Universidade Federal do Rio Grande do Norte Programa de Pós-Graduação em Neurociências Arthur Sérgio Cavalcanti de França O papel de oscilações beta2 e de interneurônios OLMα2 da região CA1 do hipocampo de camundongos na memória de reconhecimento de objetos Natal 2016 Universidade Federal do Rio Grande do Norte Programa de Pós-Graduação em Neurociências O papel de oscilações beta2 e de interneurônios OLMα2 da região CA1 do hipocampo de camundongos na memória de reconhecimento de objetos Tese apresentada como requisito parcial à obtenção do título de Doutor em Neurociências, do Programa de Pós-Graduação em Neurociências, da Universidade Federal do Rio Grande do Norte. Orientador: Prof. Dr. Adriano B. L. Tort Co-orientador: Prof. Dr. Richardson N. Leão Aluno: Arthur S. C. França Natal 2016 Universidade Federal do Rio Grande do Norte - UFRN Sistema de Bibliotecas - SISBI Catalogação de Publicação na Fonte. UFRN - Biblioteca Setorial do Instituto do Cérebro - ICE França, Arthur Sérgio Cavalcanti de. O papel de oscilações beta2 e de interneurônios OLMa2 da região CA1 do hipocampo de camundongos na memória de reconhecimento de objetos / Arthur Sérgio Cavalcanti de França. - Natal, 2016. 146 f.: il. Universidade Federal do Rio Grande do Norte, Instituto do Cérebro, Programa de Pós-Graduação em Neurociências Orientador: Adriano Bretanha Lopes Tort. Coorientador: Richardson Naves Leão. 1. Hipocampo. 2. CA1. 3. OLMa2. 4. Memórias. 5. Reconhecimento de Objeto. I. Tort, Adriano Bretanha Lopes. II. Leão, Richardson Naves. III. Título. RN/UF/Biblioteca Setorial Árvore do Conhecimento - Instituto do Cérebro CDU 159.953 Dedico este trabalho aos meus pais, que são minha fonte diária de exemplos e que me inspiram a ser um ser humano melhor Agradecimentos Antes de qualquer coisa, gostaria de agradecer à minha família. Nela encontro todo apoio e incentivo necessários para enfrentar qualquer caminho que eu escolha trilhar. Sou uma pessoa que gosta de se embebedar de exemplos e sou felizardo de ter tido a chance de conviver com pessoas que me dão inúmeros exemplos, em todos os aspectos da vida. Gostaria de agradecer à minha mãe, meu exemplo de compaixão e da sede por conhecimento. Ao meu pai, meu exemplo de dedicação e otimismo. Ter sido criado por vocês foi a maior felicidade que poderia ter sonhado, amo vocês de forma imensurável. Agradeço de coração às minhas irmãs e minhas queridas avós, seus cuidados e amor são sentidos mesmo de longe, amo muito vocês. Gostaria de agradecer à minha namorada Mayara Medeiros, minha companheira na dança da vida. Gostaria de agradecer aos meus pais científicos e a todos que contribuíram ao longo dessa jornada. Primeiramente à minha primeira orientadora, Juliana Espada, que me inspirou a seguir o caminho da pesquisa. A Bruno Lobão e Sidarta Ribeiro com quem construí e trilhei meus primeiros passos na neurociência. Ao meu co-orientador Richardson Leão, o maior experimentalista com quem já tive oportunidade de trabalhar. Agradeço também ao meu supervisor no exterior Klas Kullander por todo suporte dado durante a minha estadia na Suécia, e por sua confiança depositada em mim. Quero fazer um agradecimento especial ao meu orientador Adriano Tort. Ele foi e é o maior exemplo que já tive no meio científico. Ao longo desses 4,5 anos só aumentou minha admiração pelo seu jeito de fazer ciência, pela sua integridade e seriedade. Nunca trabalhei em um ambiente tão bom e produtivo, com tanto compartilhamento de informação e pessoas se ajudando. Não acredito em sorte, então acredito que você é o maior fomentador desse ambiente. Não é à toa que todas as pessoas que saem desse laboratório querem continuar o vínculo com você. Parabéns! Gostaria de agradecer aos professores Marcos Costa, Katarina Leão, Olavo Amaral e Diego Laplagne pelas discussões que geraram impacto direto na construção do meu trabalho. Agradeço aos meus colegas do laboratório sueco, Julia, Sanja, Samer, Stefano e Fábio. Vocês tornaram minha estadia muito mais prazerosa e produtiva do que eu poderia imaginar. Sem vocês tudo teria sido mais difícil. Gostaria de agradecer aos meus colegas de laboratório, Bryan, Pavão, André, Zé, Alan e Hindiael. Obrigado pelas inúmeras discussões científicas e não científicas, pelas festinhas e pelo bullying diário. Vocês tornaram meu trabalho extremamente prazeroso e produtivo. Agradeço aos meus colegas Vitor, João, Robson e Aron. Ao Neuro Revolución! O grupo de pessoas que mais desenvolvi afinidade científica. Vocês são exemplos não só de integridade científica, mas também de aspiração por uma sociedade melhor. A todos os meus amigos que fizeram parte diretamente ou não da minha construção científica, dando suporte pessoal ou científico, Daniela Moura, Marina Siqueira, Annie Souza, Thawann Malfatti, Annara Soares, Eduardo Queiroz, Eduardo Leite, Stefano Marlon, Felipe Farias, Dyêgo Siqueira e Aderson Stanrley. Gostaria de agradecer à Alexandra Elbakyan, graças a ela tive acesso aos artigos necessários para embasar boa parte da minha investigação científica. Parabéns por sua contribuição para divulgação científica no mundo. Por último, agradeço ao governo brasileiro por ter pago meu salário nesses últimos 12 anos, da graduação ao doutorado. Graças a isso, tive oportunidade de me qualificar e espero retornar esse investimento para a sociedade. Resumo O hipocampo é relacionado com a formação de memórias