework structure.

In this checklist, quality of reporting means the clarity with which it communicates
its context, motivation, and goals. The transparency and unambiguity of a study enable
readers to extract information and accurate conclusions from it. In this sense, we apply
three questions (Q2 to Q4 on Table 4) assessing these issues.

We designated four questions for the rigor criterion (Q5 to Q8 on Table 4), con-
stituting the heaviest factor of this checklist. The questions about rigor highlight the
methodological decisions of the studies and their rationale. We analyze whether par-
ticipants/project selection is suitable or not (e.g., Has the study justified the selection
procedures?). We also look for the metrics and measures and if they are provided/ex-
plained. We observe if the research design is appropriate to the research goals (e.g., Has
the researcher justified the research design? Has the researcher presented and explained the
statistical tests applied?). Furthermore, in Q8, we look for comparison or control groups
to indicate analytical rigor.

The credibility factor comprises three items (see Q1, Q9, and Q10 on Table 4)
assessing acceptability and the coherence between the presented findings and applied
methods. The first question filters peer-reviewed approved studies. We ask if empirical
data and experiment results support the findings and conclusions (e.g., Are the findings
explicit? Are limitations of the study discussed explicitly? Are the findings discussed
concerning the original research questions?). Lastly, we check whether data is available (or
scripts or detailed descriptions to obtain it) for reproduction or replication.

Finally, we assess the relevance of contributions (see Q11 on Table 4) for industry
or academy as an indicator of the study quality. This criterion has the lightest weight. In

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 38

question 11, we check if the researchers discuss the impact of their study on the state-of-
the-art and state-of-the-practice (e.g., do they consider the findings concerning current
practice or relevant research-based literature?).

These 11 questions behave as binary variables (1 - yes; 0 - no), and together, they
provide a metric of quality and reliability of the findings. To cover a broad set of empirical
evidence and draw a big picture of continuous integration reported effects, just the Q1
was used as an inclusion criterion (section 3.1.3.1). The remaining questions compound
a checklist to assess the strength of the body of evidence in Sections 3.2.2 and 3.2.3.
Therefore, we only evaluated studies with collected findings in our approach (i.e., papers
from which we find claims).

The sum of 11 questions allows us to compute a quality score per study (see Section
3.2.3.3). We consider this score a measure of the reliability of the extracted claims, i.e.,
claims originated from studies with high scores are more reliable than those with lower
scores. We built our checklist with the goal of rewarding a greater variety of methods to
support a claim. For example, the value of method variability is clearly seen in the higher
scores obtained by mixed-methods studies (MSR and survey). Mixed-methods studies
score better than other types with a median of 10 points (see section 3.2.3.3). The overall
median score is 9.

Furthermore, we consider certain codes (see section 3.1.6) more reliable if they are
supported by a higher number of studies and a higher variety of study types. In sections
3.2.2 and 4.3, we assess and discuss CI claims by examining: the set of studies supporting
these claims, the variety of methods to support these claims, the complementarity between
findings, and the respective quality scores of the studies. For example, in section 3.2.2.4,
we present a code describing an association between CI and a “change in commit patterns.”
This code represents five claims over three studies with various methods and quality
scores (one Case Study, one Mining Software Repository — MSR, and one MSR/Survey).
Although the case study scores 6 points of quality, the MSR scores 9 points, and the
MSR/Survey scores 10 points, i.e., different methodologies combined with an overall higher
quality score support the claim that CI promotes a “change in commit patterns.” Therefore,
this code is more reliable than if it was supported by only a case study or other studies of
the same type and similar quality scores.

Similar to what was exposed in section 3.1.4 for data extraction, after reading,
two authors independently assessed the quality of the study using a web form, achieving
a Kappa score of 0.55, which indicates a moderate agreement. To subsidize this quality
assessment, we added guiding questions for each item in the quality checklist. Later, each
divergence was discussed between the pair and settled by consensus after revisiting the
study (step 10 in Figure 3).

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 39

Table 4 – Quality Assessment checklist

Question
Q1 Was the paper peer-reviewed?
Q2 Is there a clear statement of the aims of the research?
Q3 Is there an adequate description of the context in which the research was carried out?
Q4 Is the size of the data set stated?
Q5 Was the recruitment strategy appropriate to the aims of the research?
Q6 Are the definitions for the measures or metrics provided?
Q7 Was the research design appropriate to address the aims of the research?
Q8 Is there a comparison or control group?
Q9 Does the empirical data and results support the findings?

Q10 Is the data available?
Q11 Is the study of value for research or practice?

3.1.6 Synthesis

In step 11 of Figure 3, we use the data extracted from our extraction form (Table
3) to address RQ1, RQ2, and RQ3 (Section 3.1.1). We first analyze the demographic data
(see Appendix A.1). Next, we perform the analyses to answer the Research Questions.

To answer RQ1–What are the existing criteria to identify whether a software project
uses CI?, we use the F9 field. To answer RQ2–What are the reported claims regarding the
effects of CI on software development?, we run a thematic synthesis (CRUZES; DYBå,
2011) using the fields F1 and F2. To answer RQ3–Which empirical methods, projects and
artifacts are used in the studies that investigate the effects of CI on software development?,
we use fields from F3-to-F8 (see Table 3).

In the thematic synthesis to answer RQ2, we follow the steps recommended by
Cruzes & Dybå (CRUZES; DYBå, 2011). The thematic synthesis consists of identifying
patterns (themes) within the data, which provides a systematic manner to report the
findings of a study. The thematic synthesis consists of five steps:

1. Extract data,

2. Code data,

3. Translate codes into themes,

4. Create a model of higher-order themes, and

5. Assess the trustworthiness of the synthesis.

The Extract Data is the first step of the thematic synthesis (Section 3.1.4). To
answer RQ2, we analyze the data from fields F1 and F2 (see Table 3), which are claims
regarding the effects of CI, i.e., any consideration in a study indicating a positive or negative
effect of CI on the software development phenomena. Therefore, we do not consider to

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 40

be a claim statements that are indirect or unrelated to the effects of CI on software
development—even if CI is used by the software projects under investigation. Table 5
shows two examples of claims.

Table 5 – Extracted claims from studies P25 and P74, from fields F1 and F2 of the
extraction form.

Claim Variables Paper
id

CI increases normalized collaboration amount
between programmers (OSS and proprietary
projects)

Normalized median in-
degree (NMID)

25

Core developers in teams using CI are able
to discover significantly more bugs than in
teams not using CI.

Number of bug reports (i.e.
issues clearly labeled as
bugs)

74

We group the information from fields F1 and F2 in a spreadsheet. Next, we code
the information through an inductive approach (CRUZES; DYBå, 2011), i.e., two authors
analyze all the claims together and collaboratively assign one or two codes to each of the
claims. The assigned codes are based on the central message within a claim. Therefore,
the two authors create an established list of representative codes.

Once the list of codes is created, two other authors are debriefed regarding the codes
to understand their meanings. These two other authors revisit every claim independently
and select one or more codes from the list of codes to assign to the claims. As an
example, consider the following finding in study P25: “After the adoption of CI, normalized
collaboration amount between programmers significantly increases for our set of OSS and
proprietary projects. [...]”. Both authors assign the code “CI IS ASSOCIATED WITH
AN INCREASE IN COOPERATION” to such a claim. At this stage, we obtain a Cohen
Kappa statistic (COHEN, 1968) of 0.73, which indicates a substantial agreement.

At this step, since it is a task of synthesizing ideas, we adopt an arbitration
disagreement resolution strategy to explore contributions from a more experienced author.
All disagreements were solved by a third author. As an example of disagreement, consider
the following claim in study P74: “Core developers in teams using CI are able to discover
significantly more bugs than in teams not using CI. [...]”. One author assigned the code
“CI IS ASSOCIATED WITH DEFECT REDUCTION”, while the other author assigned
“CI IS ASSOCIATED WITH A DECREASE IN TIME TO ADDRESS DEFECTS”. In
this case, the third author analyzed the claim and decided to maintain the code “CI IS
ASSOCIATED WITH DEFECT REDUCTION”.

In the third step of the thematic synthesis (i.e., Translate codes into themes) we
compute the frequency of each code and propose overarching themes. Finally, we develop
a thematic network to express the relationship between codes and themes (Step 4 of the
thematic synthesis). Once the thematic network was developed we performed two meetings
with all authors to discuss the meaningfulness of the network and codes (Step 5 of the

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 41

thematic synthesis). After 4 hours of discussion (each meeting having 2 hours), we refined
the thematic network and the codes and themes within it (see Section 3.2.2 and Figure 6).

3.2 Results

The appendix A.1 present some demographic information about the studies. In this
Section we present the results of our systematic literature review (SLR). The following
subsections explores the results to our research questions.

3.2.1 RQ1: What are the existing criteria to identify whether a
software project uses CI?

To answer this research question, we analyze in the primary studies which criteria
(e.g., CI practices or attributes) were considered when describing or selecting the analyzed
projects—For example, how are the projects using CI deemed as such? More specifically,
we do not investigate the analyzed projects themselves. Instead, we investigate whether our
primary studies select (or classify) their analyzed projects based on the following criteria:
integration frequency, automated build, build duration, automated tests, test coverage
threshold, integration on the mainline, and CI service (DUVALL, 2013; FOWLER, 2020).

As discussed in section 2 there is no consensus around the definition of CI or a
homogeneous set of CI practices (DUVALL, 2013; FOWLER, 2020; STåHL; BOSCH,
2014b; ZHAO et al., 2017; SHAHIN; BABAR; ZHU, 2017; FITZGERALD; STOL, 2014;
VIGGIATO et al., 2019). Therefore, considering the literature diversity, we adopt a
set of criteria based on Duvall’s seven cornerstones (DUVALL, 2013), and CI practices
highlighted by Fowler (FOWLER; FOEMMEL, 2006) for this analysis as they present
a prescriptive minimal number of practices, instead of discussing the variability among
diverse CI implementations.

Figure 5 (a) shows the number of criteria considered in the primary studies to
identify whether a project uses CI. From the seven considered criteria that we expect
to see, 43 (42.5%) of the primary studies, surprisingly, did not apply or determine any
of them. On the other hand, 26 (25.7%) of the primary studies used two criteria, while
16 (15.8%) of the studies and another 16 (15.8%) of them used one and three criteria,
respectively.

By inspecting the 43 (42.5%) studies without clear criteria for determining whether
a project uses CI, we observe that: (i) 28 of the studies do not analyze data related
directly to the project’s development. Instead, they are studies based on interviews,
surveys, companies, or other data sources, e.g., build logs; (ii) some of the studies present
experience reports without further details regarding how projects adopt the CI practices. In
addition, (iii) a few studies (P49, P52, P60, P69) analyze both projects and self-described

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 42

(a) (b)

Figure 5 – (a) Histogram representing the proportion of primary studies using a number
of CI criteria; (b) Frequency of usage of each criteria;

declarations, like interviews or surveys.
Although it is understandable that the criteria we are looking for (e.g., integration

frequency) may not be applied in such studies, it would still be valuable to perform certain
checks during the interviews or surveys. For example, questions such as “on a scale of 1
to 7, how would you classify that your project adheres to CI?” along with a definition of
CI could help such studies to gauge the quality the CI practices that are implemented by
the subjects. Regarding the studies that investigate build logs only (e.g., build logs from
TravisCI), it would also be desirable to be more restrictive regarding these logs, since
not every build log from TravisCI may come from a project that properly employs CI.
Therefore, solely relying on the fact that build logs are generated from a CI server does
not necessarily imply that the derived observations can be associated with the adoption of
CI practices.

Concerning studies applying only one criterion to identify whether a project uses
CI, the CI server configuration is the most common criterion (9/16 studies - 56,25%).
We observe in Figure 5 (b) that the usage of a CI service is the most common criterion
applied. This criterion consists of checking whether subject projects have used a CI service
(e.g., TravisCI). The second most frequent criterion is checking whether subject projects
perform automatic builds. Table 6 shows the CI services cited in the included studies,
revealing that TravisCI 2 is the most used CI service, confirming the finding by Hilton
et al. (HILTON et al., 2016).
2 https://travis-ci.com/

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 43

Table 6 – CI Services cited in the included studies.
CI Services Studies

TRAVIS CI 37
JENKINS 8
CUSTOMIZED 4
CIRCLE CI 3
APPVEYOR, TEAM CITY, WERKCER 2
BUILDBOT, CONCOURSE, CRUISECONTROL,
GERRIT, CLOUDBEES, XCODE BOTS, GITLAB 1

3.2.2 RQ2: What are the reported claims regarding the effects
of CI on software development?

To answer RQ2, we collect the claims from our primary studies and proceed with
the thematic synthesis to produce the codes and themes regarding the claims. As explained
in Section 3.1.6, a claim is a statement regarding any positive or negative effect of CI on
the software development phenomena. We found 125 claims regarding the effects of CI
in 38 out of 101 papers (37.6% of studies). From the thematic synthesis, we produce 31
codes from the 125 extracted claims. Figure 6 shows the produced codes organized into 6
overarching themes.

Figure 6 – Themes and codes representing the studies claims.

Table 7 shows the following information: a) the themes, b) the number of claims
pertaining to a theme, and (c) the primary studies that make the claims. The most common
themes in the primary studies are: “development activities”— having 35 claims across

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 44

18 papers— and “software processes”— with 35 claims across 18 papers. Although we
observe in RQ1 that automated builds is a common criterion to check whether CI is used
by subject projects, the theme “build patterns” has only 7 claims from 4 primary studies.

Table 7 – Number of claims and studies that pertain to a theme.

Theme Number of
Claims Primary Studies

Development activities 35
P7, P9, P31, P39, P52, P58, P59, P73, P79,
P74, P90, P91, P93, P97, P99, P100, P102,
P106

Sofware process 35 P4, P24, P25, P38, P40, P46, P52, P58, P64,
P79, P81, P92, P93, P97, P100, P102, P105, P106

Quality assurance 23 P14, P29, P44, P52, P58, P64, P79,
P89, P93, P97, P100, P102, P106

Integration patterns 22 P25, P47, P59, P69, P74, P79, P81, P89,
P97, P100, P102, P104

Issues & defects 14 P25, P31, P50, P59, P74, P79, P97, P100,
P89, P106

Build Patterns 7 P29,P49, P97, P102

The link between a theme and a paper does not necessarily mean that the theme is
the paper’s main topic. A paper may have one or more claims related to a theme, but the
same paper may have other claims related to other themes. Figure 7 shows a conceptual
class diagram expressing how a study can have none or several claims, while each claim can
be related to one or more codes. Each code is related to a theme. Section 3.1.6 describes
the entire process of our synthesis. Therefore: (i) each code sentence shown at the right
side of Figure 6 is representative of a set of claims extracted from primary studies and
mapped to such code; (ii) a study is not necessarily linked directly to a theme but may be
related to several themes by transitivity.

Figure 7 – Conceptual class diagram of relationships between studies, claims, codes, and
themes.

To further evaluate the reliability of the findings within the themes, we add an
earlier discussion about quality scores (Qscore) in the subsequent Section 3.2.3. For the
purpose of our analysis, we consider the mean (¯Qscore) and the median (˜Qscore) as the
quality measurement for our body of evidence.

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 45

3.2.2.1 Development Activities

Table 8 – Codes from the “development activities” theme. We show the number of claims
related to the code, the primary studies supporting it, the mean and median of
quality scores of such studies.

Code Number of
Claims Primary Studies ¯Qscore ˜Qscore

CI is related to productivity and
efficiency increase 12 P31, P39, P52, P59, P73, P79,

P74, P97, P100, P102, P106 8.8 8

CI is associated with Confidence
improvement 6 P39, P58, P93, P97, P100, P106 7.0 7

CI is associated with adding extra
complexity 5 P7, P58, P106 6.2 7

CI may generate a false sense of
confidence 3 P58, P106 6.0 7

CI is associated with a workload
reduction 3 P6, P79, P93 5.6 5

CI is associated with human
challenges 2 P58, P59 5.5 4

CI is associated with a decreased
perception of productivity 1 P91 8.0 8

CI is associated with an
improvement in satisfaction 1 P9 8.0 8

CI is associated with
organizational challenges 1 P99 9.0 9

CI is associated with a decrease
in magnetism and retention 1 P90 9.0 9

Overall 7.1 7

Several primary studies have claims regarding the effects of CI on development
activities. Table 8 shows the claims, the development activity related to the claim, the ID
of the primary studies, the mean ¯Qscore and the median ˜Qscore. We observe 4 positive
effects of CI on productivity, efficiency, confidence, satisfaction, and reduction in the
workload.

There are several mentions in the primary studies claiming an increase in produc-
tivity and efficiency when using CI (12 occurrences in 11 studies). As reported in study
P97:

“According to our interview participants, CI allows developers to focus more
on being productive, and to let the CI take care of boring, repetitive steps, which
can be handled by automation.” (p. 203)

And

“Another reason [...] was that CI allows for faster iterations, which helps
developers be more productive.” (p. 204)

Several studies also mention an improvement in confidence after using CI (6
occurrences in 6 papers). Paper P58 states the following:

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 46

“Depends on the coverage, but some sort of confidence that introduced
changes don’t break the current behavior. [...] I assume the most critical parts
of the system have been covered by test cases.” (p. 76)

These positive associations with CI have the support of numerous and diverse
studies reported in Table 8 with a substantial quality profile. However, there are still
low scores on the rigor criterion in our quality assessment (Q5 to Q8 on Table 4). For
example, regarding CI increasing productivity and efficiency, P79 does not substantiate its
assumptions with statistical tests, and P106 does not apply any control or comparison
group (Q7 and Q8 of the quality checklist). In addition, 5 out of 11 studies scored 2 or
fewer points on the rigor criterion (out of 4 points). Regarding “confidence improvement”,
P58 and P106 do not satisfy Q7, and 4 out of 6 studies scored 2 or fewer out of 4 points
on the rigor criterion.

The association of CI with a workload reduction has low-quality scores of ¯Qscore =
5.6 and ˜Qscore = 5, and the association of CI with an improvement in satisfaction has
only one supporting study, although with a high-quality profile (Qscore = 8.0).

Nevertheless, not everything seems to be positive in terms of development activities.
We found six negative aspects stated in the primary studies: extra complexity added, the
existence of a false sense of confidence, human and organizational challenges, a decreased
perception of productivity, and a decrease in magnetism and retention of collaborators in
projects. The most endorsed negative effects of CI are the addition of extra complexity (5
occurrences in 3 papers), and the generation of a false sense of confidence (3 occurrences
in 2 studies). P7 mentions the extra complexity related to using CI:

“Results of our study [...] highlights the complexity of dealing with CI
in certain situations, e.g., when dealing with emulated environments, non-
deterministic (flaky) tests, or different environments exhibiting an inconsistent
behavior”. (p. 47)

P106 explains the false sense of confidence:

“As opposed to the confidence benefit, respondents described the false sense
of confidence as a situation of which developers blindly trust in tests” (p. 2232)

However, some of these negative effects obtain low-quality scores, especially on the
rigor criterion (e.g., P58 scored 0 out of 4 points), and need to be further investigated by
our research community. Regarding the increase in human challenges, for example, studies
obtain scores of ¯Qscore = 5.5 and ˜Qscore = 4 (see Table 8). The claims suggesting a
“false sense of confidence” as an effect of CI come from only two studies conducted by the
same authors.

On the other hand, other negative associations, such as “CI is associated with a
decreased perception of productivity”, “CI is associated with organizational challenges”,

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 47

and “CI is associated with a decrease in magnetism and retention” obtain the highest
quality scores. However, all these negative associations are supported by only one study
each. The association “CI is associated with adding extra complexity” obtained scores of

¯Qscore = 6.2 and ˜Qscore = 7, particularly one study — P7 — conducted a mixed-method
study (MSR + Survey) and has a high quality score (Qscore = 9).

These adverse effects seem to point in the same direction: CI introduces complexity,
challenges the organizational environment, and influences developers’ perception of produc-
tivity. Such statements contradict the assumption that CI promotes a workload reduction.
We argue that more studies are required by our community to better understand the
context and the extent of such adverse effects, given the small variety and generalizability
of studies supporting them. Furthermore, the studies’ overall rigor mean is near 50% of the
max score. This result suggests that we need more efforts in performing reliable studies on
the Development Activities theme.

According to the literature, there is reliable evidence of the association between CI
and improved productivity, efficiency, and developer confidence. CI may create a
positive impact on the stakeholders’ satisfaction. On the other hand, findings suggest
that CI introduces complexity to the development environment, demanding more
developer effort and discipline, negatively impacting developers’ perception of their
productivity. Given the low number of studies related to some of these evaluation
aspects, there is room for further studies on these aspects.

3.2.2.2 Software Process

Table 9 – Codes from theme “Sofware Processes”. We show the number of claims related
to the code, the primary studies supporting it, the mean and median of quality
scores of such studies.

Code Number of
Claims Primary Studies ¯Qscore ˜Qscore

CI is related to positive impact
on release cycle 7 P58,P64, P97, P100, P102 7.8 10

CI is associated with an increase
in cooperation 8 P25, P52, P79, P81, P93, P106 8.0 8

CI is associated with an improvement
in process reliability 7 P46, P52, P79, P92, P105,

P106 7.8 8

CI is associated with technical
challenges 6 P4, P24, P38, P58, P97 6.8 6.5

CI is associated with an improvement
in process automation 3 P58, P97, P106 7.0 7

CI is associated with software
development benefits 3 P40, P92, P105 9.0 9

CI is associated with an increase
in the feedback frequency 1 P46 5.0 5

CI facilitates the transition to agile 1 P46 5.0 5
Overall 7.5 8

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 48

In this theme, we group codes related to the effects of CI on the software processes.
Table 9 presents the codes, the number of claims supporting the code, the primary studies
in which they appear, the mean (¯Qscore) and median (˜Qscore) scores. We map seven
codes representing findings of positive effects of CI, and one negative effect.

Three studies (see the quality scores in Table 9) claim that “CI is associated with
software development benefits”, being considered a factor of success and contributing to a
decrease in the rate of project failure. Moreover, “CI is associated with an improvement in
process reliability” in six different studies pointing out progress in transparency, stability,
predictability, and support for a quantitative view of progress. These studies are diverse in
their claims, and there is room to further investigate what benefits and how CI contributes
to process reliability. Moreover, some of these studies did not perform well in our quality
assessment. P46 obtains a Qscore = 5, P79 a Qscore = 8 and P106 a Qscore = 7, all of
them have issues with the rigor criterion. For example, P106 scored 1 out of 4 on the rigor
criterion, and P79 only shows descriptive statistics as a means to support its claims.

There is evidence that “CI is associated with an increase in cooperation”, e.g.,
improving inter-team and intra-team communication (P52). Regarding this association,
there are three studies with a low Qscore, due to the rigor criterion. For example, P79
does not ground its claims on statistical tests. Also, P93 and P106 obtain 0 out of 4 points
on the rigor criterion. On the other hand, P25, P52, and P81 convey methodological
confidence. These studies perform well in all quality criteria and provide more reliability
to the association between CI and increased cooperation. Concerning cooperation, the
primary study P25 states:

“After adoption of CI, normalized collaboration amount between program-
mers significantly increases for our set of OSS and proprietary projects.”. (p.
12)

Some studies still suggest “an improvement in process automation”, regarding this,
the P97 discusses:

“CI allows developers to focus more on being productive, and to let the CI
take care of boring, repetitive steps, which can be handled by automation.”. (p.
203)

The increase in automation mentioned by P97 is believed to lower the developers’ workload.
However, the increase in automation also introduces technical challenges (shown below) to
the development process that are associated with a perceived decrease in productivity (see
Section 3.2.2.1).

Five studies shed light on the relationship between CI with and a “positive impact
on release cycle”. Such studies show that continuous integration promotes fast iterations
supporting fast and regular releases. For example, P100 states:

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 49

“We found that projects that use CI do indeed release more often than either
(1) the same projects before they used CI or (2) the projects that do not use
CI.”. (p. 432)

We can note in Table 9 a significant variety and high-quality scores (Qscore) of
the studies claiming an association between CI and positive impacts on the release cycle,
cooperation, process reliability, and software development benefits. On the other hand, few
studies suggest that CI encourages process automation, and the codes “CI is associated
with an increase in feedback frequency” and “CI facilitates the transition to agile” are
presented by just one study, which is P46, with Qscore = 5 (below the average).

A potential negative effect of CI in the Software Process are the technical challenges
associated with adopting CI (6 occurrences in 5 studies), confirming the addition of extra
complexity (see 3.2.2.1). For example, study P58 states:

“As regarding the hidden problems associated with continuous integration
usage, we found that 31 respondents are having a hard time configuring the
build environment”. (p. 76)

Conversely, it is essential to highlight the low scores obtained by some studies
supporting the association with technical challenges. For example, P38 and P58 obtained
low scores mainly because of the rigor criterion (scores of 0 out of 4). This result suggests
poor methodological reliability from these studies. On the other hand, P4 and P97
obtained a high Qscore in all aspects and support the association between CI and technical
challenges. Overall, studies highlight the difficulty in implementing CI as well as setting
up the environment, especially to newcomers (by confirming problems of magnetism and
retention of developers, see Section 3.2.2.1). Moreover, some studies state that the lack of
maturity of technology may contribute to the abandonment of CI, as stated in study P24:

“Results show that all of the 13 interviewees mentioned challenges related
to tools and infrastructure such as code review, regression feedback time when
adopting to CI. The maturity of the tools and infrastructure was found to be a
major issue.”(p. 29)

These studies are diverse, being two case studies, two surveys, and one MSR/Survey,
with quality scores of ¯Qscore = 6.8 and ˜Qscore = 6.5. As in the previous theme, the
studies of this theme also highlight the human challenges and the extra complexity added,
i.e., CI adds some level of complexity to practitioners (see Section 3.2.2.1). Additionally,
the technical challenges seem to be related to CI configurations and seem to impact
newcomers and specific domains (such as embedded systems). P58, for example, argues
that newcomers may face barriers to create a build due to a lack of experience with the

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 50

project. In turn, P38 shows that some embedded systems contain complex user scenarios
that require manual testing.

CI is mentioned as a success factor in software projects, positively affecting software
processes, promoting faster iterations, more stability, predictability, and transparency.
However, CI may also bring technical challenges to the team related to the build
environment and tools. Practitioners and researchers may consider such challenges
and elaborate strategies to mitigate them. Moreover, there is still space for studies
to answer questions about automation and productivity.

3.2.2.3 Quality Assurance

Table 10 – Codes from the “Quality Assurance” theme. We show the number of claims
related to the code, the primary studies supporting it, the mean and median
of quality scores of such studies.

Code Number of
Claims Primary Studies ¯Qscore ˜Qscore

CI is related to positive impact
on test practice 10 P14, P29, P52, P89, P93, P97,

P100, P102, P106 8.6 9

CI is related to an increase on
quality assessment 8 P44, P58, P64, P79, P97, P106 6.7 7

CI is associated with to favor
continuous refactoring 1 P44 9.0 9

CI is associated to
multi-environment tests 4 P58, P97, P100, P106 7.7 7

Overall 7.8 9

Another significant theme that emerged from our primary studies is “Quality
Assurance”. As shown in Table 10, in general, CI is associated with continuous practice of
quality assessment (P44), refactoring (P44), finding problems earlier (P58), and improving
the code quality (P58, P64, P97, P106). These associations emerge from the perception
that CI can be used as a quality assessment, providing transparency and supporting
multi-environment tests. One of these studies (P44) also suggests that CI provides an
adequate context for employing continuous refactoring.

