Use este identificador para citar ou linkar para este item: https://repositorio.ufrn.br/handle/123456789/17675
Título: Estudo de titanatos nanoestruturados obtidos por tratamento hidrotérmico de óxido de titânio em meio alcalino
Título(s) alternativo(s): Studies on nanostructured titanates obtained by alkali hydrothermal treatment of titanium oxide
Autor(es): Morgado Júnior, Edisson
Orientador: Araújo, Antônio Souza de
Palavras-chave: Síntese hidrotérmica alcalina;Materiais nanoestruturados;Transformação de fases;Titanatos lamelares;Titânia;Nanotubos;Mecanismo de dissolução-recristalização;Alkaline hydrothermal synthesis;Nanostructured materials;Layered titanates;Titania;Nanotubes;Phase transformation;Dissolution-recrystallization mechanism
Data do documento: 24-Ago-2007
Editor: Universidade Federal do Rio Grande do Norte
Referência: MORGADO JÚNIOR, Edisson. Studies on nanostructured titanates obtained by alkali hydrothermal treatment of titanium oxide. 2007. 206 f. Tese (Doutorado em Físico-Química; Química) - Universidade Federal do Rio Grande do Norte, Natal, 2007.
Resumo: Titanatos nanoestruturados, particularmente TiTanatos NanoTubulares (TTNT), foram sintetizados por tratamento hidrotérmico alcalino de TiO2-anatásio seguido de repetidas lavagens com diversos graus de troca protônica. Amostras de TTNT com diferentes teores de sódio foram caracterizadas na forma de pó seco e após calcinação (200-800ºC) por difração de raios-X, microscopia eletrônica de varredura e transmissão, difração de elétrons, análise térmica, adsorção de nitrogênio e técnicas espectroscópicas de infravermelho e de refletância difusa no UV-Visível. Demonstrou-se que tais materiais de paredes multilamelares são trititanatos de fórmula geral NaxH2−xTi3O7·nH2O, retendo água entre as lamelas. A remoção de sódio da estrutura reduz a quantidade de água contraindo o espaço interlamelar levando, combinado a outros fatores, ao aumento da área e do volume de poros específicos. Os TTNTs são materiais mesoporosos com duas contribuições principais: poros menores que 10 nm devido ao volume interno dos nanotubos e poros entre 5 e 60 nm devido aos espaços interpartícula. A composição química e a estrutura cristalina do TTNT não dependem do tamanho de cristalito do TiO2-anatásio precursor, todavia este parâmetro afeta significativamente a morfologia e as características texturais do produto nanoestruturado. Tal dependência foi racionalizada através de um mecanismo de dissolução-recristalização que leva em conta a velocidade de dissolução do TiO2 de partida e sua influência sobre a taxa de crescimento de nanofolhas intermediárias em relação à taxa de seu curvamento a nanotubos. A estabilidade térmica do TTNT é definida pelo teor de sódio e em pequena extensão pelo tipo de anatásio de partida. Foi demonstrado que o TTNT após perder a água intercalada entre 100 e 200ºC se transforma pelo menos parcialmente num hexatitanato NaxH2−xTi6O13 intermediário ainda nanotubular. A transformação térmica do tri- e hexatitanato nanoestruturados ocorre em maior ou menor temperatura e segue diferentes rotas dependendo do teor de sódio. No caso de alto sódio sinterizam e crescem até grandes cristais de Na2Ti3O7 e Na2Ti6O13 na forma de bastões e fitas acima de 600ºC. No caso da amostra protonizada evoluem para nanotubos de TiO2(B) que facilmente se convertem em nanobastões de anatásio acima de 400ºC. Além de hidroxilas e acidez de Lewis típicos dos óxidos de titânio, os TTNTs apresentam uma pequena contribuição de acidez protônica capaz de se coordenar com a piridina a 150ºC, e que é perdida após sua calcinação e transformação à anatásio. O ponto isoelétrico do TTNT variou dentro da faixa 2,5- 4,0, indicando o comportamento de um ácido fraco. Apesar de se revelar um semicondutor exibindo banda de absorção típica no espectro de UV-visível com energia de bandgap ligeiramente superior ao do respectivo TiO2-anatásio precursor, os TTNTs apresentaram baixo desempenho fotocatalítico na degradação de corantes catiônico e aniônico. Concluiu-se que a causa fundamental reside em sua estrutura de titanato lamelar que, em relação à forma TiO2, apresentaria maior probabilidade de recombinação do par elétron-lacuna (e-/h+), inibindo as reações de fotoxidação. A transformação do TTNT protônico à nanobastões de anatásio melhorou a atividade fotocatalítica, porém ainda sem atingir o mesmo desempenho do TiO2-anatásio precursor
Abstract: TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase
URI: https://repositorio.ufrn.br/jspui/handle/123456789/17675
Aparece nas coleções:PPGQ - Doutorado em Química

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
EdissonMJ.pdf6,41 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.