explicitas e com a capacidade de reconhecer novos objetos. No presente trabalho visamos contribuir para uma maior compreensão do papel da região CA1 do hipocampo nestes processos. Através da aplicação de técnicas de eletrofisiologia, comportamento animal, psicofarmacologia e optogenética em camundongos transgênicos e selvagens, encontramos que células OLMα2 do CA1 atuam na codificação da representação de objetos em uma tarefa de reconhecimento de objetos, e também influenciam a codificação de memórias aversivas em uma tarefa associativa de medo ao contexto. Além disso, descrevemos uma nova atividade oscilatória no potencial de campo local do CA1 na frequência beta 2 (23-30 Hz), que é caracteristicamente transitória e ligada à detecção de novos objetos durante uma tarefa de reconhecimento de objetos. Estes resultados sugerem potenciais mecanismos celulares e de rede neuronal na região CA1 subjacentes ao seu papel na formação de memórias e na detecção de novidade. Abstract The hippocampus is associated to novelty detection and formation of explicit memories. The present work aims at better understanding the role of the CA1 region of the hippocampus in these processes. By employing electrophysiology, animal behavior, psychopharmacology and optogenetic techniques in transgenic and wild-type mice, we found that CA1 OLMα2 cells influence the formation of new object representations in an object recognition task, as well as the encoding of aversive memories in a contextual fear memory task. Furthermore, we characterized a new oscillatory activity in the local field potential of CA1 at beta 2 frequency (23-30 Hz), which was typically transient and linked to the amount of novelty in an object recognition task. These results suggest potential cellular and network mechanisms that underlie the role of CA1 in memory formation and novelty detection. 1 Sumário 1.0 – Introdução .................................................................................................... 2 1.1 – Neuroanatomia e citoarquitetura da formação hipocampal ..................... 2 1.2 – Formação hipocampal e memória .......................................................... 12 1.2.1 – Mecanismos eletrofisiológicos e plásticos da memória ...................... 12 1.2.2 – Formação hipocampal e a memória reconhecimento ......................... 20 1.3 – Modulação da codificação de memória de reconhecimento pelas células OLMα2 (Artigo 1). ..................................................................................................... 22 1.3.1 – Sistema Cre-loxp, optogenética e o controle das células OLMα2. ..... 23 1.3.2 – Células OLMα2 e o controle das entradas do córtex entorrinal ......... 26 1.4 – Oscilações hipocampais e detecção de novidade (Artigo 2) ................. 29 2.0 – Artigo 1 ...................................................................................................... 34 3.0 – Artigo 2 ...................................................................................................... 65 4.0 – Discussão ................................................................................................... 76 4.1 – Artigo 1 .................................................................................................. 76 4.2 – Artigo 2 .................................................................................................. 80 4.3 – Discussão geral ...................................................................................... 81 5.0 – Referências ................................................................................................ 85 6.0 – Anexos ....................................................................................................... 96 2 1.0 – Introdução Os artigos que serão apresentados aqui visam aumentar nosso entendimento acerca dos mecanismos que permitem ao hipocampo desempenhar seus papeis cognitivos, em particular a capacidade de reconhecimento de novidade. Para melhor situar nossa contribuição ao campo, a seção de introdução é dividida em diferentes subseções. Será feita inicialmente uma breve descrição sobre a neuroanatomia e citoarquitetura da formação hipocampal, bem como sobre as principais conexões entre as estruturas que a compõem. Iremos trazer também um breve histórico sobre o estudo da memória e os correlatos eletrofisiológicos, plásticos e comportamentais que tangem esse campo de estudo. Posteriormente, iremos introduzir os assuntos tratados nos dois artigos científicos que constituem o corpo de resultados desta tese. Finda a introdução, apresentaremos os artigos na íntegra nas seções intuladas “Artigo 1” e “Artigo 2”, e finalizaremos a tese com uma discussão geral sobre os resultados apresentados e como estes se inserem na literatura atual. Por fim, como anexo desta tese fornecemos a título de registro três outros artigos científicos também elaborados durante o período de doutoramento. 