Under the code “CI is related to an increase on quality assessment”, there is little
diversity of study types. In addition, P58 (Qscore = 4) and P64 (Qscore = 5) have low
Qscores. On the other hand, there is a convergence between the studies regarding greater
awareness of code and product quality (P44, P58, P64, P79, P97, P106).

Other studies with a wider variety of methods and high-quality scores provide
reliable support for the association between CI and good test practices (at least in terms
of the number of tests and test coverage). The exceptions are studies P58, P93, and P106
with a low Qscore, especially regarding the fragility in validating their claims in their

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 51

respective data. However, although P58, P93, and P106 obtain low scores, the median
Qscore for the association between CI and good test practices is still strong.

According to the primary studies, the adoption of CI tends to enforce automated
software testing, increasing the volume and coverage of tests. CI also encourages best
practices of automated tests ranging from tests within private builds to functional tests
on the cloud. The support to multi-environment tests is also mentioned as a support to a
“real-world environment”. For example, study P89 states:

“After some (expected) initial adjustments, the amount (and potentially the
quality) of automated tests seems to increase.” (p. 69)

In the same way, study P97 states:

“Developers believe that using CI leads to higher code quality. By writing a
good automated test suite, and running it after every change, developers can
quickly identify when they make a change that does not behave as anticipated,
or breaks some other part of the code.” (p. 203)

CI is perceived as a provider of transparency and continuous quality assessment
through enforcing the test practices and supporting multi-environmental tests. There
is reliable evidence on the association between CI and test increasing and coverage.
There is room to further investigation on the test quality and test effort in CI
projects.

3.2.2.4 Integration Patterns

Table 11 – Codes from the “Integration Patterns” theme. We show the number of claims
related to the code, the primary studies supporting it, the mean and median
of quality scores of such studies.

Code Number of
Claims Primary Studies ¯Qscore ˜Qscore

CI is related to positive impact
on pull request life-cycle 10 P47, P69, P74, P81, P89, P100, P104 10.0 10

CI is associated with a commit
pattern change 5 P25, P89, P102 8.8 9

CI is associated with a positive
impact on integration practice 5 P59, P79, P97, P100, P102 8.2 8

CI is related to negative impact
on pull request life-cycle 3 P81, P89 10.0 10

Overall 9.3 10

The “Integration Patterns” theme consists of claims related to commits and pull
requests, as shown in Table 11. The association between CI and a “positive impact on
integration practice” is observed by five studies through three case studies (P59, P79, P102)

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 52

and two surveys (P97, P100). There are mentions of CI as a facilitator to the integration
practice, making the code integration easier (P97, P100), reducing the stress (P59), and
supporting a faster integration (P79, P102). Such benefits could also be a motivation for
CI adoption, as the authors of P100 explains:

“One reason developers gave for using CI is that it makes integration easier.
One respondent added ‘To be more confident when merging PRs.’ ” (p. 433)

The CI association with “a change in commit patterns”, i.e., the way developers
commit, can confirm the perceived benefits through three studies: one MSR (P25 - Qscore =
9), one MSR/survey (P89 - Qscore = 10), and one case study (P102 - Qscore = 6). When
analyzing the evolution of projects, studies identify an increasing frequency and a decreasing
size of commits. For example, study P89 applied an Regression Discontinuity Design (RDD)
associated with a survey to understand the longitudinal effect of CI adoption (TRAVISCI
adoption) and found: an increasing number of merge commits as an indicator of a workflow
change (e.g., migration to a pull-based model); and a decrease in size of merge commits as
an indicator of more frequent integration.

Some primary studies with high Qscore and high variety of methods report a
“positive impact on pull request life-cycle”, such as (i) an increase in the number of pull
requests (PRs) submissions (P81); (ii) an increase in the number of PRs closed (P89); (iii)
acceleration in the integration process (P100); (iv) higher support to identify and reject
problematic code submissions more quickly (P47, P69, P74, P100); (v) a higher contribution
from external collaboration (P74); (vi) a higher delivery of PRs (P81). However, these
studies also reveal a “negative impact on pull request life-cycle”, i.e., merging pull requests
might become slower after adopting CI (P81, P89). P81 states that:

“Open source projects that plan to adopt CI should be aware that the adoption
of CI will not necessarily deliver merged PRs more quickly. On the other hand,
as the pull-based development can attract the interest of external contributors,
and hence, increase the project’s workload, CI may help in other aspects, e.g.,
delivering more functionalities to end-users.” (p. 140)

The study P81 also indicates that CI can be associated with an increase in the lifetime of
pull request:

“We observe that in 54% (47/87) of our projects, PRs have a larger lifetime
after adopting CI.”. (p. 134)

We discuss this apparent contradiction in more details in Section 3.3.2.1.
Although the three case studies P59 (Qscore = 7), P79 (Qscore = 8), and P102

(Qscore = 6) obtain lower Qscores than the rest of studies in the Integration Patterns
theme, the variety of methods and the overall mean quality of the studies in this theme is

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 53

high — ¯Qscore = 9.3. Additionally, the studies seem reliable as their overall rigor mean is
of 2.83 (out of 4 points).

The studies report a perception of CI as a facilitator to the integration practice,
influencing positively the way developers perform commit even the workflow. CI can
benefit the pull-based development by improving and accelerating the integration
process. However, there is evidence that CI may increase the lifetime of pull requests.

3.2.2.5 Issues & defects

Table 12 – Codes from the “Issues & Defects” themes. We show the number of claims
related to the code, the primary studies supporting it, the mean and median
of quality scores of such studies.

Code Number of
Claims Primary Studies ¯Qscore ˜Qscore

CI is associated with defect reduction 6 P25, P31, P50, P74, P79 8.5 9
CI is associated with issues reduction 2 P25, P89 9.5 9
CI is associated with a decrease
in time to address defects 6 P50, P59, P79, P97, P100,

P106 8.6 8

Overall 8.7 9

The manner by which CI projects address defects, bugs, and issues is grouped under
the “issues and defects” theme. Table 12 shows three codes representing these aspects and
summarizes their occurrences. These studies consistently indicate that CI enables teams
to detect and address issues earlier, which is related to an overall decrease in the number
of issues and defects reported, i.e., an external quality improvement. For instance, study
P50 states that:

“The descriptive statistics point to an overall improvement in not only
finding more defects (defect reduction), but also in shortening the time required
to fix the defects (defect lead and throughput).” (p. 8)

We observe other statements regarding CI helping development teams to find and
fix bugs and broken builds, shortening the time to fix these bugs and builds. In particular
P59 states:

“An indirect, but important, advantage of CI is related to the following
human factor: the earlier the developer is notified of an issue with the patch that
was just committed, the easier it is for him or her to associate this regression
with specific changes in code that could have caused the problem and fix it.” (p.
9)

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 54

However, regarding issues or bugs resolution rate, while study P25 identified an
increase in the resolution rate after CI adoption for OSS projects, P89 identifies that issue
resolution tends to be slower after CI adoption.

The overall mean quality score of studies in this theme is high — ¯Qscore = 8.7
and ˜Qscore = 9, having also an overall mean rigor of 2.6 (out of 4 points). The quality
weaknesses are compensated by other studies with higher quality scores and methodological
rigor. For example, for the code “CI is associated with a decrease in time to address defects”,
P79 and P106 claim that CI supports the team to catch issues earlier. Similarly, P50,
P59, P97, and P100 corroborate the claim that CI helps to find and fix problems earlier.
Regarding the code “CI is associated with defect reduction”, P31 and P79 reveal an
association with reduced defects, which P50 confirms. Additionally, P74 claims that CI
yields a higher bug discovery, and P25 claims that CI yields a higher bug resolved rate.

Studies suggest that CI can improve the time to find and address issues. They also
observed a decrease in defects reported.

3.2.2.6 Build Patterns

Table 13 – Codes from the “Build Patterns” theme. We show the number of claims related
to the code, the primary studies supporting it, the mean and median of quality
scores of such studies.

Code Number of
Claims Primary Studies ¯Qscore ˜Qscore

CI is associated with build health 6 P29,P49, P97, P102 8.0 7
CI is associated with a decreasing
in build time 1 P102 6.0 6

Overall 7.7 7

The “Build Patterns” theme encompasses the reported associations between CI and
build metrics. Table 13 shows two codes representing the “Build Patterns” theme. Under
the code “CI is associated with build health”, 6 mentions in 4 studies report developers’
good practices encouraged by CI, as well as an improvement in build success rate (P49,
P102). CI encourages good practices that contribute to build health, such as testing in
private builds (P29), prioritization to fix broken builds (P29), and supporting a shared
build environment (P97). P97 states the following:

“Several developers told us that in their team if the code does not build on
the CI server, then the build is considered broken, regardless of how it behaves
on an individual developer’s machine. For example, S5 said:‘...If it doesn’t work
here (on the CI), it doesn’t matter if it works on your machine.”’ (p. 202)

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 55

One study, P102, also reports a decrease in the build time. On the other hand, P97
registers long build time as a common barrier faced by CI developers. Therefore, we argue
that there is scope for further investigation of the factors that influence build time, build
health, and relationships with other variables in CI projects. For example, only one of
these studies analyzes build data (P49) in a controlled context. In addition, the overall
mean quality score of studies in this theme is not high — ¯Qscore = 7.7 and ˜Qscore = 7,
with an overall mean rigor of 2.5 (out of 4 points).

CI promotes good practices related to build health and contributes to an increase in
successful builds.

3.2.3 RQ3: Which empirical methods, projects and artifacts are
used in the studies that investigate the effects of CI on
software development?

In this RQ we investigate the methodologies applied in the primary studies. In
particular, we analyze: the kind of projects that our primary studies analyze (Section
3.2.3.1), the study methodologies, i.e., the kind of the studies and their quality scores
(Section 3.2.3.3), and the availability of the artifacts produced as part of these studies
(Section 3.2.3.2).

3.2.3.1 Projects analyzed

Figure 8 (a) shows information about the type of projects that were investigated
in CI studies. We can observe that 40 of 101 studies (39.6%), analyze only open source
projects. In contrast, 18 studies (17.8%) investigate private projects. On the other hand,
40 of the studies (39.6%) are not explicit about licenses of the projects, and 3 (3%) studies
analyze mixed project settings, i.e., both open source and private projects.

Figure 8 (b) shows that 71 out of 101 studies (70.3%) do not investigate projects
from a specific domain. On the other hand, 30 studies (29.7%) investigate domain-specific
projects. For studies investigating specific project domains, we catalog 17 different domains
(see Table 14). The most frequent domains are transports (4 occurrences), embedded
systems (4 occurrences), telecommunications (3 occurrences), and software development
(3 occurrences).

60 out of 101 studies focus on analyzing the historical data of software projects
(e.g., production code or tests). The other remaining studies conducted interviews, surveys,
or analyzed other units of information different from projects’ source code, e.g., builds or
companies. Figure 9 shows the descriptive statistics of the projects that were analyzed per
study. We hide outliers for readability purposes—the highest outlier has 34,544 projects.
While the mean of analyzed projects is 1,493 projects, the median is just 40, with a high

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 56

40 (39.6%)

18 (17.8%)

40 (39.6%)

ONLY OPEN SOURCE PRIVATE

NOT EXCLUSIVELY NOT EXPLICIT

(a)

30 (29.7%)

71 (70.3%)

WITH DOMAIN NO DOMAIN

(b)

Figure 8 – (a) Proportion of studies based on the type of projects they analyze; (b)
Proportion of studies that analyzed projects from specific domains (and vice
versa);

Table 14 – Applications domains investigated in primary studies.

Domain Ocurrences
Transports 4
Embedded systems 4
Telecommuntications 3
Software Development 3
Web Application 2
Finance 2
Cloud Computing 2
Military Systems 2
Home and office solutions 1
Bookmaking company 1
Mobile software and social networks 1
Health care 1
HPC environment 1
Serverless applications 1
Neuroinformatics 1
Databases migration 1

frequency of studies analyzing just 1 or 2 projects. Some studies seem to be outliers, such
as P72, which investigated 13,590 projects, and P100, which investigated 34,544 projects.

The P100 study uses a large corpus of projects (i.e., 34,544 projects) for specific
investigations. For example, a large corpus of projects is used to identify which CI
services are mostly used. However, to perform more specific investigations, P100 uses
only a subset of the total corpus of projects (i.e., 1,000 projects). P72 highlights the
TravisTorrent (BELLER; GOUSIOS; ZAIDMAN, 2017) dataset, which is a widely
known dataset of projects from GitHub that collates build logs from TravisCI.

With the presented data, we can observe that, in general, the studies are distributed
in various contexts, with the majority without a specific domain. Despite that, considering
the 29.7% of the studies investigate domain-specific projects and the variance of CI among

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 57

Figure 9 – Boxplot and descriptive statistics of the projects that were analyzed by our
primary studies.

different domains and implementations (STåHL; BOSCH, 2014b; VIGGIATO et al., 2019),
we suggest that the community employ studies that explore the differences in the CI
implementations among such domains and how it influences the CI outcomes. We still
draw attention to the high frequency of studies analyzing low-size samples.

3.2.3.2 Availability of Artifacts

Robles (ROBLES, 2010) investigated the MSR conference papers from 2004 to
2009. He found that the majority of published papers are hard to replicate. For example,
although 64 out of 171 papers (37.4%) are based on publicly available datasets, these
datasets are in the “raw” form and the papers do not provide the processed version of the
datasets nor the tools that were used to process these datasets. Another 18.12% of papers
(i.e., 31 papers) do not even provide the “raw” data to begin with.

Rodríguez-Pérez et al. (RODRIGUEZ-PéREZ; ROBLES; GONZáLEZ-BARAHONA,
2018) capitalize on the same issue of data availability and raise the concern about the
reliability of the results from studies that are not reproducible studies. On the other hand,
they (RODRIGUEZ-PéREZ; ROBLES; GONZáLEZ-BARAHONA, 2018) also report the
increasing attention that the community has given to the issue of data availability over
the last years. Therefore, in our study, we collect information about the availability of the
artifacts used or produced in the primary studies, considering those that analyze projects.
Figure 10 (a) reveals that 29 studies out of 60 (48.33%) provide publicly available datasets,
while 31 studies (51.66%) do not provide publicly available datasets. From the studies
providing publicly available datasets, all of them are studies using open source projects.
On the other hand, those studies investigating private projects do not present dataset nor

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 58

anonymized nor in a raw manner, while some of the studies with mixed—both private and
open source—projects provide only partial data referring to OSS projects. Other studies
are not explicit regarding whether the dataset comes from private or OSS projects and
does not present it.

Figure 10 (b) shows an increasing trend of pushing for data transparency in CI
studies. Over recent years, we observe that the proportion of studies providing a publicly
available dataset is higher than 50% (we consider only studies that analyze projects data).
This increase in transparency might be due to initiatives from prominent conferences,
such as the artifact tracks, in which authors are provided with special badges as a credit
for their effort invested in sharing their artifacts. Nowadays, there are even awards to
encourage the sharing of reproducible artifacts 3.

29 (48.3%)31 (51.7%)

AVAILABLE DATA

NOT AVAILABLE DATA

(a) (b)

Figure 10 – (a) Proportion of studies according to data availability; (b) Proportion of
transparency over the years.

3.2.3.3 Study Quality and Methodologies

Using the quality checklist and procedures presented in Section3.1.5, we assessed
the methodologies of primary studies from which we extracted the findings discussed in
Section 3.2.2 (38 papers). Similar to the approach applied by Dybå & Dingsøyr (DYBå;
TORGEIR, 2008), such questions allow us to measure the reliability of the findings using
the quality score as a proxy. By answering each question in the checklist (see Table 4) with
a 1 (yes) or 0 (no), the sum of these values produces a quality score, as shown in the last
column of Table 16. The remaining columns show the answers to each question of the
checklist, while the rows represent each paper with claims discussed in this work.

As peer-review is an exclusion criterion, all of selected papers obtain 1 to Q1. The
values for Q2 indicate whether studies have clearly defined aims. While the entire set of
3 <https://icsme2020.github.io/cfp/ArtifactROSETrackCFP.html>

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 59

responses to Q1 through Q4 shows that the papers have, in general, a good report quality,
in terms of rigour (Q5 to Q8), the obtained scores are lower, especially regarding Q8 - “Is
there a comparison or control group?”. Q8 has the lowest rate among primary studies with
only five papers (P4, P14, P49, P50, and P79) having applied control groups to compare
their results and findings.

The few studies with data available (12 out of the 38) impacts the credibility
assessed by questions Q9 and Q10, i.e., “Does the empirical data and results support the
findings?”, respectively. The relevance (as expressed by Q11) of 30 out of 38 studies is
clear and well discussed in terms of contributions to research and practice.

1

2

3

4

5

6

7

8

9

10

11

AC
TI

O
N R

ESEARCH

CASE S
TU

DIE
S

CO
NTR

O
LL

ED E
XP.

M
SR

M
SR+S

URVEY

O
TH

ER

SURVEY

Study Type

Q
A

 S
co

re

ALL
 S

TU
DIE

S

Figure 11 – Quality assessment scores per study type.

Figure 11 shows the scores grouped by type of study. The categories are (i) mining
software repository (MSR) studies, and the other four classical empirical methods for
software engineering: (ii) controlled experiment, (iii) case study, (iv) survey, and (v) action
research (EASTERBROOK et al., 2008). We consider claims extracted from studies with
higher scores to be more reliable than claims from studies with lower scores. We observe
that MSR studies have higher quality scores, with a median of 10 points. The mixed-
methods studies (MSR and survey) have the same median also with high scores (and even
less variation). The last plot in Figure 11 shows the overall quality of the studies, with 4
as minimal score and a maximum of 11. The median score is 9.

Table 15 shows the average performance of the studies grouped by study type and
the four quality criteria within our quality assessment checklist (see section 3.1.5). All
types of studies performed well in quality of reporting, bordering the maximum score. In
rigor, on the other hand, studies from action research and case studies have, on average,
less than 2 points. This lower performance is significantly affected by question 6 regarding
the metrics or concepts considered in the studies. Question 8, which concerns control or

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 60

comparison groups, also contributes to the lower performance in quality scores.
We suggest the software engineering community to strengthen the metrics and

concepts and to employ comparison strategies. For example, when studying productivity,
the studies should clarify the definitions of productivity (e.g., developer perception, story
points, worked hours), how productivity is measured (e.g., questionnaires, issue trackers,
management systems, work time), and the rationale behind this concept definition and
measurement.

In the credibility criterion, case study and action research studies performed
poorly, mainly in questions Q9 and Q10, which are regarding the evidence supporting
findings and data availability. Lastly, regarding the relevance criterion (Q11), the selected
controlled experiments scored low. Considering the results of the relevance criterion, we
also recommend special attention to the development of case study and action research
studies to be more transparent regarding data and to provide the rationale behind their
conclusions. For example, although P50 performed a high-quality case study, P50 did not
share its data for verification or reproducibility.

Table 15 – Quality Assessment per Kind of Study
Quality of Reporting

(0..3)
Rigor
(0..4)

Credibility
(0..3)

Relevance
(0..1)

ACTION RESEARCH 2.66 1.33 1.00 0.66
SURVEY 3.00 2.50 2.14 0.92
CONTROLLED EXP. 3.00 2.50 2.50 0.50
CASE STUDIES 2.75 1.87 1.50 0.62
MSR 2.88 3.00 2.66 0.88
MSR+SURVEY 3.00 3.33 2.66 0.66

Figure 12 shows the proportion of claims per study type, revealing that survey
research was the method applied the most concerning the extracted claims (47.2% - 59
claims)—followed by case studies (19.2% - 24 claims) and MSR (17.6% - 22 claims). Only
7 (5.6%) of the claims are associated with a mixed-methods approach, emerging from 3
studies (P4, P7, and P89). The largest proportion of the claims — 70.4% emerges from
MSR, Surveys, and mixed-methods studies, which is a promising given that such categories
of studies obtain the highest quality scores.

In Figure 13, we analyze the occurrence of each study type within the studied
themes. We observe that the Integration Patterns theme has 14 out of 22 claims (63.64%)
made by mining software repositories (MSR) or mixed-methods (which are categories with
the highest quality scores).

The Issues & Defects theme also has a significant frequency (6 out of 14 - 42.86%)
of claims from MSR and mixed-methods. With respect to Quality Assurance, the theme
has 23 claims, but there is a huge concentration (73.91%) of claims made from surveys,
which can suggest the need for more complementary study types.

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 61

Table 16 – Quality Assessment.

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Total
P4 1 1 1 1 1 1 1 1 1 0 1 10
P6 1 1 1 1 0 0 0 0 0 0 1 5
P7 1 1 1 1 1 1 1 0 1 1 0 9
P9 1 1 1 1 0 1 1 0 1 0 1 8
P14 1 1 1 1 1 1 1 1 1 1 1 11
P24 1 1 1 1 0 1 1 0 1 0 1 8
P25 1 1 1 1 1 1 1 0 1 0 1 9
P29 1 1 1 1 1 1 1 0 1 0 1 9
P31 1 1 1 0 0 0 1 0 0 0 1 5
P38 1 1 1 1 0 0 0 0 0 0 1 5
P39 1 1 1 1 1 0 1 0 0 0 1 7
P40 1 1 1 1 1 1 1 0 1 0 1 9
P44 1 1 1 1 1 1 1 0 1 0 1 9
P46 1 1 1 0 1 0 1 0 0 0 0 5
P47 1 1 1 1 1 1 1 0 1 1 1 10
P49 1 1 1 1 0 1 0 1 1 0 0 7
P50 1 1 1 1 1 1 1 1 1 0 1 10
P52 1 1 1 1 1 1 1 0 1 0 1 9
P58 1 1 1 1 0 0 0 0 0 0 0 4
P59 1 1 1 0 0 1 1 0 1 0 1 7
P64 1 1 1 1 0 0 1 0 0 0 0 5
P69 1 1 1 1 1 1 1 0 1 1 1 10
P73 1 1 1 1 1 1 1 0 1 0 1 9
P74 1 1 1 1 1 1 1 0 1 1 1 10
P79 1 1 1 1 1 1 0 1 1 0 0 8
P81 1 1 1 1 1 1 1 0 1 1 1 10
P89 1 1 1 1 1 1 1 0 1 1 1 10
P90 1 1 1 1 1 1 1 0 1 1 0 9
P91 1 1 1 1 0 1 1 0 1 0 1 8
P92 1 1 1 1 1 1 1 0 1 0 1 9
P93 1 1 0 0 0 0 1 0 0 0 1 4
P97 1 1 1 1 1 1 1 0 1 1 1 10
P99 1 1 1 1 1 1 1 0 1 0 1 9
P100 1 1 1 1 1 1 1 0 1 1 1 10
P102 1 1 1 1 1 0 1 0 0 0 0 6
P104 1 1 1 1 1 1 1 0 1 1 1 10
P105 1 1 1 1 1 1 1 0 1 0 1 9
P106 1 1 1 1 1 0 0 0 0 1 1 7
Total 38 38 37 34 27 28 32 5 28 12 30

Lastly, during the extraction phase (Section 3.1.4), we recorded methodological

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 62

Figure 12 – Proportion and quantity of claims per study type;

02 30 02 0

10 171 12 1

31 30 114 0

10 31 54 0

10 203 36 2

10 181 510 1

Action Res.

Case Study

Controlled Exp. Msr

Msr+Survey
Other

Survey

Build Patterns

Development Activities

Integration Patterns

Issues And Defects

Quality Assurance

Software Processes

Study Type

C
la

im
 T

he
m

e

Figure 13 – Claims quantity for each theme and study type.

instruments used by the primary studies to confirm their findings. Table 17 reports a
summary of statistical tests, models, and qualitative methodological instruments identified
in the selected studies. We extract methods ranging from statistical tests, such as Cliff’s
delta, and Mann-Whitney-Wilcoxon, to qualitative methods such as thematic analysis and
interviews.

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 63

Table 17 – Methodological instruments applied in the studies to confirm findings.

Instruments Studies
ANOVA P91, P104
Cliff’s delta P14,P25, P81, P90, P105
Cohorts comparison P49
Cronbach alphas and Factor analysis P9
Fisher’s exact test P100
Interview P97, P99
Linear Regression and ANOVA P91
Logistic Regression P4, P74
K-Means P14
Mann-Whitney-Wilcoxon test (MWW) P14, P25, P81, P90, P100, P105
Mixed-effects RDD Model P89
Multiple Linear Regression P47, P104
Survey P7, P52, P89, P97, P99
Survey Average Score and Standard Deviation P52
Thematic Analysis P24

3.3 Discussion

In the previous sections, we presented the findings from this SLR related to the re-
search questions. In this section, we discuss the results, beginning with some methodological
aspects. Then, we identify and discuss limitations on literature concerning the considered
setup of continuous integration. Finally, we highlight some research opportunities.

3.3.1 CI Environment and Study Results

As discussed in Section 2.1, we adopt practices based on Duvall et al. (DUVALL,
2013) and Fowler (FOWLER; FOEMMEL, 2006) to identify implementation of CI. From
these criteria, we find (see Section 3.2.1) that 42.5% (43) of the CI studies do not discuss
or present any of these specific criteria. On the other hand, 15.8% (16) of studies apply
one criterion. The results is an alarming proportion of 58.3% of primary studies having
none or only one criterion to identify whether CI has been implemented in a project. This
is alarming because this suggests that most of the existing claims regarding CI might
be biased towards projects that do not consistently implement CI. The most frequent
criterion specified for 45.5% of the studies is the usage of an online CI service (see Figure 5
(b)), which allows implementing a CI pipeline for existing projects. However, this finding
represents a challenge to be overcome by the research community since other studies
revealed that CI usage may be inconsistent, sporadical, or discontinued (VASILESCU et
al., 2015).

Vasilescu et al. (VASILESCU et al., 2015) investigated CI quality and productivity
outcomes. From a dataset of 918 GitHub projects that used TravisCI, they found
that only 246 projects have a good level of activity using TravisCI, while the other 672

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 64

projects have used TravisCI only for a few months. Thus, it suggests that solely relying
on CI service configuration is not enough to determine a proper CI adoption.

Vassalo et al. (VASSALLO et al., 2019) performed a survey with 124 professional
developers confirming that deviations from CI best practices occur in practice and can
be the cause of CI degradation. They mined 36 projects and verified relevant instances
of four anti-patterns (DUVALL; OLSON, 2011): late merging, slow build, broken release
branch, and skip failed test.

Felidre et al. (FELIDRé et al., 2019) also investigated CI bad practices, beyond
slow build and broken release branch, they shed light on infrequent commits and poor test
coverage. In addition, their analysis of 1,270 open source projects confirmed the existence
of a phenomenon known by practitioners as CI Theater, which refers to self-proclaimed CI
projects that do not really implement CI (THOUGHTWORKS, 2017).

Considering the findings observed in Section 3.2.1, and the studies mentioned above,
we suspect that there are few studies considering a more robust number of criteria in order
to perform a more rigorous evaluation of CI adoption. In line with Ståhl & Bosch (STåHL;
BOSCH, 2014b), we observe that simply stating that projects use continuous integration
is not sufficient. There is an urgent need to classify which practices and at what level such
projects implement them. It is especially true if we consider CI as a set of practices, where
the benefits and challenges related to CI are directly related to the usage of such a set of
practices.