1.1 – Neuroanatomia e citoarquitetura da formação hipocampal O hipocampo é uma das estruturas chave ligadas a memórias declarativas (Scoville and Milner, 1957), bem como a funções de orientação espacial (O’Keefe & Dostrovsky, 1971), em conjunto a outras áreas da formação hipocampal como o córtex entorrinal (Hafting et al., 2005). A estrutura anatômica da formação hipocampal começou a ser detalhadamente investigada a partir do final do século XIX, se destacando nesse período os trabalhos de Camilo Golgi, Luigi Sala, Karl Schaffer e Santiago Ramón y Cajal (Bentivoglio & Swanson, 2001; López-Muñoz et al., 2006; Szirmai et al., 2012). No trabalho intitulado “On the fine structure of the pes Hippocampi major, 1886” Camilo Golgi, utilizando a técnica criada por ele de coloração por nitrato de prata em 1873 (Figura 1), descreveu as camadas que formam o hipocampo, bem como fez a descoberta do giro denteado como uma estrutura separada do Corno de Amon (CA; Bentivoglio & Swanson, 2001). Posteriormente, trabalhos como o de Karl Schaffer (Szirmai et al., 2012) 3 e Santiago Ramón y Cajal (López-Muñoz et al., 2006) descreveram a conectividade entre as áreas do hipocampo. Santiago Ramón y Cajal e em seguida Lorente de Nó, proponente das subdivisões do corno de Amon em CA1, CA2 e CA3 (Lorente De Nó, 1934), montaram um esquema de conexão entre as áreas do hipocampo e das vias de entrada e saída de informação que é muito próximo ao modelo aceito atualmente (López-Muñoz et al., 2006). Figura 1. Exemplos de neurônios da formação hipocampal de coelho corados através da técnica de nitrato de prata, desenvolvida por Camilo Golgi. (Lâmina XIV, Golgi 1886). Atualmente o hipocampo é dividido em três subáreas distintas: CA1, CA2 e CA3. Além deste, compõem a formação hipocampal o córtex entorrinal, o parasubículo, o présubículo, o subículo e o giro denteado (Amaral & Witter, 1989; Schultz & Engelhardt, 2014). O conjunto de conexões entre essas áreas formam uma unidade funcional associada a várias capacidades cognitivas (Amaral & Witter, 1989; Hafting et al., 2005; O’Keefe & Dostrovsky, 1971; Szirmai et al., 2012), entre elas a formação de memórias declarativas (Scoville & Milner, 1957). Para exercer tal função, a formação hipocampal 4 recebe informação sensorial e multimodal de diversas áreas do encéfalo, bem como envia informação processada para diferentes regiões (Figura 2; Andersen et al., 2006) Figura 2. Esquema de vias de projeções de informações sensoriais e multimodais que chegam à formação hipocampal de um roedor (Brown & Aggleton, 2001). Das estruturas mencionadas, o córtex entorrinal é o principal componente de entrada e saída de informação de outras áreas do cérebro para a formação hipocampal (Dolorfo & Amaral, 1998; Insausti et al., 1997). O córtex entorrinal é dividido nos domínios lateral e medial; sua parte lateral recebe projeções multimodais do córtex perirrinal, olfatório, insular e da amígdala, enquanto a parte medial recebe projeções do córtex occipital, pósrinal e pressubículo (van Groen et al., 2003). No que tange sua citoarquitetura, o córtex entorrinal é formado por 6 camadas. As camadas II e III enviam projeções para o hipocampo e giro denteado e a camada V e VI recebem projeções do hipocampo (Dolorfo & Amaral, 1998; Insausti et al., 1997; van Groen et al., 2003). Neurônios piramidais glutamatérgicos compõem os principais neurônios excitatórios do córtex entorrinal, e os interneurônios GABAérgicos os principais neurônios inibitórios (Andersen et al., 2006; Dolorfo & Amaral, 1998; Insausti et al., 1997). Os neurônios piramidais do córtex entorrinal da camada II projetam seus axônios para o giro denteado através de um feixe de axônios denominado de via perforante, e seus terminais acabam principalmente nas espinhas dendríticas das células granulares (Amaral et al., 2007; Dolorfo & Amaral, 1998), enquanto os neurônios e interneurônios da camada III projetam bilateralmente para a região CA1 (Basu et al., 2016; van Groen et al., 2003) através de uma subdivisão da via perforante nomeada via têmporo-amônica (Remondes & Schuman, 5 2004). Um esquema detalhado com entradas para o córtex entorrinal e saídas para o hipocampo pode ser visto na Figura 3. Figura 3. Representações esquemáticas de neurônios e conexões do córtex entorrinal lateral e medial. Setas indicam entrada e saída de projeções para as várias camadas do córtex entorrinal. Abreviaturas: ACC: córtex cingulado anterior; Amygd: Amígdala; CA1-CA3: subáreas do hipocampo; DG: giro denteado; IL: córtex infralímbico; INC: córtex insular; OB: bulbo olfatório; OLFC: córtex olfatório; AP: parasubículo; PER: córtex perirrinal; PL: córtex prelímbico; POR: córtex posrinal; PPC: córtex parietal posterior; PRS presubiculum; prox: proximal; RSC: córtex retroesplenial; sub: subículo; subcort: estruturas subcorticais tais como prosencéfalo basal, amígdala; superf: superficial. (Grillner, 2010). Como dito anteriormente, o giro denteado é um dos principais alvos de projeções do córtex entorrinal, recebendo através da via perforante axônios da camada II (Amaral et al., 2007; Dolorfo & Amaral, 1998). O giro denteado recebe estas projeções na camada molecular, que, junto com as camadas granular e polimórfica, formam sua estrutura 6 citoarquitetônica (Amaral et al., 2007; Andersen et al., 2006). A camada molecular é caracterizada pelos dendritos oriundos dos corpos celulares das células granulares do giro denteado (Figura 4), bem como pela presença dos axônios oriundos do córtex entorrinal e um pequeno número de interneurônios (Amaral et al., 2007). A camada de células granulares, como o nome sugere, é onde os corpos celulares das células granulares se localizam, formando uma camada densa de neurônios (Amaral et al., 2007). Por último, a camada polimórfica é composta principalmente por interneurônios, entre eles as células musgosas (Amaral