3.3.2 Research Opportunities

Beyond the research opportunities already discussed in the themes of Section 3.2.2,
this subsection discusses existing gaps in the research on continuous integration and
apparent contradictions among the findings, especially focusing on the themes “integration
patterns” and “development activities”.

3.3.2.1 Integration Patterns

Regarding the integration patterns theme, we observe that CI may influence the
processing of pull requests in different stages. Figure 14 shows the claims related to how
CI influences the processing of pull-requests. Figure 14 also shows to which stage of the
pull-request life-cycle a claim refers. P81 reveals evidence that projects tend to have more
pull request (PR) submissions after they adopt CI. P47 and P74 state that CI influences
PR acceptance, and CI projects tend to have more closed PRs. After merging, CI is a
helpful tool to detect merging issues earlier (P69). Moreover, P81 found that CI projects
deliver more PRs and more rapidly.

All of these claims represent the following codes: (i) “CI is related to a positive
impact on pull request life-cycle” having seven studies supporting studies (P47, P69, P74,

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 65

main

Fork / Branch

Pull-Request
CI projects tend to have
more PR submissions

(P81).

Discussion

Merge Release

CI can promote faster PR
delivery (P81).

CI projects deliver
more PR per release

(P81).
CI helps to reject
problematics PRs

(P100)

CI is a dominant factor of PR
acceptance (P47, P74).

CI contributes to faster
PR integration (P100,

P104).

CI projects have more
closed PRs (P74, P89).

Time

CI projects have greater
delay to merge PRs (P81,

P89).

CI can help detect merging
issues early and easily

(P69).

Figure 14 – Claims related to the effects of CI on pull requests life cycle.

P81, P89, P100, P104); and (ii) “CI is related to negative impact on pull requests life-cycle”
with two studies supporting (P81, P89). There is an apparent contradiction regarding the
time to integrate a pull request. Four studies investigate the time to merge pull requests
and its relation with continuous integration — P104 from 2015, P100 from 2016, P81 from
2018, and P89 from 2017.

In 2015, P104 investigated 103,284 pull requests from 40 different projects using
multiple linear regression models to evaluate the time to merge pull requests. P104 observed
that CI shortens the time to merge pull requests. Later, in 2016, another MSR study
(P100), including 1,529,291 builds and 653,404 pull requests, P100 observed that CI build
statuses can influence the development team to merge pull requests more quickly.

On the other hand, P89, which studied the time to merge pull requests using an
Regression Discontinuity Design (RDD) model on 77 projects, found that, on average,
pull requests have a trend to take a longer to be merged as the project matures, with
CI having no apparent impact in this trend, i.e., CI projects keep increasing the time to
merge PRs regardless of their adoption of CI. Finally, in 2018, P81 analyzed 87 projects
and concluded that projects may take longer to merge pull requests after adopting CI.
The difference is small but statistically significant.

This apparent contradiction between P81 and P89 against P100 and P104 might
be related to several factors, including (as observed earlier) how these studies determine
whether projects are using CI or not. While P81 and P104 consider the start of CI adoption
as the moment when the first automated build is created in a CI Service, P100 does not
identify a certain moment to identify when CI has been adopted. Instead, P100 grouped
pull requests into two categories: with and without build information from the CI server.
We conjecture that the main factors contributing to such apparent contradiction might
be: (i) the age of projects influencing the longevity of pull requests according to the
above-mentioned P89 findings (i.e., the older a project is, the longer the merge delay);
(ii) The P81 finding regarding an increasing trend in PR submissions after CI adoption

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 66

may explain why there is an extra time to process pull requests. Therefore, we argue that
more studies are necessary to investigate the claims related to CI and pull-request lifetime
considering these possible confounding factors, such as project age, the number of opened
PRs, among others.

3.3.2.2 Development Activities

From the “Development Activities” theme, we find opportunities to construct a
deep understanding of some reported phenomena, such as what we highlight as “con-
fidence contradicting claims” and “productivity contradicting claims”. The “confidence
contradicting claims” is marked by studies that make claims related to the code “CI may
generate a false sense of confidence”, while some studies raise claims under the code “CI is
associated with confidence improvement”. The “productivity contradicting claims” refers
to studies claiming that “CI is related to an increase in productivity or efficiency”, while
some studies claim that “CI is associated with a decreased perception of productivity”.

Confidence contradicting claims. Table 18 shows the claims related to developer
confidence. Six studies provide support to conclude that CI improves developer confidence
(P39, P97, P100, P106, P58, P93). On the other hand, two studies claim that CI can
promote a false sense of confidence (P58, P106).

Table 18 – Claims related to the effects of CI developer confidence.

CODE: CI is associated with confidence improvement
Claim Studies

CI increases the confidence about the quality. P39
CI makes the team less worried about breaking build. P97, P100
CI improves the developers confidence to perform the
required code changes. P106, P58, P93

CODE: CI may generate a false sense of confidence
Claim Studies

The false sense of confidence is a recurring problem in CI. P58, P106
Flaky tests may challenge CI projects. P106

P93 theorizes that CI allows programmers to assume themselves as single-programmers
in a project, supporting an improvement in confidence. For instance, by relying on the
lower number of new inconsistencies expected in each integration cycle, the developer
can behave as if they were the only person modifying the code, reducing the cognitive
tractability of programming. In the same line, P58 and P106 surveyed 158 CI users and
reported the perception of respondents that CI provides more confidence to perform the
required code changes.

Other studies may help to understand this boost in confidence better. Developers
seem to delegate quality assurance to CI service and rely on its feedback. P39, an experience

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 67

report, sheds light on improved confidence in product quality after CI adoption due to test
automatization. P100 reports a survey with 407 respondents and reveals that the most
common reason to use CI is the expectation that it makes developers less worried about
breaking builds. After a triangulation between an interview and two surveys, P97 reports
the same finding.

On the other hand, P58 and P106 also shed light on a reported problem of a false
sense of confidence. This situation occurs when developers rely on an environment that may
suffer from low quality or insufficient tests. The lack of balance between developer trust
and the environment’s trustworthiness determines the occurrence or not of overconfidence.
The environment may provide a baseless trust and suggest an opportunity for practitioners
and researchers to investigate and supply developers with objective criteria and guidance
to define a reliable CI environment to avoid the mentioned false sense of confidence. For
example, what minimum set of practices or metric values should we achieve before having
a reliable CI environment and feedback that can be trusted?

Additionally, these studies raise substantially different aspects of confidence: (i)
confidence in the product quality (P39); (ii) personal confidence to perform tasks (P106,
P58, P93); and (iii) confidence in the process reliability (P97, P100, P58, P106). Nonetheless,
none of the mentioned studies addressed the confidence question directly, and therefore
did not provide a theoretical base to analyze confidence. The studies, in general, registered
developers’ perceptions, leaving room to further investigation and theory formulation
about developer’s confidence and the role of CI.

Productivity contradicting claims. Table 19 shows the claims related to
development productivity. There are 12 claims in 11 studies supporting the code “CI
is related to productivity and efficiency increase”, and one study claiming that “CI is
associated with a decreased perception of productivity”.

P52 performs a case study with four projects and validates the hypothesis that
CI contributes to an increase in the developer productivity due to parallel development
and reducing tasks before checking in (i.e., committing). Through another case study, P59
confirms this claim, while P39 and P31 share different experience reports that record an
increase in development efficiency and throughput per developer, respectively.

P73 reports interviews, and P97 presents a triangulation between an interview and
two surveys. They both confirm the perceptions that CI increases productivity. By mining
software repositories from 246 projects, P74 finds that external contributors tend to have
fewer pull requests rejected if CI is adopted. Other studies such as P100, P102, and P106
also bring results corroborating this code.

In opposition to these studies and findings, P91 investigates the links between agile
practices, interpersonal conflict, and perceived productivity. P91 presents a survey with 68
software developers. P91 grounds its research method in the Integrated Model of Group
Development (IMGD) — a theory on group development (WHEELAN; HOCHBERGER,

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 68

Table 19 – Claims related to the effects of CI on development productivity.

CODE: CI is related to productivity and efficiency increasing
Claim Studies

CI increases development efficiency (due to the
automation of tasks and fast feed back) P39, P52, P73, P59, P31, P97

CI is associated with external contributors having
fewer pull requests rejected. P74

CI decreases the debug time. P100, P79
CI allows quickly grow of source code. P102
CI speed up development practice. P106
CI Reduced integration problems allowing
the team to deliver software more rapidly P79

CODE: CI is associated with a decreased perception of productivity
Claim Studies

The CI adoption leads to a worsening in the
perceived team productivity. P91

1996) and a tool (questionnaire) to employ psychological measurement of the stage where
a group is in a developmental perspective. Moreover, P91 applies two other surveys to
measure agile practices and the perceived productivity. It concludes:

“I have also shown that with higher scores on Continuous Integration and
Testing came lower scores on this perceived productivity measurement. That
means that the more continuous integration and testing the team conducts, the
worse is the perceived team productivity. However, I do not have any external
measurement of the productivity of the teams and can not draw conclusions on
the actual productivity [...]”. (p. 4)

While P91 get productivity as developer perceives (an internal measurement),
other studies quantify productivity by the time spent, e.g., adding features vs. debugging
(P73, P79, P100), time saved (P52, P59, P106), integrator productivity to merge pull
requests (P74), others by developer throughput (P31, P102). Thus, we can suppose that
the measurement strategy of productivity could explain the difference in the findings from
P91. However, P97 also registers developers’ perceptions and finds a positive influence of
CI.

That way, considering that 11 studies are going in a direction claiming that “CI is
related to productivity and efficiency increasing” and only one study declaring a worsening
in the perceived productivity, we are led to consider the participants of these studies.
While P91 surveys 68 software developers from three big companies (a telecommunications
equipment and services company, an aerospace and defense company, and an automotive
parts manufacturing company), P97 surveyed 574 developers (51 from one software
engineering solutions company and 523 from a broad group on the internet).

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 69

Such a difference in findings may be due to the smaller number of participants in P91,
or the difference in the domains of their companies as well as their CI practices (STåHL;
BOSCH, 2014b; ZHAO et al., 2017; VIGGIATO et al., 2019). Nevertheless, as mentioned
in P91, it is essential to point out that the perceived productivity may be affected by
subjective factors, such as the kind of work performed by the developer. For example, code
review may be necessary from an organizational perspective but can be seen as not as
productive by a particular developer, decreasing their perceived productivity.

3.4 Threats to validity

The goal of our SLR is to provide a summary of the effects of CI on the software
development phenomena. We follow the guidelines provided by Kichenham & Charters
(KEELE et al., 2007) to develop our review protocol while defining strategies to mitigate
possible bias. However, as it happens to every study, our SLR is not without flaws and, in
this section, we discuss the limitations of our study.

3.4.1 Search Strategy

The search strategy may have bias or limitations on its search string and expression
power, the limitations on search engines, and publication bias, i.e., positive results are
more likely to be published than negative (KEELE et al., 2007). To mitigate the search
string threats, we apply several identified synonyms to reach the effects of continuous
integration, the intervention studied. In addition, aiming to reduce the limitations of search
engines, we use six different search engines including five formal databases and one index
engine, following the recommendations from Chen et al. (LERO, 2010), thereby including
journals and conferences publications—which contributes to publication bias mitigation.

3.4.2 Screening Papers

The screening and selection phase (see Section 3.1.3.2) follows the inclusion and
exclusion criteria defined during the protocol definition, as recommended by Kitchenham
& Charters (KEELE et al., 2007) to mitigate the selection bias. In addition, the decision
relied on the evaluation of two researchers and the agreement was measured using the
Cohen Kappa statistic (COHEN, 1968). A substantial agreement was achieved both in the
first screening (0.72) and in the snowballing phase (0.76). The disagreements were read
and arbitrated by a third researcher.

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 70

3.4.3 Data Extraction

To reduce the possibility of bias in the data extraction phase, we proceed the
following steps (see Section 3.1.4) to mitigate it. First, the meta-data was retrieved in an
automated process using the data obtained in Mendeley - the reference management tool
adopted. To avoid mistakes or missing information, the processed meta-data was manually
inspected by one researcher. Second, the definition of extraction form (see Table 3) was
available in the review protocol and in a web host to all three readers. Third, to decrease
the chances of inattention, lack of understanding, or any other reason for mistaken data
collection, the reading of each paper was performed by two researchers that filled the
extraction form independently. Fourth, to treat the disagreements in the extraction and
also avoid bias, each pair discussed the extracted data to achieve a consensus.

3.4.4 Quality Assessment

The quality assessment stage was performed based on a quality checklist composed
of eleven questions. The threats in this phase can potentially reflect on data extraction
and data synthesis in such a way that (i) the researchers may need to comprehend the
questions better or (ii) the questions may not sufficiently express the quality of the papers.
To mitigate this, we: (i) developed a questionnaire inspired by the previous experiences
reported by Dybå and Dingsøyr (DYBå; TORGEIR, 2008) and Kitchenham and Charters
(KEELE et al., 2007); (ii) the checklist covers four distinct quality aspects (quality of
reporting, rigour, credibility, and relevance); (iii) we ran two rounds with pilot papers with
three researchers together to assess the understanding of the quality checklist; then we
(iv) provide the most of questions with instructions, i.e., minor questions to support their
assessment and answer.

3.4.5 Data Synthesis

As described in Section 3.1.6, our study explores quantitative (RQ1 and RQ3) and
qualitative synthesis (RQ2). In the quantitative synthesis of RQ1 and RQ3, we present
a summarization to create a landscape of the studies and point out some directions to
researchers. The main threat in these syntheses is related to the chosen criteria.

First, in RQ1, while investigating how primary studies identify or classify their
subjects as a CI project, we found no clear definition of which practices determine whether
a given project uses CI or not. Studies revealed that there are many variants of CI
implementation (STåHL; BOSCH, 2014b; ZHAO et al., 2017; VIGGIATO et al., 2019).
Therefore, our chosen criteria to identify whether a project uses CI or not may not perfectly
match CI usage for every context. Nevertheless, we decided to use the prescriptive list
of practices from Duvall et al. (DUVALL, 2013), and Fowler (FOWLER; FOEMMEL,
2006) because they have been the most used definition of CI in existing research so far

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 71

and present a prescriptive list of practices. In this way, we adopted a set of seven generic
practices inspired in their lists. Second, in the RQ3, we analyze the studies quality and
methodologies relying on our data extraction and quality assessment, then subject to risks
presented in Sections 3.4.3 and 3.4.4.

In the qualitative analysis of RQ2, we follow the guidelines of Cruzes & Dybå
(CRUZES; DYBå, 2011) to perform a thematic synthesis. In the coding phase, to mitigate
the threats of confirmation bias, we first use an inductive approach performed by two
researchers to define the set of codes. Second, to avoid a wrong grouping, two researchers
coded all the extracted segments independently (this step also achieved a substantial
Kappa agreement rate - 0.73), and a third researcher resolves the disagreements. Finally,
all the authors discuss and agree with the translation of the codes into the presented
themes.

In Sections 3.2.2 and 3.3.2, we assess the trustworthiness of the synthesis in terms
of type of studies, number of occurrences, and the relationship between the findings of
different primary studies.

3.5 Conclusion

We perform a systematic literature review (SLR) on the effects of continuous
integration on the software development phenomena. Our main goal is to summarise
the existing empirical evidence and body of knowledge regarding CI to support a better
decision process, avoiding overestimating or underestimating the results and costs of CI
adoption. We collect and analyze empirical evidence from 101 primary studies ranging
from 2003 to 2019, conducting quantitative and qualitative analyses. We hope our study
can support an evidence-based practice by development teams and organizations to build
work policies. Our study can also serve as a map regarding which claims related to CI
should be more thoroughly studied in the future (i.e., given the rigour of the state-of-art
studies).

3.5.1 Results and Implications

The collation of findings related to the effects of CI and their accompanying evidence
(see Sections 3.2.1, 3.2.2, 3.2.3, and 4.3) can be useful for researchers and practitioners. In
Sections 3.2.1 we show that 42.5% of the primary studies did not present explicit criteria to
identify projects that use CI. We also found that 15.8% used only one criterion (e.g., more
than half of studies used “automated builds” as a criterion). This finding reveals a weakness
in our current empirical literature since identifying whether a project uses CI or not is at
the core of how we analyze the effects (positive or negative) of using CI. As an implication,
we believe that there are plenty of research opportunities to re-evaluate existing analyses

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 72

by using more robust criteria to identify CI projects. For example, checking whether they
use automated builds and also how frequently they perform commits.

Regarding the criteria applied to check whether participants use CI or not (Sections
3.2.1 and 3.3.1), our findings reveal the need for performing other checks during interviews
or surveys related to the adherence of CI beyond the self-declaration, e.g., “on a scale of
1 to 7, how would you classify that your project adheres to CI?”. Studies may consider,
for example, checking which practices the subjects use in their CI environment before
classifying them as CI projects.

Sections 3.2.2.1 and 3.3.2.2 discuss our findings related to the effects of CI on
development activities. We find evidence for the association between CI and improved
productivity, efficiency, and developer confidence. On the other hand, other findings suggest
that CI may introduce complexity to the project, requiring more effort and discipline from
developers, negatively impacting developers’ perceived productivity. Some studies also
discuss the false sense of confidence, i.e., when developers blindly rely on flaky tests.

Continuous integration benefits the software process (see Section 3.2.2.2) by promot-
ing faster iterations, more stability, predictability, and transparency in the development
process. Although CI may incur technical challenges to the team (e.g., creating a reliable
automated build environment), CI is mentioned as a success factor in software projects.
Regarding quality assurance, Section 3.2.2.3 reveals evidence on the association between
CI and better testing. The studies demonstrate a perceived provision of transparency and
continuous quality inspections when CI is adopted.

With respect to integration patterns (Section 3.2.2.4) our study indicates that CI
positively influences the way developers perform commits (e.g., increasing the frequency
and decreasing the size of commits). CI can also benefit the pull-based development
by improving and accelerating the integration process. However, there are also studies
reporting that CI may prolong the pull request lifetime. Section 3.3.2.1 discusses in detail
the way CI impacts differently in each stage of the pull-request life-cycle.

Regarding issues & defects (Section 3.2.2.5), we find that studies credit CI to an
improvement in the time to find and fix issues. They also report a decrease in defects
reported. About build patterns the studies reveal that CI impacts the build process (Section
3.2.2.6), promoting good practices related to build health and contributing to an increase
in successful builds.

Lastly, regarding RQ3, Section 3.2.3.1 shows that there is a wide variety in the
primary studies (in terms of domains and subjects). The number of studies making their
datasets available is growing over the past few years (Section 3.2.3.2). The studies from
which we extract claims (38 out of 101) have a notable overall quality (median score of
9 out of 11 — ˜Qscore = 9), mainly those that use MSR and mixed-methods as their
methodologies, both with ˜Qscore = 10, while survey researches obtain a ˜Qscore = 9. Most
of the claims (70.4%) emerge from these three study types.

Chapter 3. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 73

3.5.2 Open questions for Practitioners and Researchers

Given our observed results, we believe that continuous integration has plenty of
room for future empirical studies and new tools to address open questions or strengthen
the current body of knowledge. Section 3.2.1, for example, shows that a community effort
to build a solid foundation about how to classify projects using CI could be useful to
further empirical studies, e.g., a “CI maturity score” could be conceived, or a consensual
set of minimal practices could be established by researchers and practitioners.

Sections 3.2.2.1 and 3.3.2.2 highlight that researchers should stay attentive to how
factors such as productivity and confidence are measured since there is significant diversity
among primary studies. For example, some studies assess the developer perception of
productivity, while others consider the time to merge a pull request. Other examples
are studies assessing developers’ confidence, in which some investigate the developers’
confidence in performing certain tasks, while others analyze confidence in terms of trusting
CI. The development activities theme reveals that there is a need for guidelines and metrics
to inform practitioners about the reliability of their CI environment, avoiding the false
sense of confidence phenomenon. This phenomenon has a link with the quality of the tests
and their consequent reliability. In Section 3.2.2.3, regarding quality assurance, we find
evidence for the association between CI and an increase in volume and coverage of tests.
However, more studies are necessary to understand the relationship between test effort
and test quality in CI.

Section 3.2.2.2 discusses open challenges to practitioners, researchers, and tool
builders. Multiple studies report the difficulty faced by developers with the technical
activities, such as configuring the build environment. Practitioners and tool builders may
consider such challenges and elaborate strategies and tools to mitigate them. We propose
that further studies are necessary to better understand the trade-offs between adopting
CI and overcoming its inherent challenges (e.g., trade-offs between automation, technical
challenges, and perceived productivity as discussed in Sections 3.2.2.1, 3.2.2.2, and 3.3.2.2).

The results of RQ3 show that 29.7% of the included studies investigate domain-
specific projects (section 3.2.3.1), which highlights the need for studying whether CI is
better adopted in certain domains (e.g., web application, embedded systems, finance,
among others) (STåHL; BOSCH, 2014b; VIGGIATO et al., 2019). Section 3.2.3.3 reveals
that researchers should be aware of the low amount of studies applying comparison or
control groups to assess their findings and suggests that more diverse and complementary
studies may be necessary for quality assurance. For example, MSR studies assessing the
evolution of the test code in project repositories.

74

4 Continuous Integration and Soft-
ware Quality: A Causal Explana-
tory Study

An earlier version of this chapter is under review in the Empirical Software
Engineering.

Our study investigates potential causal relationships between continuous integration
(CI) and software quality. This study is important because understanding causal effects
can help practitioners to measure the actual benefits of CI. Given the predominance of
statistical correlation studies, this work extends the current CI knowledge by offering
causal conclusions. Our study helps researchers to remain aware of possible confounders,
related variables, and adjacent associations when investigating the relationship between
CI and software quality.

Through a systematic literature review (SLR), Soares et al. (SOARES et al., 2022)
investigated the influence of CI on software development. Their study compiles most of
the existing (non-causal) associations between CI and software quality. Based on current
findings, the SLR concludes that CI may improve the time to develop and merge addressed
issues and reduce the number of reported defects (ZHAO et al., 2017; RAHMAN et al.,
2018; SOARES et al., 2022). However, the SLR also identifies several CI associations
that need further investigation. For example, the relationship between the development
environment reliability and developers’ (over)confidence is due to trusting CI outcomes.

Despite all the effort invested in studying the potential benefits of CI (SOARES et
al., 2022; STåHL; BOSCH, 2014a; ZHAO et al., 2017; VASILESCU et al., 2015; KAYNAK;
ÇILDEN; AYDIN, 2019; PINTO et al., 2018; CASSEE; VASILESCU; SEREBRENIK,
2020), the software engineering community still needs to benefit from a step further, which
is to investigate causal relationships in existing studies. The difference between association
and causation is critical. For example, inferring causal conclusions from associations may
be harmful because of spurious associations, leading to false conclusions (e.g., confounding
effect) (PEARL et al., 2000; GREENLAND; PEARL; ROBINS, 1999b). Unconsidered
relationships among variables may confound the causal assumptions about the studied
phenomenon. For example, one can observe that streets have puddles and people wear
raincoats whenever it rains. However, if one assumes that puddles cause people to wear
raincoats, one would fail to consider a relationship of a third variable (rain) that causes
both puddles and people wearing raincoats.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 75

Nevertheless, despite the famous adage states that “correlation does not imply
causation” (i.e., statistical associations are not sufficient to determine causal relationships),
it is also true that “there is no causation without association.” Reichenbach formally links
statistical association with causal structures (PENROSE; PERCIVAL, 1962; PETERS;
JANZING; SCHöLKOPF, 2017) (see Section 2.3). Therefore, it is still possible to infer
the existence of causal links from statistical dependencies (i.e., functional relationships
between the variables) (PETERS; JANZING; SCHöLKOPF, 2017). To infer causation,
Pearl (PEARL et al., 2000) proposed employing a causal modeling framework based on
Causal Directed Acyclic Graphs (causal DAGs). In section 2.4, we explained the theory
proposed by Pearl because we apply his proposed theory in our study.

To study the causal relationship between CI and software quality, we use an
approach that consists of five interconnected stages. Each stage is guided by a research
question described in the following.

RQ1. What does the literature proclaim about CI and software quality?
To understand the variables that can potentially play a role in the relationship between CI
and software quality, we conduct a literature review, which helps us define a causal DAG
(i.e., a graphical-statistical technique - to enable us to draw domain assumptions and infer
causal conclusions in a later stage (HERNáN; ROBINS, 2010)). The goal of the review is
to discover the existing associations between CI and software quality, as well as marginal
associations (e.g., associations between code smells and software quality), which will help
us to draw a comprehensive DAG containing the existing studies’ assumptions about how
CI may influence software quality (and the potential confounding variables surrounding
both CI and software quality). To study this relationship, we consider bug reports a proxy
for software quality, similar to a previous study from Vasilescu et al. (VASILESCU et al.,
2015).

RQ2. Is the causal effect of CI on software quality empirically observable?
Once we have a causal DAG containing a sufficient set of variables to analyze the rela-
tionship between ContinuousIntegration and BugReport, we can apply the d-Separation
rules (PEARL; JUDEA, 1994) and evaluate the raised set of testable statistical implications
from the DAG built in RQ1. d-Separation is a set of graphical rules to identify if an
association path exists between two or more variables in the DAG. From such associations,
testable implications arise (d-Separation will be explained in Section 2.4.1). Next, we mine
software repositories to collect observational data on the variables of the DAG and perform
(un)conditional independence tests on our dataset to answer RQ2. Note that this differs
from an ordinal “causation is not correlation” MSR study, as these tests are guided by the
d-Separation rules derived from the causal DAG.

RQ3. What would be an accurate causal theory for CI? Considering the
investigations in RQ1 and RQ2 and the testable implications from the causal DAG in
the dataset, we can analyze the hypotheses that failed in our analyses (i.e., statistical

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 76

implications from the supposed relationships between the variables that were not supported
by the data) and propose a new causal DAG. We do so, again, using the literature knowledge
and empirical data to answer RQ3 but now considering the new and corrected causal DAG
this time.

4.1 RESEARCH METHOD

We follow a pipeline of 5 stages shown in Fig. 15 to answer our research questions:
The Literature Review (stage 1) and DAG Building (stage 2) stages contribute to answering
RQ1. The data collection from repositories (stage 3) and the DAG Implications Testing
(stage 4) stages address RQ2. Lastly, another stage of DAG Building (stage 5) performed
in an iterative manner with the DAG Implications Testing stage (stage 4) until a final
DAG is obtained containing literature and data consistency, answers RQ3. Next, we detail
the different stages of our research methodology.

As discussed in section 2.4, prior knowledge is an existing approach to build causal
structures regarding a phenomenon. Then in this first research question, we intend to draw
a causal DAG based on the literature assumptions regarding continuous integration (CI)
and software quality. Although most of the studies in software engineering are association
studies, we discussed the relationship between association and causation in section 2.3 and
how d-Separation rules raise testable statistical implications from causal DAGs (PEARL
et al., 2000). Thus, we begin by mapping the existing knowledge to infer causality, even if
they come from association studies.

Figure 15 – Research method pipeline.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 77

4.1.1 What does the literature proclaim about CI and software
quality?

As depicted in Fig. 15, we perform two research stages to answer RQ1. First, the
literature review compiles the existing assumptions about how CI may impact software
quality and allow us to map variables, associations, and every common causes (i.e., the
Fire in the example of Fig. 2(b)) for any two or more variables in the DAG. This mapped
information is an input to stage 2 - DAG building. We perform these two stages iteratively
to build a causal DAG representing the most up-to-date literature knowledge.