et al., 2007; Kobayashi, 2010). As células musgosas possuem dendritos na região hilar, enquanto seus axônios projetam para a camada molecular tanto ipsilateral como contralateral do giro denteado, e têm como principal alvo as células granulares (Freund & Buzsáki, 1996). O giro denteado também pode ser caracterizado através de seu formato, em “V” ou “U”, sendo a porção voltada para a região CA1 chamada de suprapiramidal, a região abaixo do CA3 é chamada de infrapiramidal, e a interseção é chamada de crista (Amaral et al., 2007; Schultz & Engelhardt, 2014). A principal saída do giro denteado se dá através das fibras musgosas para a região CA3 do hipocampo; os axônios oriundos do giro denteado são particularmente grossos, e capazes de desencadear potenciais de ação na região CA3 com um único disparo pré-sináptico (Kobayashi, 2010). 7 Figura 4. Ilustração original de Karl Schaffer (1892) do giro denteado e região CA3 e CA1 da formação hipocampal do coelho. Em destaque a entrada para o giro denteado oriundo do córtex entorrinal através da via perforante; a projeção de axônios das células granulares do giro denteado formando as fibras musgosas para as os neurônios piramidais da região CA3; as conexões intra CA3 através das colaterais recorrentes; e as conexões de CA3 para CA1 via as colaterais de Schaffer (Szirmai et al., 2012). A região CA3 recebe entradas do giro denteado e entradas diretas do córtex entorrinal em suas diferentes camadas (Amaral & Witter, 1989; Dolorfo & Amaral, 1998). A região CA3 possui em sua citoarquitetura 5 camadas ou estratos, que são similares às outras áreas do hipocampo (Andersen et al., 2006): (1) stratum oriens é a camada localizada entre o stratum pyramidale e alveus; o stratum oriens é caracterizado por possuir os dendritos basais dos neurônios piramidais, e é a região onde há saídas axonais (Figura 4). Nessa região também se localiza uma diversidade de interneurônios. (2) Stratum pyramidale é a camada em que se localiza os corpos celulares dos neurônios 8 piramidais. (3) Stratum lucidum é uma camada que ocorre exclusivamente na região CA3. Essa camada localizada abaixo do stratum pyramidale é caracterizada por projeções das fibras musgosas oriundas do giro denteado. (4) Stratum radiatum, camada em que na região CA3 é localizada abaixo do stratum lucidum, é caracterizada pela chegada de projeções oriundas do próprio CA3 (colaterais recorrentes; Figura 4) e por possuir uma variedade de interneurônios. (5) Stratum lacunosum-moleculare, camada localizada infra stratum radiatum, é caracterizada por possuir os terminais das conexões oriundas da camada II do córtex entorrinal e por possuir uma variedade de interneurônios (Andersen et al., 2006; Cherubini & Miles, 2015). Subsequente a região CA3, se localiza a região CA2 no hipocampo. O CA2 é uma pequena região de transição entre as regiões CA3 e CA1, cuja área total é significativamente menor que estas. Porém, possui características singulares como o padrão de projeções em relação às outras áreas (Shinohara et al., 2012). A região CA2, diferentemente da região CA3, possui somente 4 camadas: (1) stratum oriens; (2) stratum pyramidale; (3) stratum radiatum; (4) stratum lacunosum-moleculare (Amaral & Witter, 1989; Andersen et al., 2006). A região CA1 possui as mesmas camadas que a região CA2, porém com diversas características próprias. O stratum pyramidale é formado por neurônios piramidais com formato mais homogêneos e em geral menores quando comparados com a região CA3 (Andersen et al., 2006). A região CA1 recebe inputs da região CA3, através das colaterais de Schaffer, no stratum radiatum (Amaral et al., 2007). Recebe também inputs da camada III do córtex entorrinal, através da via perforante e têmporo-amônica, no stratum lacunosum-moleculare (Brun et al., 2008). Na Figura 5 podemos ver um esquema de neurônios piramidais que povoam as três regiões do hipocampo. 9 Figura 5. Representação esquemática dos neurônios piramidais e das camadas encontradas nas três regiões do hipocampo (CA1, CA2 e CA3). Podem ser observadas as principais conexões de entrada do córtex entorrinal (CE) e giro denteado (GD) para o hipocampo (linhas verde musgo, rosa e magenta) e saída (linha verde) entre das regiões hipocampais, bem como as conexões intra-hipocampais (linhas azul e laranja). A atividade dos neurônios piramidais do hipocampo é modulada por vários tipos de interneurônios GABAérgicos (Freund & Buzsáki, 1996; Klausberger & Somogyi, 2008). Da diversidade de interneurônios presentes no hipocampo, podemos citar alguns que se diferenciam pela localização, velocidade de atividade neuronal e projeções: (1) Células em candelabro (Freund & Buzsáki, 1996) ou células axo-axônicas (Woodruff et al., 2010) são um conjunto de interneurônios que possuem seu corpo celular no stratum pyramidale, dendritos no stratum radiatum e lacunosum-moleculare (Freund & Buzsáki, 1996), e projeções axonais que inibem o segmento inicial do axônio das células piramidais (Wang et al., 2016; Woodruff et al., 2010). (2) Células em cesto correspondem a um grupo diverso de interneurônios, que possuem seus corpos celulares em estratos diferentes como o pyramidale e o radiatum, e são caracterizadas por projetarem axônios 10 que inibem a região perisomatica dos neurônios piramidais, e também por dispararem rapidamente (fast-spiking) (Freund & Buzsáki, 1996; Klausberger & Somogyi, 