4.1.1.1 Literature Review

To review the relationship between continuous integration (CI) and software quality
(SQ), we consider “issues”, “bugs”, and/or “defects” as proxies of software quality due to
several compelling reasons. Firstly, bug reports serve as a valuable source of empirical data
reflecting real-world user experience and interactions with a software system. By leveraging
bug reports, we gain a practical means of assessing software quality that aligns with the
user-centric perspective and provides valuable insights. Other studies, such as Vasilescu et
al. (VASILESCU et al., 2015) and Santos et al. (SANTOS; COSTA; KULESZA, 2022), also
used bug reports to indicate quality. Therefore, since we are also interested in knowing the
common causes (i.e., the Fire in Fig. 2(a)) between CI and these variables (i.e., ‘issues”,
“bugs”, or “defects”), we review the literature for each one of these variables.

We also review the literature for each new variable found during the DAG building
in an iterative manner. We perform the searches on Google Scholar1 using the name of
variables or synonyms. To cover a broader range of studies and mitigate search bias, we
prioritize systematic literature reviews on the search. For instance, we search for software
bug relationships using the search string “systematic literature review software bugs”. This
search has a broader perspective and not necessarily the studies mention CI, but it is
essential to detect correlated variables and their relationships.

In addition, we search the literature for relationships among the following CI
sub-practices — tests practices, integration frequency, build health maintenance, and quick
fixes of broken builds (BECK; ANDRES, 2004; DUVALL; MATYAS; GLOVER, 2007;
FOWLER, 2020). In the full search, we selected 39 studies, of which 12 are systematic
literature reviews. All the selected studies are referenced, and a complete list is available
in our replication package 2. We believe our literature review fits our goal of finding the
claims surrounding CI and SQ, especially because of the systematic literature reviews, as
they have already systematically compiled a comprehensive view of the areas of CI and
SQ.
1 https://scholar.google.com/
2 https://github.com/elieziosoares/ci_quality_study_replication

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 78

Table 20 – Connections identified in the literature about CI and software quality variables.

Connection Rationale

CI → BugResolution
Projects present more resolved issues and bugs after adoption
of CI (RAHMAN et al., 2018).

CI → ResolutionT ime

CI is related to an increasing in the number of issues closed by
period, helping to spend less time debugging and more time
adding features (KAYNAK; ÇILDEN; AYDIN, 2019)
(ZHAO et al., 2017).

CI → BugReport
CI teams discover more bugs than no-CI teams, and CI
projects present fewer defects than no-CI projects
(AMRIT; MEIJBERG, 2017b; VASILESCU et al., 2015).

CI → Transparency
CI is associated with a transparency increase, facilitating
collaboration (KERZAZI; KHOMH; ADAMS, 2014).

CI → Communication

The general discussion, the number of line-level review
comments, and change-inducing review comments tend to
decrease after CI adoption without affecting pull
request activity (CASSEE; VASILESCU; SEREBRENIK, 2020).

CI → Overconfidence
CI developers are reported as suffering from a false sense of
confidence (when blindly trusting the tests)
(PINTO; REBOUÇAS; CASTOR, 2017) (PINTO et al., 2018).

CI → TechnicalChallenges

Configuring the build environment, the tools, and practices
impose challenges for CI teams
(PINTO; REBOUÇAS; CASTOR, 2017)
(DEBBICHE; DIENéR; SVENSSON, 2014b).

CI → TestsV olume
CI is associated with an increase in the test ratio
(NERY; COSTA; KULESZA, 2019).

CI → CommitFrequency
CI is linked to a change in the commits pattern
(ZHAO et al., 2017) (RAHMAN et al., 2018).

Continuous Integration and Software Quality: Soares et al. (SOARES et al.,
2022) conducted a systematic literature review on the associations between CI and software
development as a whole. The review highlights associations between CI and an increase
in bug/issue resolution (RAHMAN et al., 2018). For this reason, our literature-based
DAG starts from the connection between continuous integration and bug resolution. The
notation CI → BugResolution represents a causal flow from CI to Bug Resolution. We
expand our DAG based on other studies that raise other diverse CI associations (as
summarized in Table 20).

Confounders related to bug reports: To investigate potential confounders to
the effect of CI → BugReport, we search for other factors associated with Bug Rerport.
Table 21 shows the associations extracted from a taxonomy by Huang et al. (HUANG;
LIU; HUANG,), a systematic literature review by A. Cairo et al. (CAIRO; CARNEIRO;
MONTEIRO, 2018), and a mixed mining software repositories (MSR)-survey study by
Vasilescu et al. (VASILESCU et al., 2015).

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 79

Table 21 – Connections identified in the literature about bug reports.

Connection Rationale

LackOfKnowledge
→ BugReport

Insufficient domain and linguistic knowledge are presented as
possible human root causes for software defects
(HUANG; LIU; HUANG,).

LackTechKnowledge
→ BugReport

Insufficient programming and strategy knowledge and failure to catch
the specific feature of the problems are mapped as possible human
root causes for software defects (HUANG; LIU; HUANG,).

RequiremProblem
→ BugReport

Requirement management problems and a misunderstanding of
requirements and design specifications are reported as possible human
causes of software defects (HUANG; LIU; HUANG,).

Overconfidence
→ BugReport

Overconfidence and confirmation bias contributes to evaluation errors
and software defects (HUANG; LIU; HUANG,).

Inattention→
BugReport

Interruptions and other kinds of inattention are reported as possible
human causes of software defects (HUANG; LIU; HUANG,).

Communication
→ BugReport

Communication problems lead to expression and comprehension
errors (HUANG; LIU; HUANG,).

ConfigManagement
→ BugReport

Configuration management problems lead to process errors
(HUANG; LIU; HUANG,).

Tools→
BugReport

Tools problems like compiler induced defects are possible root causes
of software defects (HUANG; LIU; HUANG,).

CodeSmells→
BugReport

Code smells on the occcurrence of bugs
(CAIRO; CARNEIRO; MONTEIRO, 2018).

NumberOfForks→
BugReport

The number of forks has an association with an increase in bug
reports (VASILESCU et al., 2015).

ProjAge→
BugReport

Project age has a significant negative effect on the count of bugs
reported by core developers (VASILESCU et al., 2015).

ProjPopularity →
BugReport

Project’s popularity has a significant negative effect on the count
of bugs reported by core developers (VASILESCU et al., 2015).

QuantIssues→
BugReport

The number of non-bug issue reports has a significant and positive
effect on the response (VASILESCU et al., 2015).

TestsV olume→
BugReport

The size of test files has a negative effect on bug reports
(VASILESCU et al., 2015).

Confounders related to bug resolution: To investigate potential confounders
to the effect of CI → BugResolution, we search for other factors associated with
BugResolution in the literature. We found that Maintainability, Analysability,
Changeability, Stability, Testability, ProjectV olume, Duplication, UnitSize,
UnitComplexity, and ModuleCoupling all share an association with BugResolution.
For the sake of readability, we group all these relationships into InternalQuality →
BugResolution (FERREIRA et al., 2012). We also found the associations Communication→
BugResolution and IssuePriority → BugResolution in the literature review from Zhang
et al. (ZHANG et al., 2016). Table 22 shows all these associations and their rationales.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 80

Table 22 – Connections identified in the literature about bug resolution.

Connection Rationale

InternalQuality →
BugResolution

Elements of InternalQuality, such as maintainability, analysability,
changeability, stability, testability, project volume, duplication, unit size,
unit complexity, and module coupling, present significant correlation
with defect resolution efficiency (HUANG; LIU; HUANG,).

Communication→
BugResolution

Human and data elements such as comments, severity, product,
component, among others, can improve the performance of bug
resolution (ZHANG et al., 2016).

IssuePriority →
BugResolution

Priority and severity are non-textual factors of a bug report
that enhance the capability of bug resolution (ZHANG et al., 2016).

Confounders related to resolution time: Table 23 shows associations be-
tween other factors than CI and ResolutionT ime. We found associations extracted from
the literature including variables IssueType, Communication (e.g., comments in issues,
bug reports, pull requests), IssuePriority, CommitFrequency, OperateSystem, and
IssueDescription.

Table 23 – Connections identified in the literature about the resolution time.
Connection Rationale

IssueType→
ResolutionT ime

Issue fixing times are different for different issue types
(MURGIA et al., 2014; LICORISH; MACDONELL, 2017)
(ZHANG et al., 2012; MOCKUS; VOTTA, 2000).

Communication→
ResolutionT ime

The number of comments and the max length of all comments
in the bug reports impact the resolution time. Bugs with little
discussion tend to be resolved quickly (PANJER, 2007)
(ZHANG et al., 2012).

IssuePriority →
ResolutionT ime

The severity of a bug report influences the delay before fixing it.
As high the severity level, the fewer the delay
(ZHANG et al., 2012).

CommitSize→
ResolutionT ime

The size of code churn (number of methods) impacts the delay
before fixing a bug report (ZHANG et al., 2012).

OperateSystem→
ResolutionT ime

The median delay before fixing a bug found on Linux is shorter
than other OS (ZHANG et al., 2012).

IssueDescription→
ResolutionT ime

Increasing the literal length of the bug report description can
increase delay until the team checks it as resolved
(ZHANG et al., 2012).

Internal confounders: We also consider internal relationships between every
discovered variable to understand possible confounding scenarios in our causal DAG. That
means considering potential associations between peripheral variables, e.g., IssueType→
CommitFrequency. Table 24 shows such potential associations and their rationales.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 81

Table 24 – Internal associations cataloged among the literature regarding the discovered
variables.

Association Rationale
IssueType→
CommitSize

The issue type is associated with the size of the code churn
(HINDLE; GERMAN; HOLT, 2008).

IssueType→
Engagement

Developers tend to spend more effort engaging with one another
regarding new features and software extensions than in defects
(LICORISH; MACDONELL, 2017).

IssueType→
InfoSharing

Developers tend to share more information on defects and
enhancements than support tasks
(LICORISH; MACDONELL, 2017).

IssueType→
Communication

A higher number of comments is associate with enhancements
and defects (LICORISH; MACDONELL, 2017).

IssueType→
DifficultyLevel

There is an association between the difficulty of a change
and its type (MOCKUS; VOTTA, 2000).

Stability →
TechnicalChallenges

The maturity of the tools, infrastructure, and CI activities
imposes challenges to practitioners
(DEBBICHE; DIENéR; SVENSSON, 2014b). The stability
and maturity of the software under test affect the maintenance
effort of tests (GAROUSI; MäNTYLä, 2016).

With these previous connections, we build the partial causal DAG represented
in Fig. 16, where continuous integration is the intervention, and BugResolution and
BugReport are potential outcomes.

Confounders related to Continuous Integration and its sub-practices:
To investigate variables related to continuous integration (CI), we also consider its sub-
practices (BECK; ANDRES, 2004; DUVALL; MATYAS; GLOVER, 2007; FOWLER;
FOEMMEL, 2006). We consider the practices: automated tests practices, integration
frequency, build health maintenance, and time to fix a broken build (DUVALL; MATYAS;
GLOVER, 2007). We represent an association with a sub-practice of CI as an association
with CI itself. For example, AutomatedTests → Confidence will be represented as
ContinuousIntegration→ Confidence. This decision avoids intangible discussions about
what comes first, CI or Automated Tests, for instance. To implement CI, we consider
that such practices are implicit, i.e., there is no CI practice without implementing those
sub-practices (SOARES et al., 2022; DUVALL; MATYAS; GLOVER, 2007). Therefore,
distinguishing the effect of CI and the effect of its sub-practices would be challenging.
Table 25 shows the associations relating to testing, while Table 26 groups and presents
those relating build practices.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 82

Figure 16 – Partial causal DAG for bug reports associations.

Table 25 – CI associations cataloged among the literature from the perspective of test
practices.

Association Rationale
AutomatedTests→
BugReport

Automated tests are related to improved product quality in terms
of fewer defects in the software (RAFI et al., 2012).

AutomatedTests→
CodeCoverage

Automated tests are related to high coverage of code (RAFI et al., 2012).

AutomatedTests→
WorkT ime

Automated tests are related to reduced testing time (RAFI et al., 2012).

AutomatedTests→
Confidence

Automated tests are related to increased confidence in the quality
of the system (RAFI et al., 2012).

AutomatedTests→
HumanEffort

Automated tests are related to the less human effort that can be
redirected for other activities (RAFI et al., 2012).

AutomatedTests→
Cost

Automated tests are related to a reduction in cost (RAFI et al., 2012).

AutomatedTests→
BugDetection

Automated tests are related to increased fault detection (RAFI et al., 2012).

AutomatedTests→
TechnicalChallenges

Automated tests require different skills to implement them
effectively (GAROUSI; MäNTYLä, 2016).

LackTechKnowledge
→ AutomatedTests

The skills level of testers could be a hindrance to test
automation (GAROUSI; MäNTYLä, 2016).

TestDesign→
TestReusability

Designing tests with maintenance in mind, they can be repeated
frequently (RAFI et al., 2012).

TestRepetition→
Reliability

When repeating tests, they are more reliable than single
executions (RAFI et al., 2012).

ProjAge→
AutomatedTests

The number, coverage, and maturity of automated tests increase
with time (ZAIDMAN et al., 2008; ZAIDMAN et al., 2011)
(HILTON; BELL; MARINOV, 2018; NERY; COSTA; KULESZA, 2019).

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 83

Figure 17 – Partial causal DAG for automated tests associations.

With connections shown in Table 25 we build the partial causal DAG represented in
Fig. 17, where AutomatedTests is the intervention. The relationship AutomatedTests→
BugReport was omitted in this figure because it is a partial DAG centered in the
AutomatedTests. With Table 26, we build the partial causal DAG represented in Fig. 18,
centered in the build attributes.

Figure 18 – Partial causal DAG for build attributes and their associations.

Fig. 19 shows the unified and complete literature-based causal DAG, i.e., the union
of the assumptions cataloged in Tables 20, 21, 22, 23, 24, 25, 26. The literature-based causal
DAG expresses all known associations for the related variables in the studied domain. The
nodes on the DAG represent variables (e.g., Continuous Integration and Bug Report),
and the directed edges connecting the variables represent an association between them.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 84

Exposure

Outcome

Ancestor of Exposure

Ancestor of Outcome
Confounding (ancestor
of exposure and outcome)

Conditioned variable

Unobserved

Other

Causal path

Counfounding Path

Figure 19 – Complete literature-based causal DAG for CI, Bug Reports and their co-
variables.

The associations “flow” from one variable to another. For instance, according to Fig. 19,
Continuous Integration influences Bug Report, i.e., CI teams discover more bugs and CI
projects present fewer defects than NOCI projects (those that do not adopt CI) (AMRIT;
MEIJBERG, 2017b; VASILESCU et al., 2015). Such DAG associations could represent a
positive or a negative association, and whenever possible, this interpretation is discussed in
the text. Note that the variables AutomatedTests, BuildHealth, IntegrationFrequency,
and TimeToFix are all represented by ContinuousIntegration. This causal DAG built
upon the existing literature is the starting point for identifying variables that must be
measured and controlled to allow a causal analysis of the influence of CI on software quality.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 85

Table 26 – CI associations cataloged among the literature from the perspective of build
practices.

Association Rationale

BuildHealth→ WorkT ime
Broken builds lead to loss of time by freezing development and
tests (KERZAZI; KHOMH; ADAMS, 2014).

BuildHealth→ MergeConflicts
Broken builds lead to work blockage, which in turn leads to merge
conflicts (LAUKKANEN; ITKONEN; LASSENIUS, 2017).

TeamSize→ BuildHealth
The team size relates to build breakage. Shorter teams tend to break
fewer than larger ones (KERZAZI; KHOMH; ADAMS, 2014).

MultipleWorkspace
→ BuildHealth

Maintaining multiple physical structures for multiple branches is
associated with more build breakage
(KERZAZI; KHOMH; ADAMS, 2014).

DeveloperRole→ BuildHealth
There is a statistical difference in build breakage among different
role groups (KERZAZI; KHOMH; ADAMS, 2014).

CommitSize→ BuildHealth
The size of the changes is related to a higher probability of build failure
(RAUSCH et al., 2017; ISLAM; ZIBRAN, 2017)

(KERZAZI; KHOMH; ADAMS, 2014).

CommitType→ BuildHealth

The commit type (such as features and bugs) and the contribution
model (e,g., pull request and push model) are associated with build
breakage (KERZAZI; KHOMH; ADAMS, 2014; RAUSCH et al., 2017)
(ISLAM; ZIBRAN, 2017).

CommitMoment→ BuildHealth
There is an association between the moment of contributions and the
rate of build breakage (KERZAZI; KHOMH; ADAMS, 2014).

TeamDistribution
→ BuildHealth

The geographical distance of the team members is associated with
the build results (KERZAZI; KHOMH; ADAMS, 2014).

Tools→ BuildHealth
The languages and their tools are related to different build
breakage rates (SEO et al., 2014).

ExtraComplexity
→ BuildHealth

Complex builds tend to break
(LAUKKANEN; ITKONEN; LASSENIUS, 2017).

FlakyTests→ BuildHealth
Flaky tests favor the occurrence of build breakage
(LAUKKANEN; ITKONEN; LASSENIUS, 2017)(RAUSCH et al., 2017).

ContributorType→ BuildHealth Less frequent contributors tend to break builds less (RAUSCH et al., 2017).

TimeToFix→ Costs
The time lost relates directly to a monetary cost
(KERZAZI; KHOMH; ADAMS, 2014).

Communication→ TimeToFix
The feedback mechanisms and information speed affect the awareness
of a broken build and the time to fix it
(KERZAZI; KHOMH; ADAMS, 2014).

DeveloperRole→ TimeToFix
The developer role is associated with the time to fix a broken
build (KERZAZI; KHOMH; ADAMS, 2014).

CommitType→ TimeToFix
The characteristics of the branches and code access (e.g., isolated
branches) are associated with the time to fix a broken build
(KERZAZI; KHOMH; ADAMS, 2014).

IntegrationFreq
→ TimeToFix

The integration frequency in the team affects the build fixing
(KERZAZI; KHOMH; ADAMS, 2014).

ProgramLanguage
→ TimeToFix

The programming language is related to the time spent to fix
a broken build (SEO et al., 2014).

ErrorUnderstand
→ TimeToFix

The understandability of the build failures directly impacts
the time needed to solve them (VASSALLO et al., 2020).

BuildFailType → TimeToFix
The build failure types are associated with different difficulty
levels (VASSALLO et al., 2020).

TestsV olume→ CommitSize
Complex and time-consuming testing is a possible reason for large
commits (LAUKKANEN; ITKONEN; LASSENIUS, 2017).

ContributorType→ CommitSize
The type of contributor (e.g., casual) relates to the build
breakage rate (REBOUCAS et al., 2017).

ContributorType→
AutomatedTests

The contributor type is related to the number of automated
tests (REBOUCAS et al., 2017).

Extracomplexity →
ContributorType

The complexity of the jobs is related to the type of contributor
in the projects (REBOUCAS et al., 2017).

CommitSize→ MergeConflicts
Large commits are associated with merge conflicts
(LAUKKANEN; ITKONEN; LASSENIUS, 2017).

FixTools→ ErrorUnderstand
Fix support tools improves the understandability of the build
logs (VASSALLO et al., 2020).

BuildFailType→
ErrorUnderstand

The build failure type is associated with different levels of
understandability (VASSALLO et al., 2020).

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 86

4.1.1.2 DAG Building

To analyze the causal effect of CI on software quality, we need to be attentive to
all potential confounding effects, i.e., bias due to backdoor paths (see Section 2.4.2). Thus,
we draw a DAG containing a sufficient set of variables that show the existing backdoor
paths with respect to CI and software quality. This new DAG is a subgraph of the DAG
shown in Fig. 19.

Based on Reichenbach’s Common Cause Principle and the Markov Condition, we
know that a causal DAG should include the common causes of any pair of variables in
the DAG (PEARL et al., 2000; HERNáN; ROBINS, 2010). Therefore, we can discard
several variables in Fig. 19 because they are external variables without connecting with
the variables under investigation (i.e., CI and BugReport), and they are not common
causes for any variable selected for the analysis (i.e., CI, Bug Report or one of its common
causes). For instance, ProjectPopularity is associated with BugReport but does not
have an association with no other variable on the DAG. Thus, ProjectPopularity can be
discarded from our causal analysis. On the other hand, Age is a common cause associated
with ContinuousIntegration and BugReport, and it is essential to analyze the causal
effect between them since Age is a potential confounding factor (see Section 2.4.2).

4.1.2 RQ2. Is the causal effect of CI on software quality empiri-
cally observable?

Based on the concepts of conditional independence and the d-separation rules (see
Section 2.4.1), we analyze a set of statistically testable restrictions as implications of a
model (PEARL et al., 2000). Such restrictions (i.e., statistical implications) are conditional
or unconditional independencies between DAG variables that must be found in any dataset
generated by the causal processes described in the DAG. By building a dataset with
the variables in our causal DAG, we can test the implications of the DAG statistically.
Note that because these statistical tests are based on the d-Separation rules, we are not
only checking for associations but also for causal relationships (i.e., considering the “flow”
between relationships in the DAG) (PEARL; VERMA, 1995; PEARL; JUDEA, 1994;
PEARL et al., 2000). We are discovering the causal structure and inferring causation from
the initial DAG built in the RQ1 (section 4.1.1) and the testing of their d-Separation
implications on an empirical data set (SHALIZI, 2021).

The implications are in the form of unconditional independencies, like Age ⊥⊥
TestsV olume, which means Age is independent of TestsV olume. Alternatively, the im-
plications may have the form of conditional independencies, like MergeConflicts ⊥⊥
TestsV olume | CommitFrequency, which means MergeConflicts is independent of
TestsV olume conditioned in CommitFrequency. Since we use the DAGitty R pack-
age (TEXTOR et al., 2016) to draw our causal DAGs, we obtain from the

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 87

impliedConditionalIndependence function a list of testable implications that become
our causal hypotheses.

We then collect data by mining software repositories to empirically analyze the
selected variables, allowing us to test the causal DAG and its statistical implications, i.e.,
our causal hypotheses.

4.1.2.1 Collecting Data & Empirical Analysis

Based on the knowledge and assumptions acquired in the literature review and the
causal DAG built to answer the RQ1, we have support for building a dataset to analyze the
relationship between CI and software quality, including confounding variables. Using the
dataset, we can check the validity of our DAG through statistical tests. Fig. 20 summarizes
the dataset building process, and we detail such process in the following. All tools, scripts,
and information necessary to reproduce the process described in the sequence are available
in our replication package 3.

Figure 20 – Mining Software Repository Process

Collecting Projects. As illustrated in Fig. 20, we start with a list of 27,885
projects obtained from the most starred repositories in the GitHub Search API4 and a
list of projects’ names from the SonarQube web API5. We searched for projects having
a public repository on GitHub to start the mining repository process by collecting the
history of developers’ contributions to them. The search included 15 popular languages: C,
C#, C++, Go, Java, JavaScript, Kotlin, Objective-C, PHP, Python, Ruby, Rust, Scala,
Swift, and TypeScript. So the only initial premise was to have a public repository on
GitHub.

Collecting Continuous Integration Data. In the next steps, we search for data
in continuous integration services. Inspired by Hilton’s work (HILTON et al., 2016), which
searches for the usage of 5 different services — TravisCI, CircleCI, AppVeyor, Werker,
Cloud-Bees, and Jenkins CI, we search for the same services and add a new one — GitHub
3 https://github.com/elieziosoares/ci_quality_study_replication
4 https://docs.github.com/en/rest/reference/
5 https://community.sonarsource.com/t/list-of-all-public-projects-on-sonarcloud-using-api/33551

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 88

Actions6. We discovered a high CI service usage (54.3%) among the collected projects.
Travis CI 7 appeared as the most popular service in our dataset.

Despite the evidence regarding a decreasing usage of Travis CI service (WIDDER
et al., 2018; DECAN et al., 2022; GOLZADEH; DECAN; MENS, 2022), it is worth
mentioning that Travis is still the most popular service in our dataset (see Table 27),
which has also been the case for recent research analyzing machine learning projects using
CI (RZIG et al., 2022). As for GitHub Actions, although the relatively short time since its
launch (November 2019), it has been used by a significant number of projects up to our
study’s data collection date (2022). This observation confirms the findings from Decan et
al. (DECAN et al., 2022). When they analyzed 67,870 GitHub repositories, they found
that more than 4 out of 10 use GitHub Actions workflows. Golzadeh et al. (GOLZADEH;
DECAN; MENS, 2022) also observed that while the adoption rate of the other CI services
decreased, GitHub Actions has a steadily increasing adoption rate.

Table 27 displays the identified Continuous Integration (CI) services, the number
of projects categorized as users for each service, and the criteria employed to categorize
and classify the adoption of these services.

We build scripts to identify which CI service is used by each project. For Travis CI,
Circle CI, and Wercker, we check the public APIs of these services by searching for the
project name and organization. Specifically for Travis CI, if we do not find any information
through the Travis API, our scripts search for the “.travis.yml” file using the GitHub API.
We also keep track of when the service configuration was initiated, specifically noting the
date of the first commit of the “.travis.yml” file.

Table 27 – The CI service usage on the dataset and the classification criteria.
CI Service Qty Criteria

Travis CI 9,092
(32.6%)

We search on Travis APIa for the existence of the project in the service.
If true, we search on GitHub for the existence of a “.travis.yml” file.

GitHub
Actions

5,630
(20.1%)

Using the search code feature of GitHub API, we search for the
extension “.yml” in the path “.github/workflows”.

Circle CI 307
(1.1%)

Through Circle CI APIb we search for the existence of the project on
the service. If not located, we searched for the file “config.yml” in the
path “.circleci”.

Jenkins 58
(0.2%)

Using the search code feature of GitHub API, we search for the file
“Jenkinsfile”.

AppVeyor 29
(0.1%)

Using the search code feature of GitHub API, we search for the file
“appveyor.yml”.

Wercker 0 Using the Wercker APIc we search for the existence of the project on
the service.

No CI
Service

12,769
(45.7%)

ahttps://docs.travis-ci.com/user/developer/#api-v3
bhttps://circleci.com/docs/api/v2/
chttps://devcenter.wercker.com/development/api/endpoints/

6 https://github.com/features/actions
7 https://travis-ci.org/

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 89

For the remaining services, the script checks if the configuration file exists. In the
case of AppVeyor, we verify the presence of a file named “appveyor.yml” within the GitHub
repository using the API. For Jenkins, we search for a “Jenkinsfile”, while for Circle CI,
we look for a “config.yml” inside a “.circleci” folder. Similarly, for GitHub Actions, we
examine whether a file with the extension “.yml” exists inside a “.github/workflows” folder.

Filtering projects. Afterwards, we filtered out irrelevant repositories as repre-
sented in Fig. 20. In particular, we consider only non-fork projects with more than 100 stars.
Despite the risks of applying MSR in empirical studies and selecting non-representative
projects (MUNAIAH et al., 2017), we selected “engineered projects” as opposed to toy
projects (MUNAIAH et al., 2017) and applied a series of criteria, beginning by excluding
projects smaller than 10MB (OLIVEIRA, 2017; OLIVEIRA et al., 2019). These two criteria
are the initial steps towards selecting projects that approach the “engineered projects”
concept (MUNAIAH et al., 2017). While mining data from the repository and classifying
projects for analysis, we ensure a rigorous selection of projects that represent engineered
projects. In the sequence, we detail each step of mining and classification of projects.

Next, we consider only projects using either Travis CI or projects not using a CI
service. Including projects not using a CI service is essential because we create a control
group of no-CI projects in order to understand the effects on the CI projects group. As
mentioned earlier, we selected Travis CI as a target because it is the most used service in
our dataset. In addition, Travis CI has a public API to obtain software builds data. After
this filtering step, our sample was reduced from 27,885 to 3,270 repositories, i.e., 2,527
repositories using Travis CI and 743 not using a CI service.

Collecting Repository Data. We mine the pull requests and issues of the
projects, filtering out those projects that do not have pull requests or issues. We collect
data from pull requests, issues, commits, and comments using the GitHub Search API.
We use the Travis API to collect data from software builds, while we use two different
services (Coveralls 8 and SonarCloud 9) to search for code coverage information.

We collected pull requests and issues in the repositories using the endpoint “pulls”
and “issues” from the GitHub Search API. This process resulted in a total of 1,425,493 pull
requests and 3,328,221 issues. Next, we collected all pull request comments and associated
information regarding authors. All these data allow us to compute a metric to measure
Communication detailed forward.

We also collect each pull request’s commit, sha, date, message, and author. To
collect the detailed commit information regarding lines of code added, removed, or changed,
we request it to GitHub API 10. We processed the data to obtain the size of a commit, the
number of lines of added/removed code, the number of files modified, and the test files and
test lines. The commits data help us to compute metrics to measure CommitFrequency,
8 https://coveralls.io/
9 https://sonarcloud.io/
10 https://api.github.com/repos/{owner}/{repo}/pulls/{pull_number}/files

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 90

TestsV olume, and MergeConflicts.
Classifying Merge Conflicts. To identify the merge conflicts occurrences, we

used an algorithm (see Algorithm 1) to reconstruct the commits history and identify a
merge conflict when it was generated. The algorithm clones the repository (line 1) and
gets the list of commits (line 4). The algorithm gets the parents for each commit and
verifies the number of parent commits (line 6). If a commit has more than one parent, we
call the git diff function to them (line 7). Then, depending on the diff result, we can
detect a conflict (line 9) and append it to the list of merge conflicts (line 10). We manually
validated the algorithm with a random sample of 40 commits and achieved an accuracy of
90%.

Algorithm 1: Detect Merge Conflicts
Require: remote: URL for the project repository
Require: repository_path: Local path to clone the project repository

1: repo← Repo.clone_from(remote, repository_path)
2: merge_conflicts← ∅
3:
4: for all commit in repo.commits() do
5:
6: if commit.parents > 1 then
7: merge_diff ← repo.git.diff(commit.parents[0], commit.parents[1])
8:
9: if merge_diff contains ” <<<<<<< HEAD” and ” <<<<<<< ” then

10: Append commit.sha to merge_conflicts
11:
12: end if
13:
14: end if
15:
16: end for
17:
18: return merge_conflicts
19: End function

Classifying Bugs. To classify issues as bugs, we consider only projects using
GitHub issues and labeling them. We mapped the labels used in their repositories through
a semi-manual inspection, i.e., we began with a script to a preliminary parse relying on a
list of bug-related keywords (VASILESCU et al., 2015; SANTOS; COSTA; KULESZA,
2022). Then, we manually validated the labels for each repository using GitHub issues
that have assigned to them. This approach is similar to the approach used by Vasilescu et
al. (VASILESCU et al., 2015) and Santos (SANTOS; COSTA; KULESZA, 2022).

The exception to our primary approach is a set of 10 projects with many issues
without labels. To avoid missing these data, we adopt a conservative approach classifying
as bugs issues containing the terms “bug” or “fix” in their title or their body.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 91

Classifying CI Projects. In order to avoid the CI Theater (FELIDRé et al., 2019;
THOUGHTWORKS, 2017) and to adopt recommendations from Soares et al. (SOARES
et al., 2022), in addition to the use of Travis CI, we consider build and code coverage
information, meaning that we select projects that have actual build and test activity. After
achieving a set of 74 CI projects surviving all filtering stages, we randomly drew 74 out of
95 no-CI projects to balance our dataset. Table 28 shows a summary of the final dataset.

Data Aggregation. With the collected data, we can analyze dimensions of releases
such as Commit Frequency, Test Volume, Merge Conflicts, Communication, Bug Reports,
and Age variables. We cannot measure Issue Type and Overconfidence for two reasons.
First, classifying IssueType from the collected issue data is challenging given that projects
do not have consistent patterns for classifying issue patterns (e.g., standardized tags, such
as “enhancement”, “perfective”, “corrective” used in a standardized manner). Second,
overconfidence is a subjective feeling not feasible to measure through collecting data from
repositories. Therefore, we consider these two variables as latent (i.e., unmeasured). Latent
variables can still be represented and analyzed in a causal DAG, even if they cannot be
statistically tested. However, we can still interpret these latent variables based on the
statistical tests of the other variables within the DAG (HERNáN; ROBINS, 2010).

In the DAG and the dataset, we used the variable Commit Frequency, replacing
Commit Size. These variables have an intrinsic relationship since more frequent commits
tend to be smaller. However, it is noteworthy that commit frequency is most noticeable in
the context of projects using Travis CI (ZHAO et al., 2017). In addition, more frequent
commits engender a cascade of CI builds and verifications, potentially detecting bugs
earlier, as cited in (SOARES et al., 2022). In light of this, we employed a commit frequency
metric to build a more consistent and complete DAG.

We derive the metrics by aggregating their values by project releases. We collected
data covering 12 development months, similar to data analyzed by Zhao et al. (ZHAO
et al., 2017) and Santos et al.(SANTOS; COSTA; KULESZA, 2022). Notably, all 148
projects under scrutiny encompass a data-mined span of 12 months. We consider the
first 12 months for CI projects starting from the month when CI was adopted. For no-CI
projects, we consider the starting month for analysis according to the median Age of the
CI projects, similar to Sizilio et al. (NERY; COSTA; KULESZA, 2019).

In addition to Age, the Size of the projects are also balanced. We tested this
difference through a Wilcoxon Rank test and found no statistically significant difference
between the two groups (p− value = 0.7372). Regarding the difference in bug reports, we
also obtained a negligible difference (p− value = 0.1318). On the other hand, we found a
difference between the two groups for the number of stars on GitHub (p−value = 0.000679),
for the number of issues (p − value = 0.007304), and for pull-requests (p − value =
1.737e−07). In simple terms, the CI projects are more active and popular, but not
necessarily with greater maturity and size.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 92

For each project release in such time, we compute the following metrics:

• Commit Frequency represents the aggregate count of commits across all pull
requests within a given release.

• Communication is the sum of comments and review comments in the pull requests.
We consider the average of communication in a release.

• Merge Conflicts is the number of merge conflicts in a release. We traverse the
repositories commit tree and use the GIT command diff to verify the merge commits
and the conflicts.

• Age is the number of days of a repository from its creation until the release date.

• Test Volume is the proportion of lines of test code modified (added, removed, or
changed) in the commits. We applied the strategy from Nery et al. (NERY; COSTA;
KULESZA, 2019) to identify test files. We consider the median test volume in a
release.

• Bug Reports is the number of bugs reported in a release.

• CI is a binary categorical variable indicating whether the project uses CI.

Table 28 – Summary of the Data Set.

Number of Projects 148
Number of Pull Requests 18,961
Number of Commits 59,034
Number of Builds 16,619
Number of Issues 41,866
Number of Bugs 3,199
Number of Merge Conflicts 403

4.1.2.2 DAG Implications Testing

Having the set of testable causal hypotheses obtained in RQ1 and the produced
dataset (Section 4.1.2.1), we can investigate if the implications from the causal DAG are
actually held in the empirical dataset. We test the unconditional independence causal
hypotheses (e.g., X ⊥⊥ Y) using the dcov.test function from the energy R package 11.
This test verifies if two variables on the dataset are independent. We test the conditional in-
dependence causal hypotheses (e.g., X ⊥⊥ Y | Z) with the Kernel conditional independence
test from the CondIndTests R package (HEINZE-DEML; PETERS; MEINSHAUSEN,
2018). Both tests are non-parametric and suitable for our data.
11 https://cran.r-project.org/package=energy

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 93

4.1.3 RQ3.What would be an accurate causal theory for CI?

Considering the investigations in RQ1 and RQ2, we have information regarding
which independence tests have passed or failed in our analyses. Such information allows us
to propose adaptations to the causal DAG built in RQ1. For example, by testing the data,
we can observe a dependency between Age and Communication, so we propose a new
edge Age→ Communication. We build a new causal DAG by combining the knowledge
from the literature (RQ1) and the statistical tests on the dataset (RQ2). We call this
hybrid approach data-validated causal DAG. The data-validated causal DAG is compatible
with the dataset in terms of the independency relationships between the variables. Then,
we perform a data-validated approach for causal discovery.

There are dozens of algorithms for causal discovery from data, such as PC (SPIRTES;
GLYMOUR; SCHEINES, 1993), that rely on conditional independence tests to discover
the causal structure from the data. On the other hand, Cartwight (CARTWRIGHT,
1989) argues that causal investigation requires background information too (i.e., causal
assumptions)—“No causes in, no causes out”.

Thus, to implement the data-validated causal DAG, we start getting background
information from the literature review and building the initial causal DAG in RQ1 (i.e.,
causal assumptions from the literature). Next, we combine the knowledge acquired in RQ2
(i.e., the independence relationships that were not present in the data), and finally, we
structure our RQ3 procedure in three steps.

Step 1. By analyzing the rejected hypotheses in RQ2 (Section 4.2.2), in conjunction
with d-separation rules (Section 2.4.1), we can infer connections that should be added or
removed in the data-validated causal DAG.

Step 2. We generate the data-validated causal DAG after identifying the discon-
nected vertices and the necessary changes from Step 1.

Step 3. We test the d-separation implications on the data-validated causal DAG.
If any test fails, we return to Step 1 and refine the DAG.

Figure 21 – Hypothetical causal DAG.

Fig. 21 presents a hypothetical DAG to illustrate the steps to obtain the data-
validated DAG. The DAG contains a Fork structure (i.e., QtyPullRequests ← Age →
CommitFrequency) and a collider (i.e., Age→ CommitFrequency ← DevelopersMaturity.

Analyzing Forks and Chains. The d-Separation rules impose the same prin-
ciple for the analysis of forks or chains (see Section 2.4.1), i.e., if this structure is true,

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 94

QtyPullRequests and CommitFrequency should be statistically dependent because an as-
sociation flows through forks and chains. Otherwise, these variables should be independent
when we block the path by conditioning on the middle variable Age, as in Fig. 22(a).

(a) (b) (c)

Figure 22 – Examples of causal DAG structure testing.

Therefore, we can statistically test the fork in Fig. 22. We should perform a
conditional independence test to check if QtyPullRequests and CommitFrequency are
independent conditioning on Age (QtyPullRequests ⊥⊥ CommitFrequency | Age) as in
Fig. 22(a). If the test rejects such a hypothesis, meaning that the structure is wrong, we
may hypothesize different structures.

For instance, “what if the structure would be a collider QtyPullRequests→ Age←
CommitFrequency? (see Fig. 22(b)). In this case, QtyPullRequests and CommitFrequency

would be independent without conditioning. On the other hand, if the variables have a
dependence that does not interrupt when conditioning on Age, they share a relationship
passing through another path, then we add a new edge between QtyPullRequests ←
CommitFrequency, as illustrated in Fig. 22(c).

(a) (b) (c)

Figure 23 – Examples of causal DAG collider structure testing.

Analyzing Colliders. The d-Separation rules (see Section 2.4.1) imply that the
variables in a collider are independent because the collider blocks the association flow, i.e.,
Age and DevelopersMaturity should be statistically independent. On the other hand,
if we condition on CommitFrequency, they would be dependent because the condition
opens the association flow in a collider.

We can statistically test the structure in Fig. 23(a) by testing the independence be-
tween Age and DevelopersMaturity (Age ⊥⊥ DevelopersMaturity). In case the variables

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 95

are not independent, it means that the structure is not a collider or there exists another
path linking them. Thus, we can verify if the structure is a chain as illustrated in Fig. 23(b)
by verifying if conditioning on CommitFrequency they become independent. Finally, if
the last hypothesis fails, i.e., Age and DevelopersMaturity are not independent, even
if conditioning on CommitFrequency, then this suggests another path exists between
them. In this case, we would add a new edge Age→ DevelopersMaturity, as shown in
Fig. 23(c).

4.2 Results

4.2.1 RQ1. What are the existing criteria to identify whether a
software project uses CI?

Considering the Reichenbach’s Common Cause Principle (PENROSE; PERCIVAL,
1962) and the Markov Condition (PEARL et al., 2000; HERNáN; ROBINS, 2010), in order
to produce a sufficient causal DAG, we can exclude any variable that is not a common cause
between CI and software quality or one of their ancestors. Thus, we remove from the DAG all
non-common cause variables from the causal DAG in Fig. 19, for instance, ResolutionT ime,
and ProgrammingLanguage. In addition, we unified the variables BugResolution and
BugReport, as all connections and the meaning of BugResolution are contained in
BugReport.

Fig. 24 shows the literature-based DAG after the variable-selection process. Accord-
ing to the DAG, Continuous Integration (CI) has a direct influence on Bug Report (AMRIT;
MEIJBERG, 2017b; VASILESCU et al., 2015), as well as an indirect influence through the
Communication (CASSEE; VASILESCU; SEREBRENIK, 2020; HUANG; LIU; HUANG,
) and developers’ overconfidence variables (REBOUCAS et al., 2017; PINTO et al., 2018;
HUANG; LIU; HUANG,). That means that CI influences the communication between
contributors, which, in turn, communication influences the number of bug reports. A similar
phenomenon occurs with developers’ overconfidence, but overconfidence tends to have a
negative effect on the number of bug reports, i.e., overconfidence may actually increase the
number of bug reports or, at least, prevent a team from the opportunity of reducing the
number of bug reports. Fig. 24 shows the literature-based DAG after the variable-selection
process. According to the DAG, Continuous Integration (CI) has a direct influence on Bug
Report (AMRIT; MEIJBERG, 2017b; VASILESCU et al., 2015), as well as an indirect
influence through the Communication (CASSEE; VASILESCU; SEREBRENIK, 2020;
HUANG; LIU; HUANG,) and developers’ Overconfidence variables (REBOUCAS et al.,
2017; PINTO et al., 2018; HUANG; LIU; HUANG,).

The age of a project influences the CI practices (ZAIDMAN et al., 2008; ZAIDMAN
et al., 2011; HILTON; BELL; MARINOV, 2018; NERY; COSTA; KULESZA, 2019) and

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 96

also influences bug reports (VASILESCU et al., 2015), i.e., Age is a common cause
for both CI and bug reports, thus opening a backdoor path for bias (see Section 2.4.2).
Similarly, the commit frequency opens other backdoor paths: (i) ContinuousIntegration←
CommitFrequency ← TestsV olume→ BugReport; and (ii) ContinuousIntegration←
CommitFrequency ← IssueType → Communication → BugReport. These backdoor
paths represent risks of confounding the influence of CI on other variables such as Bug
Report. Thus, it is necessary to condition for some variables blocking these backdoor paths
to obtain causal estimations regarding the total causal effect of CI on Bug Report. The
minimal conditioning set is formed by Age plus CommitFrequency, capable of blocking
all backdoor paths (i.e., confounding effects).

Conditioning for the confounding allows us to measure whether CI has a certain
level of causal effect on Bug Reports despite the presence of confounding variables Age or
CommitFrequency.

Figure 24 – Final literature-based DAG for CI, Bug Reports and their co-variables.

4.2.2 RQ2. What are the reported claims regarding the effects
of CI on software development?

With the causal DAG obtained in RQ1 (Section 4.2.1) and the dataset we produced
(Section 4.1.2.1), we can investigate if the data supports the relationships depicted in
the causal DAG. Such evaluation is possible because we can derive statistically testable
implications (see Section 2.4.1) using the d-separation properties on the causal DAG (see
Fig. 24), and we can verify whether the same statistical independency also exists between
the variables of the dataset. Thus, we answer RQ2 by testing the dataset against the
proposed set of causal hypotheses from Table 29. To test such causal hypotheses, we use
dcov test and Kernel conditional independence test.

When necessary, we test the unconditional independence hypotheses (i.e., two
variables are independent without conditioning on other variables) using the dcov test.
This test evaluates if two variables are independent, returning an R value between 0 and 1

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 97

when they are independent. If it returns a value greater than 1 the variables are considered to
be dependent. For example, the dcov test for a hypothesis Hn “Age ⊥⊥ CommitFrequency”
returns an R value of 49.5566 (i.e., larger than 1), meaning that we reject the hypothesis
that Age and CommitFrequency are independent.

On the other hand, we test the conditional independence hypotheses (i.e., two
variables are independent when conditioning on another set of variables) in Table 29 using
Kernel conditional independence test (HEINZE-DEML; PETERS; MEINSHAUSEN, 2018).
This test evaluates the null hypothesis that two variables, Y and E, are independent
conditioning on a set of variables X and returns a p-value for the null hypothesis. Thus, a
small p-value (lower than the significance level) rejects the null hypothesis, indicating that
the variables are not independent conditioning on a set of variables. If a p-value is high,
the test fails to reject the null hypothesis, meaning that Y and E are likely independent
conditioning on X.

As an example, the Kernel conditional independence test for Hm “MergeConflicts ⊥⊥
TestsV olume | CommitFrequency” (i.e., MergeConflicts is independent of TestsV olume

conditioning on CommitFrequency) returns a p-value of 0.542159, failing to reject the
null hypothesis for Hm. Thus, we assume that MergeConflicts and TestsV olume are
independent when conditioning on CommitFrequency since the p-value is higher than a
significance level of 0.05 (in fact, we fail to reject the null hypothesis).

Table 29 – The results of the conditional independence tests for RQ2.

Conditional Independence
Causal Hypotheses p-value

H1. Age ⊥⊥ CommitFrequency | ContinuousIntegration 1.41e-07*
H2. Age ⊥⊥ TestsV olume | ContinuousIntegration 2.40e-12*
H3. Age ⊥⊥ Communication | ContinuousIntegration 1.16e-06*
H4. Age ⊥⊥MergeConflicts | ContinuousIntegration 0.254925
H5. BugReport ⊥⊥ CommitFrequency | Communication,
ContinuousIntegration, TestsV olume

0.000000*

H6. BugReport ⊥⊥MergeConflicts | CommitFrequency,
ContinuousIntegration

0.324586

H7. BugReport ⊥⊥MergeConflicts | Communication, TestsV olume,
ContinuousIntegration

0.344638

H8. Communication ⊥⊥MergeConflicts | CommitFrequency,
ContinuousIntegration

0.486532

H9. Communication ⊥⊥ TestsV olume | ContinuousIntegration 0.000000*
H10.MergeConflicts ⊥⊥ TestsV olume | CommitFrequency,
ContinuousIntegration

0.246583

∗p < 0.05
⊥⊥ “Independent of...”
| “Conditioning on...”

As we have seen in Table 29, we reject hypotheses H1, H2, H3, H5, and H9. These

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 98

rejections are sufficient to conclude that if these d-separation implications from the causal
DAG from our RQ1 (Fig. 24) are not true, the causal DAG is not consistent with the
empirical data. That means that the actual development processes from our studied
projects (which generate the observed data) differ from the relationships shown in the
literature-based DAG (Fig. 24).

In simple terms, although our literature-based DAG indicates that Age and
CommitFrequency are related only through ContinuousIntegration influence (i.e., they
are independent when conditioning on ContinuousIntegration), our tests have shown that
they actually share a different relationship (i.e., the tests did not confirm the conditional
independence). Similarly, our tests show that the relationship between Age and the vari-
ables TestsV olume, Communication, and MergeConflicts are not independent when
conditioning on ContinuousIntegration. Therefore, the tests suggest that Age potentially
has a direct relationship with these variables.

A parallel case is the one concerning Communication and TestsV olume. The
Literature-based DAG (Fig. 24) presents a relationship between these two variables passing
through ContinuousIntegration. However, our tests did not confirm the conditional
independence Communication ⊥⊥ TestsV olume | ContinuousIntegration.

Another example is the relationship between BugReport and CommitFrequency.
Even if we disregard the influences of Age, Communication, ContinuousIntegration,
and TestsV olume, they remain dependent, which means that our data shows that
BugReport and CommitFrequency potentially have a direct relationship. Our data shows
that BugReport potentially has a direct relationship with CommitFrequency. In RQ3
(Section 4.2.3), we deal with this set of observations on the failed hypothesis.

4.2.3 RQ3. Which empirical methods, projects and artifacts are
used in the studies that investigate the effects of CI on
software development?

To discover a plausible causal structure, we start from the failed causal hypotheses
in RQ2 and explore where the literature-based DAG (Section 4.2.1) does not match the
evidence from the empirical dataset (Section 4.2.2). We propose an alternative DAG
(data-validated DAG) based on the observed mismatches and the testing hypotheses
derived from such mismatches (i.e., failed causal hypotheses).

4.2.3.1 The relationship between Age and CommitFrequency

In the literature-based causal DAG in Fig. 24, there is a chain Age→
ContinuousIntegration → CommitFrequency, as shown in Fig. 25 (a). Considering
the d-separation rules (Section 2.4.1), we would expect that when conditioning on
ContinuousIntegration, the association flow between Age and CommitFrequency would

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 99

interrupt, so they should be independent. However, in the analysis from RQ2, we rejected
hypothesis H1 (Age ⊥⊥ CommitFrequency | ContinuousIntegration, see Table 29).

Figure 25 – (a) Causal structure (chain) involving Age, ContinuousIntegration, and
CommitFrequency as expressed in the literature-based causal DAG. (b) The
new proposed causal structure concerning Age, ContinuousIntegration, and
CommitFrequency after statistical validations.

In this case, another path to the association between Age and CommitFrequency

may exist. An alternative hypothesis is a wrong collider structure between Age →
BugReport← Communication. An association may occur through this path if this struc-
ture is not a collider. First, we tested the collider structure by formulating the hypothesis in
Table 30. The hypothesis says that Age would become independent of CommitFrequency

when conditioning on ContinuousIntegration and BugReport (Age ⊥⊥ CommitFrequency |
ContinuousIntegration, BugReport). The result rejects such a hypothesis, which means
a persistent dependence between Age and CommitFrequency when conditioning on
ContinuousIntegration and BugReport. Therefore, we add a new edge between Age and
CommitFrequency, obtaining the structure shown in Fig. 25 (b).

Table 30 – Conditional independence test for the relationship between Age and
CommitFrequency.

Conditional Independence
Causal Hypotheses p-value

H1. Age ⊥⊥ CommitFrequency | ContinuousIntegration, BugReport 2.576492e−08*
∗p < 0.05 = dependence
⊥⊥ “Independent of...”
| “Conditioning on...”

4.2.3.2 The relationship between Age and TestsV olume

Analyzing hypothesis H2 (Age ⊥⊥ TestsV olume | ContinuousIntegration, see
Table 29) and the Fig. 26 (a), we observe that given the following chain: Age →

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 100

ContinuousIntegration → TestsV olume, there is an association between Age and
TestsV olume, but this association would interrupt when conditioning on ContinuousIntegration.
However, the test performed in RQ2 rejected such a hypothesis, revealing that Age and
TestsV olume remain dependent.

Figure 26 – (a) Causal structure involving Age and TestsV olume as expressed in the
literature-based causal DAG. (b) The new proposed direct path concerning
Age and TestsV olume.

Table 31 – Conditional independence tests for the relationship between Age and
TestsV olume.

Conditional Independence
Causal Hypotheses p-value

H1. Age ⊥⊥ TestsV olume | BugReport 0.0*
H2. Age ⊥⊥ TestsV olume | ContinuousIntegration, BugReport 8.518427e−10*
∗p < 0.05
⊥⊥ “Independent of...”
| “Conditioning on...”

Therefore, these variables should have a direct association, or the structure that
links them through BugReport should be a chain rather than a collider. In this way,
we should test this hypothesis in the form of conditional independence presented in
Table 31, which expresses that if the structure is a chain when conditioning on the middle
variable, Age, and TestsV olume would become statistically independent. The test results
in Table 31 show that even conditioning on CI, andBugReport, or just on BugReport, the
variables Age and TestsV olume remain dependent. Thus, we add a direct edge between
them, as shown in Fig. 26 (b).

4.2.3.3 The relationship between Age and Communication

Based on the existing paths between Age and Communication | ContinuousIntegration

in the literature-based DAG (see Fig. 27 (a)), the hypothesis H3 (Age ⊥⊥ Communication |
ContinuousIntegration, see Table 29) says that Age and Communication should be in-
dependent when conditioning on ContinuousIntegration.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 101

Figure 27 – (a) Causal paths between Age and Communication as expressed in the
literature-based causal DAG. (b) The new proposed directed path between
Age and Communication.

Rejecting hypothesis H3 (Age ⊥⊥ Communication | ContinuousIntegration) in-
dicates that Age and Communication remain dependent. This dependency may be due
to a wrong structure in the collider Age → BugReport ← Communication that could
be a chain, but in this case, when conditioning in BugReport, Age, and Communication

would become independent.
Another hypothesis is a wrong structure in the chain Age→ ContinuousIntegration→

Communication that may be a collider, and then when we conditioned in ContinuousIntegration,
we opened the association flow, making Age and Communication dependent. In this way,
we should test these hypotheses by testing the independencies depicted in Table 32 and
Table 33.

Table 32 – Conditional independence tests for the hypothesis related to relationship be-
tween Age and Communication.

Conditional Independence
Causal Hypotheses p-value

H1. Age ⊥⊥ Communication | BugReport 0.0*
H2. Age ⊥⊥ Communication | BugReport, ContinuousIntegration 1.251478e-05*
∗p < 0.05
⊥⊥ “Independent of...”
| “Conditioning on...”

Table 33 – Unconditional independence tests for the hypothesis related to relationship
between Age and Communication.

Unconditional Independence
Causal Hypotheses R

H3. Age ⊥⊥ Communication 11.86268 *
*R > 1
⊥⊥ “Independent of...”

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 102

The test result in Table 32 shows that even conditioning on BugReport, the
variables Age and Communication remain dependent. Thus, there exists a dependency
through another path. The result in Table 33 does not confirm the hypothesis of a collider
in Age → ContinuousIntegration ← Communication since without conditioning on
ContinuousIntegration, Age and Communication remain dependent. Therefore, we add
an edge Age→ Communication, as illustrated in Fig. 27 (b).

4.2.3.4 The relationship between CommitFrequency and BugReport

The rejection of hypothesis H5 (BugReport ⊥⊥ CommitFrequency | Communication,
ContinuousIntegration, TestsV olume, see Table 29), similarly, indicates that the struc-
tures shown in Fig. 28 (a) are not accurate.

Figure 28 – (a) Causal paths between CommitFrequency and BugReports as expressed
in the literature-based causal DAG. (b) The new proposed directed path
between CommitFrequency and BugReports.