2008). (3) As células biestratificadas possuem seus corpos celulares no stratum pyramidale, e inibem os dendritos basais das células piramidais no stratum oriens, e os dendritos apicais no stratum radiatum; possuem ainda disparo regular (regular-spiking) (Ferrante & Ascoli, 2015; Klausberger & Somogyi, 2008; Wheeler et al., 2015). (4) As células oriens lacunosum-moleculare (OLM) possuem corpos celulares no stratum oriens e enviam projeções axonais para o stratum lacunosum-moleculare, inervando os dendritos apicais distais das células piramidais, bem como outros interneurônios no stratum radiatum (Klausberger & Somogyi, 2008; Leão et al., 2012); elas regulam a atividade oscilatória dos neurônios piramidais (Forro et al., 2015). Um esquema da variedade de interneurônios e projeções recebidas e enviadas pode ser visto na Figura 6. 11 Figura 6. Esquema mostrando diferentes interneurônios e suas projeções. Podemos ver em azul uma representação de neurônios piramidais e suas projeções. Em amarelo e verde podemos ver uma variedade de células em cesto. Em marrom é representado a célula biestratificada. Em vermelho a célula em candelabro ou axo-axônica. Por último, em magenta vemos a célula OLM e sua projeção para os dendritos apicais distais (Klausberger & Somogyi, 2008) O subículo, área da formação hipocampal localizada entre o córtex entorrinal e o hipocampo, possui três principais camadas: (1) molecular, (2) piramidal e (3) camada polimórfica (Ding, 2013). A camada piramidal possui grandes neurônios piramidais que têm dendritos apicais na camada molecular e os dendritos basais nas porções mais profundas da camada piramidal (O’Mara, 2005). O subículo é uma das estruturas que mais recebe saídas do hipocampo, especificamente da região CA1 que projeta para todas 12 as camadas do subículo, e posteriormente projeta para o córtex entorrinal e outras diversas áreas corticais (Amaral et al., 1991; Ding, 2013; O’Mara, 2005). 1.2 – Formação hipocampal e memória A unidade funcional que compõe a formação hipocampal descrita na seção 1.1 possui um papel fundamental no processo de formação de memórias declarativas. Apesar das primeiras evidências encontradas nos anos 30 (McGaugh, 2000), o indício mais forte da participação da formação hipocampal no processo de formação de memórias declarativas foi visto duas décadas mais tarde no artigo intitulado “Loss of recent memory after bilateral hipocampal lesions” de William Scoville e Brenda Milner (1957). Nesse trabalho, os autores descreveram as cirurgias realizadas em 10 pacientes, onde o paciente H.M. (caso 1), que teve remoção bilateral da formação hipocampal, se tornou a principal evidência da estreita relação entre os processos relacionados à memória e a formação hipocampal (Scoville & Milner, 1957). Esse mesmo paciente sofreu de amnésia anterógrada, e retrógrada parcial, de memórias declarativas e episódicas (Scoville & Milner, 1957), porém manteve a capacidade de aprender e reter habilidades motoras (Milner et al., 1968; Scoville & Milner, 1957). Após os achados desse artigo, várias descobertas foram feitas ao longo das décadas seguintes no que concerne o papel de cada região da formação hipocampal no processo de formação e consolidação de memórias, da anatomia funcional de conexões entre as regiões hipocampais, passando pelos mecanismos moleculares até a codificação específica de informações (Amaral & Witter, 1989; Bliss & Lomo, 1973; Kandel, 2001; O’Keefe & Dostrovsky, 1971). 1.2.1 – Mecanismos eletrofisiológicos e plásticos da memória As investigações sobre o processo de formação de memórias ao longo do século XX parecem ter seguido os preceitos propostos por Donald Hebb no livro intitulado “The Organization of Behavior” (Hebb, 1949). Nesse livro, Hebb propõe que a formação de 13 traços de memória se daria por conexões funcionais que guardariam informações em rede. Através da facilitação de conexões entre os neurônios, esses formariam conjuntamente unidades de informação; essas unidades foram intituladas por Hebb de “assembleias neuronais”. Pela ativação sequencial de múltiplas assembleias neuronais, intitulada de “sequência de fase”, teríamos a codificação de informações mais complexas (Hebb, 1949). As ideias propostas por Hebb levaram ao início de uma variedade de investigações em diversas áreas das neurociências, incluindo o campo da aprendizagem e memória (Brown & Milner, 2003). A posteriori, tais investigações desencadearam a descoberta de características das bases bioquímicas e eletrofisiológicas subjacentes à formação dos traços de memória (Brown & Milner, 2003). O postulado sobre a aprendizagem hebbiana, onde a eficiência da conexão funcional entre neurônios seria proporcional ao grau de atividade entre os neurônios pré e pós-sináptico, obteve o primeiro correlato biológico na década de 70. O mecanismo denominado de potenciação de longa duração (LTP, do inglês long term potentiation) foi descrito por Bliss e Lomo em 1973 em um trabalho de estimulação elétrica em coelhos anestesiados. Os animais, dentre alguns experimentos realizados, foram estimulados com eletrodos de forma rítmica e rápida (estímulos tetânicos de 15 Hz por 10 segundos) na via perforante e registrados em duas localizações: na região da camada molecular conectada monossinapticamente à região de registro (via experimental), e na camada molecular alguns milímetros distantes da região da via experimental (via controle). A estimulação na via experimental resultou no aumento de amplitude no potencial pós-sináptico excitatório populacional na camada granular do giro denteado, que pôde ser visto horas depois do protocolo de estimulação. Porém, a estimulação registrada na via controle não resultou no mesmo aumento de amplitude do potencial pós-sináptico (Figura 7; Bliss e Lomo, 1973). 