According to these structures, we expected that BugReport and CommitFrequency

would become independent when conditioning on ContinuousIntegration, Communication,
and TestsV olume. However, the test did not confirm the independence (see Table 29),
even testing all variables conditioned together or separately. On the other hand, we tested if
BugReport and CommitFrequency are unconditionally independent and got an R−value

of 6.009902, indicating a dependency between them.
These tests suggest the existence of another path between BugReport and CommitFrequency.

Thus, we add a new edge linking them as shown in Fig. 28 (b).

4.2.3.5 The relationship between Communication and TestsV olume

Analyzing the rejection of hypothesis H9, we observed that when conditioning
Communication and TestsV olume on ContinuousIntegration (see Fig. 29 (a)), the
dependence between Communication and TestsV olume does not disappear. We then
tested if the collider TestsV olume→ CommitFrequency ← IssueType would be wrong.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 103

If this hypothesis is correct, the association is flowing through this path, then conditioning
on CommitFrequency would block the association.

In this sense, we test the conditional independence presented in Table 34 and
confirm the hypothesis that the structure is not a collider. Therefore, we reorient the edge
between CommitFrequency and IssueType, as present Fig. 29 (b).

Figure 29 – (a) Causal structure between Communication, and TestsV olume as expressed
in the literature-based causal DAG. (b) The new proposed structure between
Communication and TestsV olume after statistical validations. The edge
between CommitFrequency and IssueType was inverted.

Table 34 – Conditional independence tests for the hypothesis related to relationship be-
tween Communication and TestsV olume.

Conditional Independence
Causal Hypotheses p-value

H1. Communication ⊥⊥ TestsV olume | ContinuousIntegration,
CommitFrequency

0.862325

∗p < 0.05
⊥⊥ “Independent of...”
| “Conditioning on...”

4.2.3.6 Data-Validated Causal DAG

Afterward, we obtain the first version of data-validated DAG in Fig. 30, raising
a new set of statistical implications to test. Table 35 shows such implications as causal
hypotheses and the results of the independence tests.

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 104

Figure 30 – Initial version of data-validated DAG for CI, Bug Reports and their co-
variables.

Table 35 – The results of the conditional independence tests for RQ3.

Conditional Independence
Causal Hypotheses p-value

H1. Age ⊥⊥MergeConflicts | CommitFrequency, ContinuousIntegration 0.269635
H2. BugReport ⊥⊥MergeConflicts | CommitFrequency,
ContinuousIntegration

0.321338

H3. Communication ⊥⊥MergeConflicts | CommitFrequency,
ContinuousIntegration

0.486532

H4. Communication ⊥⊥ TestsV olume | Age, CommitFrequency,
ContinuousIntegration

2.05e-12 *

H5. MergeConflicts ⊥⊥ TestsV olume | CommitFrequency,
ContinuousIntegration

0.246583

*p < 0.05
⊥⊥ “Independent of...”
| “Conditioning on...”

After the statistical analysis, the H4 (Communication ⊥⊥ TestsV olume | Age,
CommitFrequency, ContinuousIntegration, see Table 35) was rejected. This result means
that even conditioning on Age, CommitFrequency and ContinuousIntegration, the vari-
ables Communication and TestsV olume remain dependent, i.e., another open path exists
between them. Since the paths by BugReport is a collider (see Fig. 31 (a)), we may infer
that there is a path that this first version of data-validated DAG (Fig. 30) does not reflect
the true causal relationship. Therefore, we add a new edge between TestsV olume and
Communication (as shown in Fig. 31 (b)) and achieve a new version of the data-validated
DAG shown in Fig. 32.

The data-validated DAG shown in Fig. 32 raises a new set of statistical implications
depicted in Table 36. After the statistical analysis, all these four hypotheses were confirmed,

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 105

Figure 31 – (a) Causal paths between TestsV olume and Communication as expressed in
the literature-based causal DAG. (b) The new proposed direct path between
TestsV olume and Communication.

Figure 32 – data-validated DAG for CI, Bug Reports and their co-variables.

meaning that the dataset upholds all implications of the data-validated DAG. Thus, we
can conclude that we find a plausible model in our data-validated DAG (Fig. 32).

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 106

Table 36 – The results of the conditional independence tests for RQ3.

Conditional Independence
Causal Hypotheses p-value

H1. Age ⊥⊥MergeConflicts | CommitFrequency, ContinuousIntegration 0.269635
H2. BugReport ⊥⊥MergeConflicts | CommitFrequency,
ContinuousIntegration

0.321338

H3. Communication ⊥⊥MergeConflicts | CommitFrequency,
ContinuousIntegration

0.486532

H4. MergeConflicts ⊥⊥ TestsV olume | CommitFrequency,
ContinuousIntegration

0.384515

*p < 0.05
⊥⊥ “Independent of...”
| “Conditioning on...”

4.3 Discussion

In RQ1 4.2.1, we cataloged a set of claims related to Continuous Integration that
we verified empirically in RQ2 4.2.2. Finally, in the RQ3 4.2.3, we proposed a new causal
DAG mixing the literature knowledge with the empirical data.

The data-validated DAG shown in Fig. 32 shows a more significant influence of Age

than in the previous literature-based DAG (Fig. 24). Age is an important source of confound-
ing effects since it relates to TestsV olume, CommitFrequency, ContinuousIntegration,
Communication, and BugReport.

In the data-validated DAG, we can also observe that ContinuousIntegration influ-
ences CommitFrequency and MergeConflicts, while CommitFrequency contributes to
more MergeConflicts and indirectly to more communication. This way, ContinuousIntegration

influences, directly and indirectly, to obtain more Communication in the software devel-
opment process. Communication, in turn, has a causal relationship with BugReport.

The negative side of ContinuousIntegration is the occurrence of MergeConflicts

and the promotion of an Overconfidence in the development environment. We conjecture
that CI is believed to decrease the commit size because of the increased commit frequency.
This higher frequency engenders a favorable scenario for an increase in merge conflicts.

As for the overconfidence, it may arise from the belief that the automated envi-
ronment provided by CI is always reliable. Thus, we refer to it as confidence over the
reasonable, which is not necessarily grounded on objective mechanisms and metrics that
give such security and confidence(e.g., code coverage, test quality, code smells checking).
Such an Overconfidence may increase BugReport since developers may relax their atten-
tion to detail, outsourcing such quality control to automation developed in the scope of
CI.

Finally, we observe that ContinuousIntegration also, directly and indirectly, influ-
ences BugReport. ContinuousIntegration has a direct relationship with BugReport and

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 107

has an indirect influence through Communication, CommitFrequency, TestsV olume,
and Overconfidence. While Communication, CommitFrequency, and TestsV olume af-
fects BugReport negatively, Overconfidence affects BugReport positively.

4.3.1 Implications for researchers

The DAGs presented in this study, especially the data-validated DAG (Fig. 32),
may serve as a baseline for further CI and software quality investigations. This DAG
brings findings from the combination of assumptions from the literature confronted with
an empirical dataset. Other studies can reinforce, refute, or expand our findings and the
DAGs, contributing to a more robust theory on the effects of CI on software quality (our
replication package12 may be helpful).

We can also consider the differences emerging from the comparison between the
literature-based DAG (Fig. 24) and the data-validated DAG (Fig. 32). The changed
associations arise from the data and reveal exciting findings to be further investigated by
researchers. As well as the edges additions originated in data-validated DAG.

The data-validated DAG (Fig. 32) added new edges. The addition of Age →
CommitFrequency (Section 4.2.3.1) aligns with Zhao et al. (ZHAO et al., 2017) that
found a slight decreasing trend in the number of non-merge commits over time. As
interpreted by Brindescu et al. (BRINDESCU et al., 2014), this finding could be related to
the project activity level changes during their lifecycle. The projects tend to switch activities
from adding new features to performing corrective changes and similar ones (BRINDESCU
et al., 2014).

In this line, as the project ages, more TestsV olume tend to exist (Age→ TestV olume).
Despite the literature used to build literature-based DAG in our RQ1 (Section 4.2.1) does
not explore the direct relationship between Age and TestsV olume, our dataset analysis
reveals it. Sizilio Nery et al. (NERY; COSTA; KULESZA, 2019) investigates the evolution
of test ratio (a metric similar to our TestsV olume) and relates a change in the test ratio
evolution trend to CI employment, NOCI projects have a negligible change in the test ratio
over time. In our dataset, a causal relationship exists between Age and TestsV olume,
i.e., as the Age of a project advances, the greater the TestsV olume independently of CI
employment or not. Future investigations may study qualitatively how the tests evolve
regarding the quality and motivation behind such test efforts.

So is the Age influence on CommitFrequency and TestsV olume, Age also causes
an increase in Communication, in terms of pull requests comments. For example, an
interesting observation arises from the causal flow Age→ Communication of our data-
validated DAG. We note that in the literature, Cassee et al. [46] investigate the association
between CI adoption and pull-request communication. Our study, however, identifies an
effect on communication separated from CI, indicating that the Age of a project may
12 https://github.com/elieziosoares/ci_quality_study_replication

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 108

affect Communication over time rather than CI. Therefore, our data-validated DAG can
be used to understand better the existing associations observed in the literature.

In this line of thought, we demonstrate in Section 4.2.3.6 that TestsV olume also
influences Communication (TestsV olume → Communication). It is possible that as
test volume increases, more discussion is generated regarding the commits. There is
an interrelationship between TestsV olume, CommitFrequency, and Communication, as
discussed by Fowler: “Integration is about communication” (MARTIN; MATTHEW, 2006).

Similarly, these three variables affect BugReport. Section 4.2.3.4 presents an ad-
dition of the edge CommitFrequency → BugReport, suggesting that the more frequent
the commits, the less the BugReports. Indeed, the more integration, the more builds and
quality checks are performed. Eyolfson et al. (EYOLFSON; TAN; LAM, 2014) found that
more frequent committers produce fewer bug-introducing commits. CommitFrequency

could have a similar foundation: the more frequent the commits, the more knowledge, and
familiarity with the domain, architecture, and tools used in the project, providing less
faulty development. Researchers could empirically study the relationship between commit
frequency and code or project quality.

If more tests and frequent commits mean more communication, then CI essentially
promotes more communication, directly and indirectly. Moreover, more communication
generates more knowledge and fewer errors, thus producing a high-quality software product.
Cassee et al. (CASSEE; VASILESCU; SEREBRENIK, 2020) highlight the necessity
of investigating the social aspects of software development. In their work, Cassee et
al. (CASSEE; VASILESCU; SEREBRENIK, 2020) relate CI with a decrease in the number
of comments in code reviews; however, they call CI a “Silent Helper” because CI plays a
role communicating sufficiently to maintain the same level of activity of projects with more
comments. This view corroborates the idea that the CI environment, CommitFrequency,
TestsV olume, all of it is about communication.

Further studies may investigate this techno-social aspect, answering how and
why CommitFrequency and TestsV olume can potentialize communication. Furthermore,
investigating how the CI environment contributes to communication, i.e., in which aspects
it communicates and the mechanisms, tools, and metrics through which CI is manifested,
may mitigate the harmful false sense of confidence (Overconfidence) generated by CI in
some environments. For instance, Bernardo et al. (BERNARDO et al., 2023) highlight CI
influencing higher confidence during code review.

In addition, future studies may analyze whether CI is the cause or the consequence
of attracting or attaining more experienced (core) developers. Suppose a clear causal flow
exists between ExperiencedDevelopers→ CI or CI → ExperiencedDevelopers. In that
case, other potential investigations will open, such as investigating whether CI generates
more or less bug reports because, for instance, experienced developers detect more bugs.

The data-validated causal DAG (Fig. 32) shows Age as a significant source of

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 109

confounding (constituting a backdoor path) for ContinuousIntegration and BugReport.
Thus, researchers should be more attentive to controlling for Age when studying the effects
of CI. Additionally, researchers may investigate the rationale behind this relationship
between older projects and CI projects. They may explore, for example, the decision
process for CI adoption and the challenges involved in such a process that could postpone
the adoption.

4.3.2 Practical implications

Our study and the data-validated DAG (Fig. 32) raise practical implications.
Software developers may understand that they potentially decrease the bug reports when
employing CI in their projects. CI causes an effect on the BugReport, encourages team
Communication, and increases the CommitFrequency (in turn, both positively affect
bug reports). Therefore, considering the observed literature-reported relationships and the
variables we were able to measure in our study, CI has a causal effect on the number of
Bug Reports, which, in turn, is our proxy for software quality.

On the other hand, CI projects have greater values for the Age variable. Adopting CI
may be related to greater project maturity. This demand may be related to the difficulties of
implementing CI and a demand for more qualified and experienced professionals. Awareness
of (over)confidence in a flaky automated environment is also essential. Investing in building
a reliable environment could mitigate the negative overconfidence effect.

4.4 Threats To Validity

In this section, we discuss the threats to the validity of our study.
Construct Validity. There are construct threats associated with the search for

associations between CI and software quality from existing software engineering literature.
These associations are used to build the DAG, showing how CI may influence software
quality with potential confounding variables (RQ1). To reduce the threats associated with
the search for such associations, we have mainly used existing systematic literature reviews
and empirical studies to search for research work associated with CI and software quality.
However, there are always associations (open questions) that are not captured by existing
studies or even studies that were not found and considered in our analysis. In addition, we
have also considered the associations related to CI sub-practices present in the selected
papers as a direct relationship between CI and other important software development
aspects.

We also have construct threats associated with the repository mining of the collected
data that supports the statistical tests of the associations in the DAG (RQ2). We used
GitHub and Travis CI APIs to collect data about the selected projects and compute the
metrics. Any bias in how we compute such metrics can affect our results. For example,

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 110

we can measure communication in other ways, such as calls, meetings, emails, etc. As
another example, merge conflicts and bug issues were cataloged based on heuristics that
could carry biases preventing our scripts from precisely identifying all issues and conflicts.
However, we did our best to collect the seven considered metrics in this study. We seek to
follow methods and metrics already known in the software engineering community, as we
show throughout Section 4.1.

Internal Validity. To compute the metrics associated with our dataset, we
aggregate them into months. Such a strategy can produce a lack of information (compared
to a week or day-based analysis) associated with the metrics of interest. Recent empirical
studies (NERY; COSTA; KULESZA, 2019; BERNARDO; COSTA; KULESZA, 2018) that
investigate the impact of CI have adopted a similar month-based strategy.

External Validity. External threats concern the extent to which we can generalize
our results. Our work analyzed a total of 59,034 commits, 16,619 builds, and 3,199 bug
reports of 148 Github open-source projects - 74 CI and 74 no-CI projects. Nevertheless,
we collected a consistent dataset representative of the open-source community, which
validates our DAG. However, other studies would be needed to reinforce, refute, or modify
our causal DAG. The more projects and metrics are reliable and consistently collected,
the more robust the causal DAG and the causal theory proposed would be. This study is
not intended to be definitive concerning the causal relationship between CI and software
quality but rather to be a starting point in such a direction. More studies are needed to
evolve our understanding of causal relationships between CI and quality.

4.5 Conclusion

Continuous Integration (CI) has increased in popularity in the last decades with
the expectation of providing several software development benefits. One of these benefits
associated with CI is increased software quality. This study expands the current software
engineering body of knowledge by investigating the association between CI and software
quality from a causal perspective. We reviewed the literature cataloging relevant CI and
software quality associations and adjacent relationships. Then, we built the literature-
based causal DAG (RQ1) expressing these associations. We mined software repositories to
empirically assess the literature-based causal DAG (RQ2), analyzing releases in 12 activity
months from 148 software projects.

Analyzing the testable implications from the literature-based causal DAG generated
from literature assumptions, we found in RQ2 some associations that do not exist in
the collected dataset. Then, relying on a hybrid literature-data approach, we proposed a
new data-validated causal DAG (RQ3), expressing the relationship between the relevant
variables.

We discussed research opportunities from the differences cataloged between the

Chapter 4. Continuous Integration and Software Quality: A Causal Explanatory Study 111

literature-based DAG and data-validated causal DAG. Researchers and practitioners
can benefit from our findings based on the proposed data-validated causal DAG that,
in summary, shows a positive causal effect from CI on bug reports. CI also influences
developers’ communication, reinforcing bug report benefits. The developers’ overconfidence
is still a concern in CI environments and could negatively affect bug reports.

112

5 Related Work

This chapter positions this thesis, relating it with the main related work. We discuss
other systematic literature reviews related to Continuous Integration in Section 5.1 and
studies addressing CI and software quality in Section 5.2.

5.1 Systematic Literature Reviews in CI

This section discusses systematic literature reviews (SLR) related to our work. We
highlight the main differences in contributions and findings of five other SLRs, as shown in
Table 37. In particular, Dikert K et al. studied agile methods (DIKERT; PAASIVAARA;
LASSENIUS, 2016), Laukkanen E et al. studied continuous delivery (LAUKKANEN;
ITKONEN; LASSENIUS, 2017), Shahin et al. studied continuous integration, delivery
and deployment (SHAHIN; BABAR; ZHU, 2017). Two other studies by Ståhl & Bosch
investigated the existing literature regarding CI (STåHL; BOSCH, 2013; STåHL; BOSCH,
2014b).

Ståhl & Bosch (STåHL; BOSCH, 2013) investigated which known benefits of CI are
experienced in the industry. They conducted a systematic literature review, including 33
articles with 7 explicit claims regarding the benefits of CI. They interviewed 22 individuals
(developers, testers, project managers, and line managers) from 4 projects to complement
the study. Their results reveal high standard deviations in answers, indicating disparate
reported experiences.

Another study by Ståhl & Bosch (STåHL; BOSCH, 2014b), motivated by their
previous work, performed a literature review on CI to understand the different benefits of CI
adoption better. The new study included 46 articles to find differing practices, supporting
identifying potential CI variation points. They synthesized the extracted statements in
22 clusters, of which only six do not have disagreements. In addition, the study proposes
a descriptive model for documenting these variations. It highlights the need to better
document such CI variants to better understand their benefits or disadvantages.

Dikert et al. (DIKERT; PAASIVAARA; LASSENIUS, 2016), conducted an SLR
on large-scale agile transformations (i.e., changes in practices or organizational culture in
companies with 50 or more people, or at least six teams) to identify success and challenge
factors. They searched for papers describing industrial cases in agile development adoption,
including 52 publications in a thematic synthesis. The authors documented 35 challenges
in 9 categories and 29 success factors distributed into 11 categories.

Shahin et al. (SHAHIN; BABAR; ZHU, 2017) studied 69 papers in a SLR to classify
approaches/tools and to identify challenges and practices in Continuous Integration,
Continuous Delivery, and Continuous Deployment. The study’s contributions include

Chapter 5. Related Work 113

classifying approaches/tools, a list of critical factors to implement continuous practices, a
guide to select approaches/tools, and a list of research directions.

Laukkanen et al. (LAUKKANEN; ITKONEN; LASSENIUS, 2017), also performed
a SLR to explore the reported problems when adopting Continuous Delivery. Their study
also identified causes and solutions to these problems. The study selected 30 articles that
found 40 problems and 29 solutions. The problems and solutions were classified into seven
themes, e.g., integration, testing, and building design.

Some of these studies focus on a more general perspective, such as Dikert et al.
(DIKERT; PAASIVAARA; LASSENIUS, 2016) which focused on agile methods adoption,
and Shahin et al. (SHAHIN; BABAR; ZHU, 2017) which studied continuous integration,
delivery, and deployment. Laukkanen et al. (LAUKKANEN; ITKONEN; LASSENIUS,
2017) studied continuous delivery, which differs from the implications of continuous
integration. Our work focuses strictly on continuous integration, and we explore studies
in-depth, analyzing and comparing their findings.

Ståhl & Bosch (STåHL; BOSCH, 2013) also perform analyses strictly related
to CI investigating the experienced benefits in the industry. However, while our study
exhaustively explores the literature to analyze the claims related to CI (benefits and
cons), Ståhl & Bosch (STåHL; BOSCH, 2013) do not provide an exhaustive list of CI
benefits nor explore the potential adverse effects (or challenges) of adopting CI. In their
subsequent work, Ståhl & Bosch (STåHL; BOSCH, 2014b) cataloged CI variation points.
Our systematic literature review complements their work because we discuss the empirical
claims related to CI across six different themes (each representing an area of software
development). Our work helps practitioners and researchers to obtain a holistic view of
the implications of using continuous integration in different areas of software development
and different granularity of CI practices.

Unlike the studies mentioned above, our SLR (Chapter 3) analyzes a substantially
larger sample of articles, i.e., 101 studies ranging from 2003 to 2019. Considering the years
of the related research presented, it is noticeable that the newest (i.e. Laukkanen et al.
(LAUKKANEN; ITKONEN; LASSENIUS, 2017) and Shahin et al. (SHAHIN; BABAR;
ZHU, 2017)) is dated to 2017, including mostly primary from 2016 (SHAHIN; BABAR;
ZHU, 2017). Study 1 contributes to the community by advancing at least three years in the
related literature. Our study also innovates by studying the effects of CI and considering
the specific CI practices within different CI settings. Moreover, our work also analyzes the
methodologies of our 101 selected studies.

5.2 Software Quality in CI

Zaytsev & Morrison demonstrated in a case study with mining software reposi-
tory (MSR) that CI contributes to reducing the turnaround time for resolving broken

Chapter 5. Related Work 114

Table 37 – Systematic Literature Reviews (SLRs) that related to our work. We show the
authors, focus, findings, number of included articles, and the year of publication.

Study Focus Findings # Papers Year
Ståhl and Bosh
(STåHL; BOSCH, 2013)

Continuous
integration Benefits of CI 33 2013

Ståhl and Bosh
(STåHL; BOSCH, 2014b)

Continuous
integration

Differences in
CI practices 46 2014

Dikert et al.
(DIKERT; PAASIVAARA; LASSENIUS, 2016)

Large-scale
agile transformations

Challenges and
success of agile
adoption

52 2016

Shahin et al.
(SHAHIN; BABAR; ZHU, 2017)

Continuous
integration,
delivery,
and deployment

Approaches,
tools, challenges
and practices

69 2017

Laukkanen et al.
(LAUKKANEN; ITKONEN; LASSENIUS, 2017)

Continuous
delivery

Problems, causes
and solutions. 30 2017

builds (ZAYTSEV; MORRISON, 2013). In a mining software repository investigation
using large, historical data on process metrics and outcomes in GitHub projects, Vasilescu
et al. conclude that CI improves teams’ productivity without compromising code quality.
In this way, they observe that the core developers can discover significantly more bugs
when using CI than in teams not using CI (VASILESCU et al., 2015).

Hilton and colleagues conducted a mixed-method study (MSR / survey) and found
CI associations with earlier bug catching. Teams using CI feel less worried about break-
ing builds, and despite less effort to reject problematic pull requests, they spend less
time debugging (HILTON et al., 2016). In another mixed-method study (survey/inter-
views) (HILTON et al., 2017), they confirmed such findings and concluded that projects
with CI give more value to automated tests, promoting high-quality code and tests. These
conclusions are supported by a common build environment and test workflows running
through all platforms.

Amrit and Meijberg conducted a case study combining CI and Test-Driven De-
velopment (TDD) (AMRIT; MEIJBERG, 2017a). They found that projects presented
fewer post-release defects when using CI, finding and fixing them before releases. Rahman
et al. analyzed more than 250 open-source and proprietary projects and remarked that
CI increases the number of issues and bugs resolved (RAHMAN et al., 2018). Another
case study (KAYNAK; ÇILDEN; AYDIN, 2019) also highlighted CI related to earlier bug
catching and less time debugging.

Pinto et al. conducted a survey study with 158 CI users in open-source projects (PINTO
et al., 2018). They recorded their perceptions about the reasons for build breakage and the
benefits and problems associated with CI systems. Among other findings, they associated
CI with improved software quality, support to catch problems earlier, enforcement of
automated software testing, and enabling cross-platform testing. On the other hand, they
remarked an association with a false sense of confidence when the tests are insufficient or
flaky.

Chapter 5. Related Work 115

While the presented studies are grounded in association relationships, our study
presents a causal investigation between CI and software quality. For this purpose, we
rely on previous literature assumptions, a mining software repository study, and the
employment of the causal DAGs technique. In this sense, our study innovates in offering
seminal empirical causal conclusions regarding CI and software quality.

116

6 Conclusions

Continuous Integration (CI) has increased in popularity and attracted the attention
of practitioners and researchers to its effects on software development. Several studies have
empirically investigated such effects, and we explored and cataloged them through Study 1
(Chapter 3). The reported benefits of CI are increased software quality and improved team
productivity. Existing studies present CI associated with defect reduction and decreased
time to address defects (VASILESCU et al., 2015; AMRIT; MEIJBERG, 2017a; KAYNAK;
ÇILDEN; AYDIN, 2019). Studies also present CI associated with increased productivity
and efficiency (STåHL; BOSCH, 2013; VASILESCU et al., 2015; HILTON et al., 2016;
HILTON et al., 2017; KAYNAK; ÇILDEN; AYDIN, 2019).

Despite the value and diversity of these existing studies, they are correlation studies
and do not provide reliable conclusions regarding whether CI causes such effects. This
thesis empirically expands the current knowledge by investigating the relationship between
CI adoption and software quality and CI adoption and team productivity from a causal
perspective. We present the contributions of this thesis next.

6.1 Contributions and Findings

This thesis aims to understand the effects of Continuous Integration (CI) on software
development by identifying the existing reported outcomes and aiming to advance the
knowledge by empirically investigating the causal relationships between them. Specifically,
we performed causal studies on the relationship between CI and software quality and CI
and team productivity. To achieve this goal, we conducted a systematic literature review,
a causal explanatory study on CI and software quality, and a causal explanatory study on
CI and team productivity.

The main findings are highlighted below:

6.1.1 Study 1: What are the reported effects of CI on software
development? (Chapter 3)

• Findings about the benefits of CI usage:

– Although CI may incur technical challenges to the team (e.g., creating a reliable
automated build environment), CI is mentioned as a success factor in software
projects (Section 3.2.2.2).

– We find evidence for the association between CI and improved productivity,
efficiency, and developer confidence (Sections 3.2.2.1 and 3.3.2.2).

Chapter 6. Conclusions 117

– Continuous integration benefits the software process by promoting faster it-
erations, more stability, predictability, and transparency in the development
process (Section 3.2.2.2).

– CI can also benefit the pull-based development by improving and accelerating
the integration process (Section 3.2.2.4).

– Our study indicates that CI positively influences the way developers perform
commits (Section 3.2.2.4).

– The studies demonstrate a perceived provision of transparency and continuous
quality inspections when CI is adopted (Section 3.2.2.3).

– There is evidence of the association between CI and better testing (Section
3.2.2.3).

– We find that studies credit CI to an improvement in the time to find and fix
issues and a decrease in defects reported (Section 3.2.2.5).

– The studies reveal that CI impacts the build process, promoting good practices
related to build health and contributing to an increase in successful builds
(Section 3.2.2.6).

• Findings about the drawbacks of CI usage:

– CI may introduce complexity to the project, requiring more effort and disci-
pline from developers, negatively impacting developers’ perceived productivity
(Sections 3.2.2.1 and 3.3.2.2).

– Some studies also discuss the false sense of confidence, i.e., when developers
blindly rely on flaky tests (Sections 3.2.2.1 and 3.3.2.2).

– There are studies reporting that CI may prolong the pull request lifetime
(Section 3.2.2.4).

• Findings about the primary studies:

– The study shows that 42.5% of the primary studies did not present explicit
criteria to identify projects that use CI (Section 3.2.1).