14 Figura 7. Experimento realizado por Bliss e Lomo em coelhos anestesiados. (A,B) Traçados de potenciais de campo registrados na via experimental e controle antes do protocolo de estimulação (A) e depois do protocolo de estimulação (B). (C) Amplitude dos potenciais pós- sinápticos excitatórios populacionais registrados na região da via controle (círculos brancos) e na região da via experimental (círculos pretos). Os valores representam a porcentagem de quanto a amplitude variou em relação aos registros anteriores ao procedimento de estimulação. Podemos ver o fenômeno de potenciação de longa duração no grupo experimental (Bliss & Lomo, 1973). Ao longo das quatro décadas seguintes, houve vários avanços sobre a relação entre o LTP e mecanismos de plasticidade celular; porém, somente em 2006 foi mostrado que o processo de aprendizagem era capaz de gerar LTP no hipocampo de animais (Whitlock et al., 2006). Após um protocolo de aprendizagem com a tarefa de esquiva inibitória em ratos, Whitlock e colaboradores demonstraram que a região CA1 do hipocampo responde de forma diferenciada, onde pode ser observado aumento, diminuição ou manutenção nos potenciais de campo pós-sinápticos excitatórios populacionais (Whitlock et al., 2006). 15 Estes achados puderam ser vistos mesmo horas após a aprendizagem (Figura 8; Whitlock et al., 2006). Uma das características vistas neste estudo, em que neurônios diminuem a responsividade a outros, é chamada de depressão de longa duração (LTD, do inglês long term depression). O LTD foi posteriormente evidenciado como tão importante quanto o LTP para a plasticidade de conexões funcionais entre neurônios (Feldman, 2012), apesar de não contemplado por Hebb em sua teoria. Para Hebb, o mecanismo de enfraquecimento de conexões não era um fenômeno ativo e sim uma resposta passiva ao fortalecimento de outras conexões (Hebb, 1949). O fenômeno de LTD foi visto pela primeira vez nas fibras musgosas das células de Purkinje do cerebelo (Ito et al., 1982). Figura 8. Experimento com esquiva inibitória realizado por Whitlock et al. (2006). (A) Localização dos eletrodos de registro no hipocampo. (B) Exemplo de traçados registrados por dois eletrodos distintos no painel de cima. O painel debaixo mostra a porcentagem de variação das inclinações das respostas evocadas nos potenciais de campo em relação aos registros antes da tarefa comportamental. As cores quentes mostram registros de eletrodos que exibiram aumento das respostas evocadas e as cores frias eletrodos que exibiram a diminuição ou manutenção das respostas evocadas. Além da ausência de postulados sobre o enfraquecimento de conexões, outra característica pouco explorada por Hebb foi a questão do tempo entre disparos como variável chave na plasticidade das conexões entre neurônios. Apesar de apresentar uma ideia de causalidade temporal ao postular que as assembleias seriam formadas por 16 sequência de ativação de um neurônio após outro, nenhuma ideia nesse sentido foi aprofundada. Desta forma, a teoria de aprendizagem hebbiana clássica vem sendo atualizada desde sua formulação; podemos enumerar alguns postulados que a teoria mais atual trata: (1) a atividade conjunta entre um neurônio pré e pós sináptico; (2) a participação de moduladores nesse processo (Frémaux & Gerstner, 2015); (3) a relação de tempo entre os potenciais de ação pré e pós sináptico como indutor de plasticidade (Figura 9; STDP, do inglês spike-timing-dependent plasticity; Feldman, 2012); (4) o enfraquecimento de conexões como mecanismo importante na plasticidade (Caporale & Dan, 2008; Feldman, 2012; Frémaux & Gerstner, 2015). Figura 9. Mecanismo de plasticidade dependente do tempo de disparo. Painel de cima mostra dois esquemas de pareamento pré-pós sinaptico, onde o neurônio pós- sináptico dispara depois (esquerda) ou antes (direita) do neurônio pré-sináptico. Painel abaixo mostra que quando há pareamento entre os disparos dos neurônios pré e pós há indução de LTP ou LTD, a depender do tempo relativo de disparo entre eles. A ativação não pareada do neurônio pré- ou pós-sináptico não induz LTP ou LTD. Painel debaixo mostra que a magnitude da plasticidade (em %) é inversamente proporcional ao tempo entre os disparos dos neurônios pré e pós sinápticos (Feldman, 2012). 