– We also found that 15.8% used only one criterion (e.g., more than half of studies
used “automated builds” as a criterion).

– Regarding the criteria applied to check whether participants use CI or not
(Sections 3.2.1 and 3.3.1), our findings reveal the need for performing other
checks during interviews or surveys related to the adherence of CI beyond the
self-declaration.

– The number of studies making their datasets available has been growing over
the past few years (Section 3.2.3.2).

Chapter 6. Conclusions 118

– The studies from which we extract claims (38 out of 101) have a notable overall
quality (median score of 9 out of 11 — ˜Qscore = 9).

6.1.2 Study 2: What is CI’s empirically observable causal effect
on software quality? (Chapter 4)

• We reviewed the literature cataloging relevant CI and software quality associations
and adjacent relationships (Section 4.2.1).

• We built a literature-based causal DAG expressing the associations between CI and
software quality (Section 4.2.1).

• We mined software repositories to empirically assess the literature-based causal DAG,
analyzing releases in 12 activity months from 148 software projects (Section 4.2.2).

• Relying on the literature-based causal DAG (generated from the literature) and
the statistical tests on the dataset, we proposed a new data-validated causal DAG
(based on a hybrid literature-data approach) expressing the relationship between CI,
software quality, and the relevant variables (Section 4.2.3).

• Findings and confirmations through the literature-data causal DAG:

– CI has a positive causal effect on bug reports.

– CI also influences developers’ communication, reinforcing bug reports benefits.

– The developers’ overconfidence is a concern in CI environments and could
negatively affect bug reports.

– CI impacts on Merge Conflicts.

– CI impacts on commit frequency.

– Project age influences team communication.

– Commit frequency, test volume, and communication are interrelated, and all of
them affect Bug Report.

The studies are complementary. Each study complements a big picture of CI effects.
Study 1 shows the literature-reported outcomes of CI on software developments in different
themes. One of these outcomes is the software quality that Study 2 addressed under a
causal perspective. Study 2 demonstrates that CI directly influences software quality and
indirectly through different pathways — team communication, commit frequency, and test
volume, which also influences bug reports. The overall conclusion is that CI causes an
improvement in software quality (in terms of bug reports).

Chapter 6. Conclusions 119

6.2 Future Work

Future studies can explore some areas identified in this study. This study focused
on evaluating the effects of continuous integration concerning widely accepted software
quality metrics. Future research may investigate other software development metrics to
gain a more comprehensive view of CI impact on software quality.

In our empirical analysis, we examined open-source software projects. However,
there is a diversity of software development projects, including commercial projects and
a diversity of domains. Future research may investigate whether the effects of CI vary
across different project types, providing additional insights into adopting the practice in
various contexts. Additionally, this study focused on a specific CI platform, but numerous
tools are available, such as GitHub Actions, Jenkins, CircleCI, and GitLab CI/CD. Future
research can compare the effects of CI across different tools, identifying whether certain
tools are more effective in specific contexts or for particular project types.

Furthermore, we point out several rooms for further investigation while presenting
our systematic literature review in Chapter 3. Researchers can explore a more precise
definition of CI and its practices to establish a solid foundation for further studies, helping
to establish a more rigorous evaluation regarding CI adoption for researchers and to obtain
more reliable results.

120

References

AMRIT, C.; MEIJBERG, Y. Effectiveness of test driven development and continuous
integration: A case study. IT Professional, IEEE Computer Society, 6 2017. Cited 2
times on pages 114 and 116.

AMRIT, C.; MEIJBERG, Y. Effectiveness of test driven development and continuous
integration x2013; a case study. IT Professional, IEEE Computer Society, 6 2017. ISSN
15209202. Cited 3 times on pages 78, 84, and 95.

BARNEY, S. et al. Software quality trade-offs: A systematic map. [S.l.]: Elsevier B.V.,
2012. 651-662 p. Cited on page 25.

BECK, K.; ANDRES, C. Extreme Programming Explained: Embrace Change (2nd
Edition). [S.l.: s.n.], 2004. Cited 5 times on pages 17, 22, 25, 77, and 81.

BELLER, M.; GOUSIOS, G.; ZAIDMAN, A. Travistorrent: Synthesizing travis ci and
github for full-stack research on continuous integration. In: . [S.l.]: IEEE Computer
Society, 2017. p. 447–450. ISBN 9781538615447. ISSN 21601860. Cited on page 56.

BERNARDO, J. H.; COSTA, D. A. D.; KULESZA, U. Studying the impact of adopting
continuous integration on the delivery time of pull requests. In: . [S.l.]: IEEE Computer
Society, 2018. p. 131–141. ISBN 9781450357166. ISSN 02705257. Cited 2 times on pages
17 and 110.

BERNARDO, J. H. et al. The impact of a continuous integration service on the delivery
time of merged pull requests. Empirical Software Engineering, v. 28, 2023. Cited on page
108.

BRINDESCU, C. et al. How do centralized and distributed version control systems
impact software changes? In: Proceedings of the 36th international conference on Software
Engineering. [S.l.: s.n.], 2014. p. 322–333. Cited on page 107.

CAIRO, A. S.; CARNEIRO, G. de F.; MONTEIRO, M. P. The impact of code smells on
software bugs: A systematic literature review. [S.l.]: MDPI AG, 2018. Cited 2 times on
pages 78 and 79.

CARTWRIGHT, N. Nature’s Capacities and their Measurement. [S.l.]: Clarendon Press,
1989. Cited on page 93.

CASSEE, N.; VASILESCU, B.; SEREBRENIK, A. The silent helper: the impact of
continuous integration on code reviews. In: . [S.l.: s.n.], 2020. p. 423–434. Cited 4 times
on pages 74, 78, 95, and 108.

COHEN, J. Psychological Bulletin WEIGHTED KAPPA: NOMINAL SCALE
AGREEMENT WITH PROVISION FOR SCALED DISAGREEMENT OR PARTIAL
CREDIT. 1968. Cited 3 times on pages 34, 40, and 69.

CRUZES, D. S.; DYBå, T. Recommended steps for thematic synthesis in software
engineering. In: . [S.l.]: IEEE Computer Society, 2011. p. 275–284. ISSN 19493789. Cited
3 times on pages 39, 40, and 71.

References 121

DEBBICHE, A.; DIENéR, M.; SVENSSON, R. B. Challenges when adopting continuous
integration: A case study. In: . [S.l.]: Springer, Cham, 2014. p. 17–32. Cited on page 17.

DEBBICHE, A.; DIENéR, M.; SVENSSON, R. B. Challenges when adopting continuous
integration: A case study. In: . [S.l.]: Springer, Cham, 2014. p. 17–32. Cited 2 times on
pages 78 and 81.

DECAN, A. et al. On the use of github actions in software development repositories.
In: IEEE. 2022 IEEE International Conference on Software Maintenance and Evolution
(ICSME). [S.l.], 2022. p. 235–245. Cited on page 88.

DIKERT, K.; PAASIVAARA, M.; LASSENIUS, C. Challenges and success factors for
large-scale agile transformations: A systematic literature review. Journal of Systems and
Software, Elsevier Inc., v. 119, p. 87–108, 9 2016. ISSN 01641212. Cited 3 times on pages
112, 113, and 114.

DUVALL, P. M. Continuous Delivery - Patterns and Anti-Patterns in the Software
Lifecycle. 2013. <https://dzone.com/refcardz/continuous-delivery-patterns>. Cited 10
times on pages 10, 17, 22, 23, 24, 30, 31, 41, 63, and 70.

DUVALL, P. M.; MATYAS, S.; GLOVER, A. Continuous integration: improving software
quality and reducing risk. [S.l.]: Pearson Education, 2007. Cited 3 times on pages 17, 77,
and 81.

DUVALL, P. M.; OLSON, M. Continuous delivery: Patterns and antipatterns in the
software life cycle. DZone refcard, v. 145, 2011. Cited on page 64.

DYBå, T.; DINGSøYR, T.; HANSSEN, G. K. Applying systematic reviews to diverse
study types: An experience report. In: . [S.l.: s.n.], 2007. p. 126–135. ISBN 0769528864.
Cited on page 37.

DYBå, T.; TORGEIR, D. Strength of Evidence in Systematic Reviews in Software
Engineering. [S.l.]: Association for Computing Machinery, 2008. 362 p. ISBN
9781595939715. Cited 2 times on pages 58 and 70.

EASTERBROOK, S. et al. Selecting empirical methods for software engineering research.
[S.l.]: Springer, 2008. 285-311 p. Cited 2 times on pages 31 and 59.

EMBURY, S. M.; PAGE, C. Effect of continuous integration on build health in
undergraduate team projects. In: . [S.l.]: Springer Verlag, 2019. v. 11350 LNCS, p. 169–183.
ISBN 9783030060183. ISSN 16113349. Cited on page 17.

EYOLFSON, J.; TAN, L.; LAM, P. Correlations between bugginess and time-based
commit characteristics. Empirical Software Engineering, Springer, v. 19, p. 1009–1039,
2014. Cited on page 108.

FELIDRé, W. et al. Continuous integration theater. ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), 7 2019. Available at:
<http://arxiv.org/abs/1907.01602>. Cited 3 times on pages 31, 64, and 91.

FERREIRA, M. A. et al. Faster issue resolution with higher technical quality of software.
Software Quality Journal, Kluwer Academic Publishers, v. 20, p. 265–285, 2012. ISSN
15731367. Cited on page 79.

References 122

FITZGERALD, B.; STOL, K. J. Continuous software engineering and beyond: Trends
and challenges. In: . [S.l.]: Association for Computing Machinery, Inc, 2014. p. 1–9. ISBN
9781450328562. Cited 2 times on pages 23 and 41.

FOWLER, M. Extreme programming. Martinfowler. com. https://martinfowler.
com/bliki/ExtremeProgramming.html, 2013. Cited on page 129.

FOWLER, M. Continuousintegrationcertification. Martinfowler. com. https://martinfowler.
com/bliki/ContinuousIntegrationCertification.html. Accessed, v. 26, 2020. Cited 4 times
on pages 30, 31, 41, and 77.

FOWLER, M.; FOEMMEL, M. Continuous integration, 2006. URL http://martinfowler.
com/articles/continuousIntegration.html, 2006. Cited 11 times on pages 10, 17, 22, 23, 24,
25, 31, 41, 63, 70, and 81.

GAROUSI, V.; MäNTYLä, M. V. When and what to automate in software testing? A
multi-vocal literature review. [S.l.]: Elsevier B.V., 2016. 92-117 p. Cited 2 times on pages
81 and 82.

GARVIN, D. A. What does product quality really means? Sloan management review,
v. 25, p. 25–43, 1984. Cited on page 25.

GHALEB, T. A.; COSTA, D. A. da; ZOU, Y. An empirical study of the long duration of
continuous integration builds. Empirical Software Engineering, Springer New York LLC,
v. 24, p. 2102–2139, 8 2019. ISSN 15737616. Cited on page 17.

GOLZADEH, M.; DECAN, A.; MENS, T. On the rise and fall of ci services in github.
In: IEEE. 2022 IEEE International Conference on Software Analysis, Evolution and
Reengineering (SANER). [S.l.], 2022. p. 662–672. Cited on page 88.

GREENLAND, S.; PEARL, J.; ROBINS, J. M. Causal diagrams for epidemiologic
research. Epidemiology, JSTOR, p. 37–48, 1999. Cited on page 29.

GREENLAND, S.; PEARL, J.; ROBINS, J. M. Confounding and collapsibility in causal
inference. Statistical science, Institute of Mathematical Statistics, v. 14, p. 29–46, 1999.
Cited on page 74.

HEINZE-DEML, C.; PETERS, J.; MEINSHAUSEN, N. Invariant causal prediction for
nonlinear models. Journal of Causal Inference, De Gruyter, v. 6, 2018. Cited 2 times on
pages 92 and 97.

HERNáN, M. A.; ROBINS, J. M. Causal inference. [S.l.]: CRC Boca Raton, FL, 2010.
Cited 8 times on pages 20, 26, 27, 28, 75, 86, 91, and 95.

HILTON, M.; BELL, J.; MARINOV, D. A large-scale study of test coverage evolution. In:
. [S.l.: s.n.], 2018. p. 53–63. Cited 2 times on pages 82 and 95.

HILTON, M. et al. Trade-offs in continuous integration: Assurance, security, and flexibility.
In: . [S.l.]: Association for Computing Machinery, 2017. Part F130154, p. 197–207. ISBN
9781450351058. Cited 3 times on pages 18, 114, and 116.

HILTON, M. et al. Usage, costs, and benefits of continuous integration in open-source
projects. In: . [S.l.]: Association for Computing Machinery, Inc, 2016. p. 426–437. ISBN
9781450338455. Cited 6 times on pages 18, 22, 42, 87, 114, and 116.

References 123

HINDLE, A.; GERMAN, D. M.; HOLT, R. What do large commits tell us?: a taxonomical
study of large commits, in proceedings of the 2008 International Working Conference on
Mining Software Repositories (MSR). [S.l.]: ACM, 2008. Cited on page 81.

HOLMSTROM, H. et al. Global software development challenges: A case study on
temporal, geographical and socio-cultural distance. In: . [S.l.: s.n.], 2006. p. 3–11. Cited
on page 17.

HOYER, R. W.; Y., B. B. Que es calidad clase 1 related papers. Quality Progress, v. 34,
p. 53–62, 2001. Cited on page 25.

HUANG, A. F.; LIU, B. B.; HUANG, C. B. A Taxonomy System to Identify Human
Error Causes for Software Defects. Cited 4 times on pages 78, 79, 80, and 95.

International Organization for Standardization. Systems and software engineering
— Systems and software Quality Requirements and Evaluation (SQuaRE) —
System and software quality models. Geneva, CH, 2011. v. 2011. Available at:
<https://www.iso.org/standard/35733.html>. Cited on page 25.

ISLAM, M. R.; ZIBRAN, M. F. Insights into continuous integration build failures. In: .
[S.l.]: IEEE Computer Society, 2017. p. 467–470. ISBN 9781538615447. ISSN 21601860.
Cited on page 85.

JOHANSSEN, J. O. et al. Practitioners’ eye on continuous software engineering: An
interview study. In: . [S.l.]: Association for Computing Machinery, 2018. p. 41–50. ISBN
9781450364591. Cited on page 17.

KAUSAR, M.; AL-YASIRI, A. Distributed agile patterns for offshore software development.
In: 12th International Joint Conference on Computer Science and Software Engineering
(JCSSE), IEEE. [S.l.: s.n.], 2015. Cited on page 17.

KAYNAK İlgi K.; ÇILDEN, E.; AYDIN, S. Software quality improvement practices in
continuous integration. In: . [S.l.]: Springer Verlag, 2019. v. 1060, p. 507–517. ISBN
9783030280048. ISSN 18650937. Cited 5 times on pages 18, 74, 78, 114, and 116.

KEELE, S. et al. Guidelines for performing systematic literature reviews in software
engineering. [S.l.], 2007. Cited 6 times on pages 19, 30, 35, 37, 69, and 70.

KERZAZI, N.; KHOMH, F.; ADAMS, B. Why do automated builds break? an empirical
study. In: . [S.l.]: Institute of Electrical and Electronics Engineers Inc., 2014. p. 41–50.
ISBN 9780769553030. Cited 2 times on pages 78 and 85.

KHOMH, F. et al. Do faster releases improve software quality? an empirical case study of
mozilla firefox. In: . [S.l.: s.n.], 2012. p. 179–188. ISBN 9781467317610. ISSN 21601852.
Cited on page 26.

KITCHENHAM, B. A.; DYBå, T.; JøRGENSEN, M. Evidence-based software engineering.
In: . [S.l.: s.n.], 2004. v. 26, p. 273–281. ISSN 02705257. Cited on page 31.

LAUKKANEN, E.; ITKONEN, J.; LASSENIUS, C. Problems, causes and solutions when
adopting continuous delivery—A systematic literature review. [S.l.]: Elsevier B.V., 2017.
55-79 p. Cited 5 times on pages 19, 85, 112, 113, and 114.

References 124

LEPPäNEN, M. et al. The highways and country roads to continuous deployment. IEEE
Software, v. 32, p. 64–72, 2015. Cited on page 31.

LERO, L. C. M. A. B. H. Z. Towards an Evidence-Based Understanding of Electronic
Data Sources. 2010. Cited 2 times on pages 33 and 69.

LICORISH, S. A.; MACDONELL, S. G. Exploring software developers’ work practices:
Task differences, participation, engagement, and speed of task resolution. Information and
Management, Elsevier B.V., v. 54, p. 364–382, 4 2017. ISSN 03787206. Cited 2 times on
pages 80 and 81.

MARTIN, F.; MATTHEW, F. Continuous integration. Recuperado de http://martinfowler.
com/articles/continuousIntegration. html, 2006. Cited on page 108.

MEEDENIYA, D. A.; RUBASINGHE, I. D.; PERERA, I. Software artefacts consistency
management towards continuous integration: A roadmap. International Journal of
Advanced Computer Science and Applications, Science and Information Organization,
v. 10, p. 100–110, 2019. ISSN 21565570. Cited on page 17.

MOCKUS, A.; VOTTA, L. G. Identifying reasons for software changes using historic
databases. In: . [S.l.: s.n.], 2000. p. 120–130. Cited 2 times on pages 80 and 81.

MUNAIAH, N. et al. Curating github for engineered software projects. Empirical Software
Engineering, Springer, v. 22, p. 3219–3253, 2017. Cited on page 89.

MURGIA, A. et al. On the influence of maintenance activity types on the issue
resolution time. In: . [S.l.]: Association for Computing Machinery, 2014. p. 12–21. ISBN
9781450328982. Cited on page 80.

NERY, G. S.; COSTA, D. A. da; KULESZA, U. An empirical study of the relationship
between continuous integration and test code evolution. In: . [S.l.: s.n.], 2019. p. 426–436.
Cited 7 times on pages 78, 82, 91, 92, 95, 107, and 110.

OLIVEIRA, M. C. de. Draco: Discovering refactorings that improve architecture using
fine-grained co-change dependencies. In: . [S.l.: s.n.], 2017. p. 1018–1021. Cited on page
89.

OLIVEIRA, M. C. de et al. Finding needles in a haystack: Leveraging co-change
dependencies to recommend refactorings. Journal of Systems and Software, Elsevier,
v. 158, p. 110420, 2019. Cited on page 89.

PANJER, L. D. Predicting Eclipse Bug Lifetimes. 2007. Cited on page 80.

PARSONS, D.; RYU, H.; LAL, R. The impact of methods and techniques on outcomes
from agile software development projects. In: SPRINGER. IFIP International Working
Conference on Organizational Dynamics of Technology-Based Innovation. [S.l.], 2007. p.
235–249. Cited on page 18.

PEARL; JUDEA. Title: Causal Diagrams for Empirical Research. 1994. Available at:
<http://escholarship.org/uc/item/6gv9n38c>. Cited 4 times on pages 20, 28, 75, and 86.

PEARL, J. et al. Models, reasoning and inference. Cambridge, UK: CambridgeU-
niversityPress, v. 19, 2000. Cited 9 times on pages 18, 26, 27, 28, 74, 75, 76, 86,
and 95.

References 125

PEARL, J.; VERMA, T. S. A theory of inferred causation. In: Studies in Logic and the
Foundations of Mathematics. [S.l.]: Elsevier, 1995. v. 134, p. 789–811. Cited 2 times on
pages 27 and 86.

PEHMÖLLER, A.; SALGER, F.; WAGNER, S. Testing in global software development–a
pattern approach. arXiv preprint arXiv:2101.11317, 2021. Cited on page 17.

PENROSE, O.; PERCIVAL, I. C. The direction of time. Proceedings of the Physical
Society (1958-1967), IOP Publishing, v. 79, p. 605, 1962. Cited 3 times on pages 26, 75,
and 95.

PETERS, J.; JANZING, D.; SCHöLKOPF, B. Elements of causal inference: foundations
and learning algorithms. [S.l.]: The MIT Press, 2017. Cited 2 times on pages 26 and 75.

PHALNIKAR, R.; DESHPANDE, V.; JOSHI, S. Applying agile principles for distributed
software development. In: IEEE. 2009 International Conference on Advanced Computer
Control. [S.l.], 2009. p. 535–539. Cited on page 17.

PINTO, G. et al. Work practices and challenges in continuous integration: A survey with
travis ci users. Software - Practice and Experience, John Wiley and Sons Ltd, v. 48, p.
2223–2236, 12 2018. ISSN 1097024X. Cited 6 times on pages 17, 18, 74, 78, 95, and 114.

PINTO, G.; REBOUÇAS, M.; CASTOR, F. Inadequate testing, time pressure, and
(over) confidence: a tale of continuous integration users. In: IEEE. 2017 IEEE/ACM
10th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). [S.l.], 2017. p. 74–77. Cited on page 78.

RAFI, D. M. et al. Benefits and limitations of automated software testing: Systematic
literature review and practitioner survey. In: . [S.l.: s.n.], 2012. p. 36–42. ISBN
9781467318228. Cited on page 82.

RAHMAN, A. et al. Characterizing the influence of continuous integration: Empirical
results from 250+ open source and proprietary projects. In: . [S.l.]: Association for
Computing Machinery, Inc, 2018. p. 8–14. ISBN 9781450360562. Cited 4 times on pages
18, 74, 78, and 114.

RAUSCH, T. et al. An empirical analysis of build failures in the continuous integration
workflows of java-based open-source software. 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR), 2017. Cited 2 times on pages 17
and 85.

REBOUCAS, M. et al. How does contributors’ involvement influence the build status of
an open-source software project? In: . [S.l.]: IEEE Computer Society, 2017. p. 475–478.
ISBN 9781538615447. ISSN 21601860. Cited 2 times on pages 85 and 95.

ROBLES, G. Replicating msr: A study of the potential replicability of papers published
in the mining software repositories proceedings. In: . [S.l.: s.n.], 2010. p. 171–180. Cited
on page 57.

RODRIGUEZ-PéREZ, G.; ROBLES, G.; GONZáLEZ-BARAHONA, J. M. Reproducibility
and credibility in empirical software engineering: A case study based on a systematic
literature review of the use of the szz algorithm. Information and Software Technology,
Elsevier, v. 99, p. 164–176, 2018. Cited 2 times on pages 31 and 57.

References 126

ROGERS, R. O. Scaling continuous integration. In: . [S.l.]: Springer Verlag, 2004. v. 3092,
p. 68–76. ISBN 9783540221371. Cited on page 17.

RZIG, D. E. et al. Characterizing the usage of ci tools in ml projects. In: Proceedings of
the 16th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. [S.l.: s.n.], 2022. p. 69–79. Cited on page 88.

SANTOS, J.; COSTA, D. da; KULESZA, U. Investigating the impact of continuous
integration practices on the productivity and quality of open-source projects. In: . [S.l.:
s.n.], 2022. p. 137–147. Cited 4 times on pages 18, 77, 90, and 91.

SEO, H. et al. Programmers’ build errors: A case study (at google). In: . [S.l.]: IEEE
Computer Society, 2014. p. 724–734. ISSN 02705257. Cited on page 85.

SHAHIN, M.; BABAR, M. A.; ZHU, L. Continuous Integration, Delivery and Deployment:
A Systematic Review on Approaches, Tools, Challenges and Practices. [S.l.]: Institute of
Electrical and Electronics Engineers Inc., 2017. 3909-3943 p. Cited 6 times on pages 19,
23, 41, 112, 113, and 114.

SHALIZI, C. R. Advanced data analysis from an elementary point of view. URL
http://www. stat. cmu. edu/˜ cshalizi/ADAfaEPoV, 2021. Cited 3 times on pages 27, 28,
and 86.

SHMUELI, G. To explain or to predict? Statistical science, Institute of Mathematical
Statistics, v. 25, p. 289–310, 2010. Cited on page 29.

SOARES, E. et al. Slr artifacts - continuous integration quality impacts. 8 2021. Available
at: <https://doi.org/10.5281/zenodo.4545623#.Y2Kvz3Tokno.mendeley>. Cited 2 times
on pages 33 and 35.

SOARES, E. et al. The effects of continuous integration on software development: a
systematic literature review. Empirical Software Engineering, Springer, v. 27, n. 3, p.
1–61, 2022. Cited 7 times on pages 17, 20, 30, 74, 78, 81, and 91.

SOMMERVILLE, I. et al. Engenharia de software.[sl]. Pearson Education, v. 19, p. 23,
2011. Cited on page 25.

SPIRTES, P.; GLYMOUR, C.; SCHEINES, R. Causation, Prediction, and
Search. Springer New York, 1993. ISBN 978-1-4612-7650-0. Available at: <http:
//link.springer.com/10.1007/978-1-4612-2748-9>. Cited 3 times on pages 26, 27, and 93.

STAHL, D.; BOSCH, J. Automated software integration flows in industry: A multiple-case
study. In: . [S.l.]: Association for Computing Machinery, 2014. p. 54–63. ISBN
9781450327688. Cited on page 17.

STåHL, D.; BOSCH, J. Experienced benefits of continuous integration in industry
software product development: A case study. In: . [S.l.: s.n.], 2013. p. 736–743. ISBN
9780889869431. Cited 7 times on pages 17, 18, 19, 112, 113, 114, and 116.

STåHL, D.; BOSCH, J. Modeling continuous integration practice differences in industry
software development. Journal of Systems and Software, v. 87, p. 48–59, 1 2014. ISSN
01641212. Cited 2 times on pages 17 and 74.

References 127

STåHL, D.; BOSCH, J. Modeling continuous integration practice differences in industry
software development. Journal of Systems and Software, v. 87, p. 48–59, 1 2014. ISSN
01641212. Cited 12 times on pages 23, 30, 31, 41, 57, 64, 69, 70, 73, 112, 113, and 114.

TEXTOR, J. et al. Robust causal inference using directed acyclic graphs: the r package
‘dagitty’. International journal of epidemiology, Oxford University Press, v. 45, p.
1887–1894, 2016. Cited on page 86.

THOUGHTWORKS. CI theatre. 2017. Available at: <https://www.thoughtworks.com/
radar/techniques/ci-theatre>. Cited 2 times on pages 64 and 91.

VASILESCU, B. et al. Quality and productivity outcomes relating to continuous
integration in github. In: . [S.l.]: Association for Computing Machinery, Inc, 2015. p.
805–816. ISBN 9781450336758. Cited 17 times on pages 17, 18, 20, 22, 26, 63, 74, 75, 77,
78, 79, 84, 90, 95, 96, 114, and 116.

VASSALLO, C.; PALOMBA, F.; GALL, H. C. Continuous refactoring in ci: A preliminary
study on the perceived advantages and barriers. In: . [S.l.]: Institute of Electrical and
Electronics Engineers Inc., 2018. p. 564–568. ISBN 9781538678701. Cited 2 times on
pages 17 and 23.

VASSALLO, C. et al. Automated reporting of anti-patterns and decay in continuous
integration. In: . [S.l.]: IEEE Computer Society, 2019. v. 2019-May, p. 105–115. ISBN
9781728108698. ISSN 02705257. Cited 2 times on pages 17 and 64.

VASSALLO, C. et al. Every build you break: developer-oriented assistance for build
failure resolution. Empirical Software Engineering, Springer, v. 25, p. 2218–2257, 5 2020.
ISSN 15737616. Cited on page 85.