17 As modificações vistas no LTP só são possíveis através de mudanças em cadeias bioquímicas que alteram a estrutura funcional do neurônio, indo das variações de níveis de cátions e ânions em botões sinápticos, até alterações de transcrições de DNA (Caporale & Dan, 2008). Essas diferenciações de mecanismos bioquímicos, genéticos e celulares, necessárias para codificação e manutenção dos traços de memória, são denominadas de plasticidade sináptica, termo cunhado por Jerzy Konorski (Konorski, 1948). Posteriormente, a plasticidade sináptica foi postulada por Hebb como o mecanismo responsável para guardar informação no cérebro (Hebb, 1949). Um grande número de cascatas bioquímicas (Giese & Mizuno, 2013), modificações de expressão de genes (Bliim et al., 2016) até alterações estruturais (Leal et al., 2015) relacionadas a codificação e manutenção de traços de memória foram descritas ao longo do século XX e XXI (Andersen et al., 2006). As alterações mencionadas parecem estar ligadas a modulação do funcionamento de receptores glutamatérgicos do tipo AMPA e NMDA, e seus segundos mensageiros, cujas mudanças são induzidas por proteínas cinases (Izquierdo & Medina, 1997). Bastante resumidamente, após a ativação de receptores glutamatérgicos do tipo NMDA, há aumento nos níveis de cálcio intracelular que por sua vez se liga a calmodulinas (Izquierdo & Medina, 1997). Essas calmodulinas ativam cinases, sendo CAMKII uma das principais cinases envolvidas. Por conseguinte, CAMKII é capaz de afetar a atividade de outras proteínas que participam do remodelamento sináptico (Okamoto et al., 2009), e na modulação de expressão de genes imediatos (Okuno et al., 2012). Seus níveis são aumentados durante o aprendizado (Cammarota et al., 1998), e sua inativação resulta em prejuízos na formação da memória (Lisman et al., 2002). Outras cinases como a família de PKA, C e G, MAPK, ou vias dependentes de segundo mensageiros como cAMP (do inglês, cyclic adenosine monophosphate), são igualmente importantes no processo de modificação sináptica e regulação de expressão gênica (Bernabeu et al., 1997; Giese & Mizuno, 2013). Uma das funções apresentadas pelas cinases envolve a modulação da expressão de genes imediatos que são capazes de regular a expressão de outros genes, bem como se autorregular (Minatohara et al., 2015). O Zif- 268 e o Arc são dois genes imediatos com papeis conhecidos na indução de plasticidade 18 sináptica relacionada a formação e manutenção de memórias (Izquierdo & Cammarota, 2004; Minatohara et al., 2015), e tanto a indução de LTP como novas experiências resultam no aumento de expressão de Zif-268 (Ribeiro et al., 2007, 2002; Ribeiro & Nicolelis, 2004). Outro componente na cadeia de plasticidade sináptica que possui grande importância no processo de formação e manutenção de memórias é o fator trófico derivado do cérebro (BDNF, do inglês brain-derived neurotrophic factor) (Bekinschtein et al., 2014; Leal et al., 2015). Podemos ver um esquema da relação das cinases, genes imediatos e fatores neurotróficos na Figura 10. Figura 10. Figura exemplificando, numa conexão entre CA3 e CA1, mecanismos plásticos relacionados ao LTP. É mostrada uma sequência de modificações que vai do botão sináptico (PK e CAMKII), passando por alterações de expressão gênicas (CREB) até efetores que induzem modificação estrutural (BDNF). 19 Tão importante quanto o funcionamento de receptores glutamatérgicos, são as ações de sistemas de neurotransmissores moduladores, seja através da modulação da atividade dos receptores glutamatérgicos como também das cascatas bioquímicas e de expressão gênica tratadas acima (Blake et al., 2014; Hansen & Manahan-Vaughan, 2012; Knox, 2016; Rossato et al., 2009; Zhang & Stackman, 2015). Sistemas como o colinérgico, noradrenérgico, serotonérgico e dopaminérgico possuem projeções para formação hipocampal (Andersen et al., 2006), e modulam a atividade de cinases, genes imediatos e fatores neurotróficos relacionados a aprendizagem, aquisição e consolidação de memórias (Cammarota et al., 2008; Hansen & Manahan-Vaughan, 2012; Rossato et al., 2009). O sistema dopaminérgico, por exemplo, é implicado tanto na aquisição como na manutenção da memória (França et al., 2016, 2015; Rossato et al., 2009). Já foi visto que a modulação da atividade de receptores dopaminérgicos da família D1 no hipocampo leva a persistência de memórias de longo prazo (Rossato et al., 2009). Essa persistência da memória é relacionada à plasticidade induzida por BDNF, na janela de tempo de 12 horas após a aquisição da memória (Rossato et al., 2009). Mais especificamente, é relacionada à indução de plasticidade nos dendritos apicais de neurônios piramidais da região CA1 (Navakkode et al., 2012) e à plasticidade induzida em interneurônios parvalbumina positivos da região CA1 (Karunakaran et al., 2016). A modulação de receptores dopaminérgicos do tipo D2 também é relacionada ao processo de aquisição e consolidação das memórias (França et al., 2016, 2015). A injeção de antagonista de receptores D2 leva à diminuição em cadeia da cinase dependente de cálcio ao longo de 3, 6 e 12 horas após a injeção; a diminuição da expressão do gene imediato Zif-268 é vista 6 horas após a injeção e, por último, a diminuição de BDNF é vista 12 horas após a injeção (França et al., 2015). Estes resultados estão de acordo com a janela de tempo da ação de BDNF (Navakkode et al., 2012; Rossato et al., 2009). Possivelmente, a ação de receptores D2 se dá através do controle do sono REM (França et al., 2015), que é relacionado aos processos plásticos da consolidação das memórias (Ribeiro et al., 2007; Ribeiro & Nicolelis, 2004). 20 O sistema colinérgico também é relacionado ao processo de aprendizagem (Martí Barros et al., 2004) e sua ação é estreitamente ligada ao sistema dopaminérgico, ocorrendo através de inputs colinérgicos em núcleos dopaminérgicos (de Kloet et al., 2015; Subramaniyan & Dani, 2015). Diferentes receptores colinérgicos do tipo nicotínico participam de diferentes processos cognitivos (Levin, 2002), e a transmissão colinérgica modula a potenciação de longa duração na região CA1 (Al-Onaizi et al., 2016). Os anexos 1, 2 e 3 desta tese discutem o papel dos sistemas dopaminérgicos e acetilcolinérgicos, trazendo evidências comportamentais, moleculares e eletrofisiológicas em intervenções psicofarmacológicas em camundongos submetidos a tarefas cognitivas hipocampo- dependentes. 