VIGGIATO, M. et al. Understanding similarities and differences in software development
practices across domains. In: . [S.l.]: Institute of Electrical and Electronics Engineers Inc.,
2019. p. 84–94. ISBN 9781538691960. Cited 8 times on pages 23, 30, 31, 41, 57, 69, 70,
and 73.

VOLF, Z.; SHMUELI, E. Screening heuristics for project gating systems. In: .
[S.l.]: Association for Computing Machinery, 2017. Part F130154, p. 872–877. ISBN
9781450351058. Cited on page 17.

WHEELAN, S. A.; HOCHBERGER, J. M. Validation studies of the group development
questionnaire. Small group research, SAGE PUBLICATIONS, INC. 2455 Teller Road,
Thousand Oaks, CA 91320, v. 27, p. 143–170, 1996. Cited on page 68.

WIDDER, D. G. et al. I’m leaving you, travis: a continuous integration breakup story. In:
Proceedings of the 15th International Conference on Mining Software Repositories. [S.l.:
s.n.], 2018. p. 165–169. Cited on page 88.

YU, Y. et al. Determinants of pull-based development in the context of continuous
integration. Science China Information Sciences, Science in China Press, v. 59, 8 2016.
ISSN 1674733X. Cited on page 17.

ZAIDMAN, A. et al. Mining software repositories to study co-evolution of production
test code. In: . [S.l.: s.n.], 2008. p. 220–229. Cited 2 times on pages 82 and 95.

References 128

ZAIDMAN, A. et al. Studying the co-evolution of production and test code in open source
and industrial developer test processes through repository mining. Empirical Software
Engineering, Springer, v. 16, p. 325–364, 2011. Cited 2 times on pages 82 and 95.

ZAMPETTI, F. et al. How open source projects use static code analysis tools in
continuous integration pipelines. In: . [S.l.]: IEEE Computer Society, 2017. p. 334–344.
ISBN 9781538615447. ISSN 21601860. Cited on page 17.

ZAYTSEV, Y. V.; MORRISON, A. Increasing quality and managing complexity
in neuroinformatics software development with continuous integration. Frontiers in
Neuroinformatics, v. 6, 1 2013. ISSN 16625196. Cited on page 114.

ZHANG, F. et al. An empirical study on factors impacting bug fixing time. In: . [S.l.: s.n.],
2012. p. 225–234. ISBN 9780769548913. ISSN 10951350. Cited on page 80.

ZHANG, T. et al. A Literature Review of Research in Bug Resolution: Tasks, Challenges
and Future Directions. [S.l.]: Oxford University Press, 2016. 741-773 p. Cited 2 times on
pages 79 and 80.

ZHAO, Y. et al. The impact of continuous integration on other software development
practices: A large-scale empirical study. In: . [S.l.]: IEEE / ACM, 2017. ISBN
9781538626849. Cited 10 times on pages 22, 30, 31, 41, 69, 70, 74, 78, 91, and 107.

129

APPENDIX A – Systematic
Literature Review on The Effects of
Continuous Integration on Software

Development

A.1 Demographic attributes

This appendix shows the demographic data of our primary studies. We discuss the
evolution of studies over the years and describe the authors’ information next.

Evolution of studies. CI emerged in the context of eXtreme Programming, a
software development methodology that increased and became popular in the late 90s
and early 00s (FOWLER, 2013). Indeed, we identify the first research efforts on CI in
2003. Figure 33 shows an increasing number of publications over the years, especially in
the last five years. The majority of papers have been published in conference proceedings
(69 papers, i.e., 67.2%), followed by 23 papers published in journals (i.e. 22.5%). 10 other
studies have been published in workshops in the last years (i.e. 9.8%).

Figure 33 – Publications by year and type of venue.

Our primary studies have been published in 29 distinct conferences, 15 journals, and
7 workshops. Figure 34 (a) shows that MSR (IEEE International Working Conference on
Mining Software Repositories), ICSE (International Conference on Software Engineering),
Agile Conference, and ESEC/FSE (European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering) are the conferences

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 130

with the highest number of primary studies. Since we aim to collate the most claims possible
related to CI, we do not necessarily focus on the goals of a venue (e.g., magazine-based
publication). In a later stage, we analyse the rigour of the studies from which we find
claims.

As for workshops, Figure 34 (b) shows Conference XP (Scientific Workshops
Proceedings), SWAN (International Workshop on Software Analytics), and RCoSE (In-
ternational Workshop on Rapid Continuous Software Engineering) as the most frequent
venues. Figure 34 (c) shows that the journals with the highest frequency are Empirical
Software Engineering, Information and Software Technology, and IEEE Software.

MSR

ICSE

Agile Conference

ESEC/FSE

ICSME

Others

0 10 20 30 40

Conference XP

SWAN

RCoSE

Others

0 1 2 3

Empirical Software Engineering

Information and Software Technology

IEEE Software

IEEE Transactions on Software Engineering

Others

0 2 4 6 8 10 12

(a) (b)

(c)

Figure 34 – Publications in main venues on (a) conferences, (b) Workshops, and (c)
Journals.

Paper Authors. The primary studies have 259 different authors involved alto-
gether. Table 38 shows a ranking with those having the highest number of publications
included as a primary study in our SLR. Jan Bosch is the most frequent author and all of
the top 6 researchers remain active over the last years. Having described the demographic
data of our primary studies, we now describe our obtained results.

A.2 Selected Studies

ID Title Author(s) Year Venue
P2 (No) influence of continuous in-

tegration on the commit activ-
ity in GitHub projects

Stephan Diehl, Daniel Anastasiou,
Jascha Knack, Sebastian Baltes, Ralf
Tymann

2018 SWAN - International
Workshop on Software
Analytics

P3 A brief study on build failures
in continuous integration: Cau-
sation and effect

Bharavi Mishra, Saket Kumar Singh,
Romit Jain

2018 ICACIE - Progress in Ad-
vanced Computing and
Intelligent Engineering

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 131

P4 A conceptual replication of con-
tinuous integration pain points
in the context of Travis CI

Bogdan Vasilescu, David Gray Wid-
der, Michael Hilton, Christian Käst-
ner

2019 ESEC/FSE Joint Meet-
ing European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

P5 A Current Study on the Limita-
tions of Agile Methods in Indus-
try Using Secure Google Forms

Ashish Agrawal, L. S. Maurya, Mohd
Aurangzeb Atiq

2016 International Conference
on Information Security
and Privacy

P6 A Hundred Days of Continuous
Integration

Ade MillerAde Miller 2008 Agile Conference

P7 A Study on the Interplay be-
tween Pull Request Review and
Continuous Integration Builds

Massimiliano Di Penta, Canfora Ger-
ardo, Gabriele Bavota, Fiorella Zam-
petti

2019 SANER

P8 A Tale of CI Build Failures: An
Open Source and a Financial
Organization Perspective

Carmine Vassallo, Gerald Scher-
mann, Fiorella Zampetti, Daniele Ro-
mano, Philipp Leitner, Andy Zaid-
man, Massimiliano Di Penta, Sebas-
tiano Panichella

2017 ICSME - International
Conference on Software
Maintenance and Evolu-
tion

P9 Agile systems development
and stakeholder satisfaction: a
South African empirical study

Jason Cohen, Carlos Ferreira 2008 SAICSIT

P10 An empirical analysis of build
failures in the continuous inte-
gration workflows of Java-based
open-source software

Stefan Schulte, Thomas Rausch,
Waldemar Hummer, Philipp Leitner

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P11 An empirical study of activity,
popularity, size, testing, and
stability in continuous integra-
tion

Saket Vishwasrao, Francisco Servant,
Aakash Gautam

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P12 An empirical study of the long
duration of continuous integra-
tion builds

Ying Zou, Daniel Alencar da Costa,
Taher Ahmed Ghaleb

2019 Empirical Software Engi-
neering

P13 An empirical study of the per-
sonnel overhead of continuous
integration

Shane McIntosh, Eduardo Coronado-
Montoya, Marco Manglaviti, Keheliya
Gallaba

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P14 Analyzing the effects of test
driven development in GitHub

Abram Hindle, Neil Borle, Meysam
Feghhi, Eleni Stroulia, Russ Greiner

2018 Empirical Software Engi-
neering

P15 Analyzing the impact of social
attributes on commit integra-
tion success

Mauricio Soto, Zack Coker, Claire Le
Goues

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P16 Angry-builds: an empirical
study of affect metrics and
builds success on github
ecosystem

Michele Marchesi, David Bowes,
Giuseppe Destefanis, Marco Ortu, An-
drea Pinna, Roberto Tonelli

2018 Conference XP

P17 Applying Continuous Integra-
tion for Reducing Web Applica-
tions Development Risks

Fang Yie Leu, Sen Tarng Lai 2015 BWCCA - International
Conference on Broad-
band and Wireless Com-
puting, Communication
and Applications

P18 Automated reporting of anti-
patterns and decay in contin-
uous integration

Sebastian Proksch, Harald C. Gall,
Massimiliano Di Penta, Carmine Vas-
sallo

2019 ICSE - International
Conference on Software
Engineering

P19 Automated software integra-
tion flows in industry: a
multiple-case study

Daniel Ståhl, Jan Bosch 2014 ICSE - International
Conference on Software
Engineering

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 132

P20 Build waiting time in continu-
ous integration: an initial inter-
disciplinary literature review

Mika Mantyla, Eero Laukkanen 2015 RCoSE - International
Workshop on Rapid Con-
tinuous Software Engi-
neering

P21 Building lean continuous inte-
gration and delivery pipelines
by applying DevOps principles:
a case study at Varidesk

Vidroha Debroy, Senecca Miller,
Lance Brimble

2018 ESEC/FSE Joint Meet-
ing European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

P22 Building lean thinking in a tele-
com software development or-
ganization: strengths and chal-
lenges

Pasi Kuvaja, Pilar Rodríguez, Kirsi
Mikkonen, Markku Oivo, Juan Gar-
bajosa

2013 ICSSP - International
Conference on Software
and System Process

P23 Built to last or built too fast?
evaluating prediction models
for build times

Ekaba Bisong, Eric Tran, Olga Baysal 2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P24 Challenges When Adopting
Continuous Integration: A Case
Study

Mikael Dienér, Richard Berntsson
Svensson, Adam Debbiche

2014 International Conference
on Product-Focused Soft-
ware Process Improve-
ment

P25 Characterizing the influence of
continuous integration: empir-
ical results from 250+ open
source and proprietary projects

Akond Rahman, Amritanshu
Agrawal, Rahul Krishna, Alexander
Sobran

2018 SWAN - International
Workshop on Software
Analytics

P27 Comparison of release engineer-
ing practices in a large mature
company and a startup

Eero Laukkanen, Casper Lassenius,
Juha Itkonen, Maria Paasivaara

2018 Empirical Software Engi-
neering

P28 Continuous code quality: are we
(really) doing that?

Alberto Bacchelli, Harald C. Gall,
Fabio Palomba, Carmine Vassallo

2018 ASE - International Con-
ference on Automated
Software Engineering

P29 Continuous Delivery Practices
in a Large Financial Organiza-
tion

Andy Zaidman, Carmine Vassallo,
Fiorella Zampetti, Daniele Romano,
Moritz Beller, Annibale Panichella,
Massimiliano Di Penta

2017 ICSME - International
Conference on Software
Maintenance and Evolu-
tion

P30 Continuous Delivery: Huge Ben-
efits, but Challenges Too

Lianping Chen 2015 IEEE Software

P31 Continuous Delivery? Easy!
Just Change Everything (Well,
Maybe It Is Not That Easy)

Steve Neely, Steve Stolt 2013 Agile Conference

P32 Continuous deployment and
schema evolution in SQL
databases

Michael De Jong, Arie Van Deursen 2015 RELENG - International
Workshop on Release En-
gineering

P33 Continuous deployment at
Facebook and OANDA

Michael Gentili, Kent Beck, Laurie
Williams, Michael Stumm, Tony Sa-
vor, Mitchell Douglas

2016 ICSE - International
Conference on Software
Engineering

P34 Continuous deployment of mo-
bile software at facebook (show-
case)

Elisa Shibley, Chuck Rossi, Kent Beck,
Shi Su, Michael Stumm, Tony Savor

2016 ESEC/FSE Joint Meet-
ing European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

P36 Continuous Integration and De-
livery for HPC: Using Singular-
ity and Jenkins

Zebula Sampedro, Aaron Holt,
Thomas Hauser

2018 PEARC - Practice and
Experience on Advanced
Research Computing

P37 Continuous Integration and
Quality Assurance: a case study
of two open source projects

Jesper Holck, Niels Jørgensen 2003 Australasian Journal of
Information Systems

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 133

P38 Continuous Integration Applied
to Software-Intensive Embed-
ded Systems – Problems and
Experiences

Torvald Mårtensson, Daniel Ståhl,
Jan Bosch

2016 International Conference
on Product-Focused Soft-
ware Process Improve-
ment

P39 Continuous Integration for
Web-Based Software Infrastruc-
tures: Lessons Learned on the
webinos Project

John Lyle, Tao Su, Andrea Atzeni,
Shamal Faily, Habib Virji, Christos
Ntanos, Christos Botsikas

2013 Haifa Verification Confer-
ence

P40 Continuous Integration Impedi-
ments in Large-Scale Industry
Projects

Torvald Mårtensson, Jan Bosch,
Daniel Ståhl

2017 ICSA - IEEE Inter-
national Conference on
Software Architecture

P41 Continuous Integration in a
Social-Coding World: Empiri-
cal Evidence from GitHub

Bogdan Vasilescu, Mark G J Van
Den Brand, Jules Wulms, Stef Van
Schuylenburg, Alexander Serebrenik

2014 ICSME - International
Conference on Software
Maintenance and Evolu-
tion

P42 Continuous Integration in
Open Source Software Develop-
ment

Amit Deshpande, Dirk Riehle 2008 IFIP International Fed-
eration for Information
Processing

P43 Continuous Integration is Not
About Build Systems

Torvald Mårtensson, Par Ham-
marstrom, Jan Bosch

2017 SEAA - Euromicro Con-
ference on Software En-
gineering and Advanced
Applications

P44 Continuous Refactoring in CI:
A Preliminary Study on the
Perceived Advantages and Bar-
riers

Carmine Vassallo, Fabio Palomba,
Harald C. Gall

2018 ICSME - International
Conference on Software
Maintenance and Evolu-
tion

P45 Continuous software engineer-
ing and beyond: trends and
challenges

Brian Fitzgerald, Klaas Jan Stol 2014 RCoSE - International
Workshop on Rapid Con-
tinuous Software Engi-
neering

P46 Contrasting Big Bang with
Continuous Integration
Through Defect Reports

Daniel Levin, Ana Magazinius, Niklas
Mellegard, Hakan Burden, Kenneth
Lind

2018 IEEE Software

P47 Determinants of pull-based de-
velopment in the context of con-
tinuous integration

Cheng Yang, Huaimin Wang, Tao
Wang, Gang Yin, Yue Yu

2016 Science China Informa-
tion Sciences

P48 DevOps: A Definition and Per-
ceived Adoption Impediments

Kristian Nybom, Jens Smeds, Ivan
Porres

2015 International Conference
on Agile Software Devel-
opment

P49 Effect of Continuous Integra-
tion on Build Health in Under-
graduate Team Projects

Suzanne M. Embury, Christopher
Page

2017 Conference on Software
Engineering Education
and Training

P50 Effectiveness of Test-Driven De-
velopment and Continuous In-
tegration: A Case Study

Yoni Meijberg, Chintan Amrit 2018 IT Professional

P51 Enabling Agile Testing through
Continuous Integration

Sean Stolberg 2009 Agile Conference

P52 Experienced benefits of continu-
ous integration in industry soft-
ware product development: A
case study

Jan Bosch, Daniel Ståhl 2013 IASTED International
Conference on Software
Engineering

P53 How does contributors’ involve-
ment influence the build sta-
tus of an open-source software
project?

Renato O. Santos, Fernando Castor,
Gustavo Pinto, Marcel Reboucas

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P54 How open source projects use
static code analysis tools in con-
tinuous integration pipelines

Fiorella Zampetti, Rocco Oliveto,
Gerardo Canfora, Massimiliano Di
Penta, Simone Scalabrino

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 134

P55 I’m leaving you, Travis: a
continuous integration breakup
story

Bogdan Vasilescu, Christian Kästner,
Michael Hilton, David Gray Widder

2018 ICSE - International
Conference on Software
Engineering

P56 Impact of continuous integra-
tion on code reviews

Mohammad Masudur Rahman, Chan-
chal K. Roy

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P57 Implementation of a DevOps
Pipeline for Serverless Applica-
tions

Vitalii Ivanov, Kari Smolander 2018 International Conference
on Product-Focused Soft-
ware Process Improve-
ment

P58 Inadequate testing, time pres-
sure, and (over) confidence: a
tale of continuous integration
users

Marcel Reboucas, Gustavo Pinto, Fer-
nando Castor

2017 CHASE - International
Workshop on Coopera-
tive and Human Aspects
of Software Engineering

P59 Increasing quality and manag-
ing complexity in neuroinfor-
matics software development
with continuous integration

Yury V. Zaytsev, Abigail Morrison 2013 Frontiers in Neuroinfor-
matics

P60 Industry application of contin-
uous integration modeling: a
multiple-case study

Daniel Ståhl, Jan Bosch 2016 ICSE - International
Conference on Software
Engineering

P62 Insights into continuous integra-
tion build failures

Md Rakibul Islam, Minhaz F. Zibran 2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P63 ISM based identification of
quality attributes for agile de-
velopment

Parita Jain, Laxmi Ahuja, Arun
Sharma

2016 International Conference
on Reliability

P64 It’s Not the Pants, it’s the Peo-
ple in the Pants Learnings from
the Gap Agile Transformation –
What Worked, How We Did it,
and What Still Puzzles Us

David Goodman, Michael Elbaz 2008 Agile Conference

P65 Lessons Learned: Using a Static
Analysis Tool within a Contin-
uous Integration System

2016 ISSREW - International
Symposium on Software
Reliability Engineering
Workshops

P66 Managing to release early, often
and on time in the OpenStack
software ecosystem

José Apolinário Teixeira, Helena
Karsten

2019 Journal of Internet Ser-
vices and Applications

P67 Measurement and Impact Fac-
tors of Speed of Reviews and
Integration in Continuous Soft-
ware Engineering

Wilhelm Meding, Ola Söder, Magnus
Bäck, Miroslaw Staron

2018 Foundations of Comput-
ing and Decision Sciences

P69 Moving from Closed to Open
Source: Observations from
Six Transitioned Projects to
GitHub

Pavneet Singh Kochhar, Nachiap-
pan Nagappan, Eirini Kalliamvakou,
Christian Bird, Thomas Zimmermann

2019 IEEE Transactions on
Software Engineering

P70 On the interplay between non-
functional requirements and
builds on continuous integra-
tion

Marcelo De A. Maia, Cricia Z. Felicio,
Klerisson V.R. Paixao, Fernanda M.
Delfim

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P71 On the journey to continuous
deployment: Technical and so-
cial challenges along the way

Gerry Gerard Claps, Richard Bernts-
son Svensson, Aybüke Aurum

2015 Information and Soft-
ware Technology

P72 Oops, my tests broke the
build: an explorative analysis
of Travis CI with GitHub

Moritz Beller, Andy Zaidman, Geor-
gios Gousios

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 135

P73 Practitioners’ eye on continu-
ous software engineering: An in-
terview study

Jan Ole Johanssen, Anja Kleebaum,
Bernd Bruegge, Barbara Paech

2018 ICSSP - International
Conference on Software
and System Process

P74 Quality and productivity out-
comes relating to continuous in-
tegration in GitHub

Vladimir Filkov, Bogdan Vasilescu,
Yue Yu, Huaimin Wang, Premkumar
Devanbu

2015 ESEC/FSE Joint Meet-
ing European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

P75 Scaling Continuous Integration R. Owen Rogers 2004 International Conference
on Extreme Program-
ming and Agile Processes
in Software Engineering

P76 Screening heuristics for project
gating systems

Edi Shmueli, Zahy Volf 2017 ESEC/FSE Joint Meet-
ing European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

P77 Sentiment analysis of Travis CI
builds

Bruno Silva, Rodrigo Souza 2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P78 Software artefacts consistency
management towards continu-
ous integration: A roadmap

I. Perera, D. A. Meedeniya, I. D.
Rubasinghe

2019 International Journal of
Advanced Computer Sci-
ence and Applications

P79 Software Quality Improvement
Practices in Continuous Inte-
gration

Selin Aydin, İlgi Keskin Kaynak,
Evren Çilden

2019 European Conference
on Software Process
Improvement

P80 Stakeholder Perceptions of the
Adoption of Continuous Inte-
gration – A Case Study

Maria Paasivaara, Teemu Arvonen,
Eero Laukkanen

2015 Agile Conference

P81 Studying the impact of adopt-
ing continuous integration on
the delivery time of pull re-
quests

Joao Helis Bernardo, Uirá Kulesza,
Daniel Alencar da Costa

2018 ICSE - International
Conference on Software
Engineering

P82 Successful extreme program-
ming: Fidelity to the methodol-
ogy or good teamworking?

Stephen Wood, George Michaelides,
Chris Thomson

2013 Information and Soft-
ware Technology

P83 Synthesizing Continuous De-
ployment Practices Used in
Software Development

Chris Parnin, Akond Rahman, Eric
Helms, Laurie Williams

2015 Agile Conference

P84 Team Pace Keeping Build
Times Down

Graham Brooks 2008 Agile Conference

P85 Test activities in the contin-
uous integration and delivery
pipeline

Daniel Ståhl, Torvald Mårtensson,
Jan Bosch

2019 Journal of Software: Evo-
lution and Process

P86 The continuity of continuous in-
tegration: Correlations and con-
sequences

Jan Bosch, Torvald Mårtensson,
Daniel Ståhl

2017 Journal of Systems and
Software

P87 The effects of individual XP
practices on software develop-
ment effort

Paul Rodrigues, Prakash Ra-
maswamy, S Kuppuswami, K
Vivekanandan

2003 ACM SIGSOFT Soft-
ware Engineering Notes

P88 The highways and country
roads to continuous deployment

Marko Leppänen, Mika V Mäntylä,
Juha Itkonen, Veli-Pekka Eloranta,
Max Pagels, Simo Mäkinen, Tomi
Männistö

2015 IEEE Software

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 136

P89 The impact of continuous inte-
gration on other software devel-
opment practices: a large-scale
empirical study

Vladimir Filkov, Yuming Zhou,
Alexander Serebrenik, Yangyang
Zhao, Bogdan Vasilescu

2017 ASE - International Con-
ference on Automated
Software Engineering

P90 The impact of the adoption of
continuous integration on devel-
oper attraction and retention

Keheliya Gallaba, Yash Gupta, Yu-
saira Khan, Shane McIntosh

2017 MSR - International Con-
ference on Mining Soft-
ware Repositories

P91 The links between agile prac-
tices, interpersonal conflict, and
perceived productivity

Lucas Gren 2017 EASE - Conference on
Evaluation and Assess-
ment in Software Engi-
neering

P92 An empirical study examining
the usage and perceived impor-
tance of XP practices

Jessica Zhang, Ann Fruhling 2007 AMCIS - Americas Con-
ference on Information
Systems

P93 The Tarpit – A general theory
of software engineering

Pontus Johnson, Mathias Ekstedt 2016 Information and Soft-
ware Technology

P94 Towards Agile Testing for Rail-
way Safety-critical Software

Jin Guo, Yaxin Cao, Chang Rao, Yao
Li, Nan Li, Jeff Lei

2016 Conference XP

P95 Towards Architecting for Con-
tinuous Delivery

Lianping Chen 2015 ICSA - IEEE Inter-
national Conference on
Software Architecture

P96 Towards quality gates in contin-
uous delivery and deployment

Gerald Schermann, Jürgen Cito, Har-
ald C. Gall, Philipp Leitner

2016 ICPC

P97 Trade-offs in continuous in-
tegration: assurance, security,
and flexibility

Danny Dig, Michael Hilton, Nicholas
Nelson, Timothy Tunnell, Darko Mari-
nov

2017 ESEC/FSE Joint Meet-
ing European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

P98 Transparency and contracts:
continuous integration and de-
livery in the automotive ecosys-
tem

Eric Knauss, Rob Van Der Valk, Pa-
trizio Pelliccione, Rogardt Heldal, Pa-
tricia Lago, Jacob Juul

2018 ICSE - International
Conference on Software
Engineering

P99 Understanding similarities and
differences in software develop-
ment practices across domains

Pooyan Jamshidi, Christian Kästner,
Markos Viggiato, Eduardo Figueiredo,
Johnatan Oliveira

2019 ICGSE - International
Conference on Global
Software Engineering

P100 Usage, costs, and benefits of
continuous integration in open-
source projects

Timothy Tunnell, Michael Hilton, Kai
Huang, Darko Marinov, Danny Dig

2016 ASE - International Con-
ference on Automated
Software Engineering

P101 Use and Misuse of Continuous
Integration Features: An Em-
pirical Study of Projects that
(mis)use Travis CI

Keheliya Gallaba, Shane McIntosh 2018 IEEE Transactions on
Software Engineering

P102 Using continuous integration
and automated test techniques
for a robust C4ISR system

Eray Tüzün, Erdoǧan Gelirli, H.
Mehmet Yüksel, Emrah Biyikli,
Buyurman Baykal

2009 ISCIS - International
Symposium on Com-
puter and Information
Sciences

P103 Vulnerabilities in Continuous
Delivery Pipelines? A Case
Study

Christina Paule, Thomas F. Dull-
mann, Andre Van Hoorn

2019 ICSA - IEEE Inter-
national Conference on
Software Architecture

P104 Wait for it: determinants of pull
request evaluation latency on
GitHub

Yue Yu, Bogdan Vasilescu, Premku-
mar Devanbu, Vladimir Filkov,
Huaimin Wang

2015 MSR - International Con-
ference on Mining Soft-
ware Repositories

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 137

P105 Why modern open source
projects fail

Jailton Coelho, Marco Tulio Valente 2017 ESEC/FSE Joint Meet-
ing European Software
Engineering Conference
and Symposium on the
Foundations of Software
Engineering

P106 Work practices and challenges
in continuous integration: A
survey with Travis CI users

Rodrigo Bonifacio, Marcel Reboucas,
Gustavo Pinto, Fernando Castor

2018 Software - Practice and
Experience

Table 39 – Primary Studies selected in the review.

APPENDIX A. Systematic Literature Review on The Effects of Continuous Integration on Software
Development 138

Table 38 – Ranking of authors per publication number and his publications.

Researcher # Publications

1 Jan Bosch 8 2013 (P52), 2014 (P19), 2016 (P60, P38),
2017 (P86, P43, P40), 2019 (P85)

2 Daniel Ståhl 7 2013 (P52), 2014 (P19), 2016 (P38, P60),
2017 (P86, P40), 2019 (P85)

3 Bogdan Vasilescu 6 2014 (P41), 2015 (P104, P74), 2017 (P89),
2018 (P55), 2019 (P4)

4 Massimiliano Di Penta 5 2017 (P54, P8, P29), 2019 (P18, P7)
Carmine Vassallo 5 2017 (P29, P8), 2018 (P44, P28), 2019 (P18)
Torvald Mårtensson 5 2016 (P38), 2017 (P43, P40, P86), 2019 (P85)