1.2.2 – Formação hipocampal e a memória reconhecimento Em geral, as investigações sobre memória envolvem a manipulação farmacológica (sistêmica ou localizada). ou lesões específicas de estruturas ou vias da formação hipocampal (descrita na seção 1.1). Tais manipulações são acompanhadas da verificação do comportamento do animal em alguma tarefa e/ou a verificação dos níveis de moléculas relacionadas à memória (descritas na seção 1.2). Dentro desse contexto, testes de reconhecimento de objetos foram propostos em 1988, sendo mostrado a tendência natural do roedor de explorar a novidade em detrimento da familiaridade (Ennaceur & Delacour, 1988). Posteriormente, esses testes foram empregados para investigar a função de regiões, circuitos, células e moléculas na formação, consolidação e evocação de memória (Antunes & Biala, 2012; Blaser & Heyser, 2015). Vale citar que a utilização do paradigma de reconhecimento de objetos também é aplicado para o estudo de doenças relacionadas ao sistema nervoso central, como esquizofrenia (Rajagopal et al., 2014), Alzheimer (Bengoetxea et al., 2015), Parkinson e autismo (Grayson et al., 2015). A capacidade de reconhecimento de padrões, objetos, lugares e contextos está ligada à formação hipocampal (Brun et al., 2002a; Daumas et al., 2005; Dere et al., 2007; Nakazawa et al., 2002; Suzuki et al., 1997). Como explicitado na seção 1.2.1, o 21 funcionamento de receptores NMDA como indutor de plasticidade, seja por mecanismo de LTP ou LTD, está ligado ao processo de manutenção de memória. Foi observado por Kem e Manahan-Vaughan (2004) que a exploração de objetos novos facilita o mecanismo de LTD e dificulta o mecanismo de LTP no stratum radiatum da região CA1 (Kemp & Manahan-Vaughan, 2004). O uso de drogas antagonistas à ação de AMPA ou NMDA, aplicadas sistemicamente ou intra-hipocampal, prejudica a aquisição e a consolidação de memórias ligadas ao reconhecimento de objetos (Dere et al., 2007). Mais especificamente, camundongos knock-out para a subunidade 1 do receptor NMDA (que inviabiliza a função do receptor) na região CA1 do hipocampo possuem prejuízo no reconhecimento de objetos e na tarefa de associação de medo ao contexto; no entanto, a capacidade de reconhecimento é recuperada ao induzir plasticidade na região CA1 através de exposição a ambientes enriquecidos (Rampon et al., 2000). Já animais knock-out para os receptores NMDA na região CA3 possuem capacidade de reconhecimento e reativação de memória espacial; porém, estes animais exibem prejuízo da memória quando há diminuição das pistas espaciais no momento da reativação, o que revela o envolvimento de CA3 em memórias associativas ao contexto (Nakazawa et al., 2002). A modulação de receptores dopaminérgicos influencia na discriminação de objetos e contextos (França et al., 2016, 2015; Melichercik et al., 2012; Puma et al., 1999; Tian et al., 2015). Animais knock-out total ou parcial para o transportador de recaptação da dopamina da fenda sináptica (modelos de hiperdopaminergia) apresentam mudança no padrão da procura e interação com objetos novos (Pogorelov et al., 2005), déficit em reconhecimento de objetos (França et al., 2016) e no completamento de padrões (Li et al., 2010). Estes resultados mostram a importância da dopamina balanceada no momento da codificação de memórias. A capacidade de discriminação de objetos é recuperada ao utilizar antagonista de receptores D2 (haloperidol 0.05 mg/Kg) na fase de codificação da memória nos camundongos com knock-out parcial para o transportador dopaminérgico (França et al., 2016). Quando o antagonista de receptores D2 (haloperidol 0.3 mg/Kg) é utilizado em camundongos selvagens na fase posterior à codificação dos objetos, pode ser observado o prejuízo na discriminação de objetos junto a uma diminuição de cascatas moleculares relacionadas a traços de memória (França et al., 2015). Drogas que modulam 22 receptores D1/D5 também interferem na discriminação de objetos; por exemplo, um agonista D1/D5 injetado pós-treino (SKF 10 mg/Kg) prejudica a discriminação de objetos novos (de Lima et al., 2011). A modulação da atividade de receptores colinérgicos também pode causar prejuízo ou aumentar a discriminação de objetos novos e contextos (Anexo 3; Gould & Lommock, 2003; Kutlu & Gould, 2015; Puma et al., 1999; Tian et al., 2015). A nicotina, que atua em receptores colinérgicos, leva a um aumento na discriminação de objetos e contextos em baixas doses (0.1 – 0.4 mg/Kg) (Gould & Lommock, 2003; Puma et al., 1999; Rezvani & Levin, 2001), mas em altas doses (1.5 mg/Kg) prejudica a discriminação de objetos e espaços (Anexo 3). Camundongos submetidos à dose de 1.5 mg/Kg pré- treino passam a preferir o objeto familiar em detrimento do objeto novo (Anexo 3). A mesma dose injetada após a fase de codificação de memória reverte o padrão de exploração (Anexo 3). A exploração de contextos novos leva a uma assinatura eletrofisiológica na atividade de campo local nas regiões CA1 e CA3 do hipocampo (Berke et al., 2008), enquanto a associação contextual leva a um aumento no acoplamento entre a atividade oscilatória de teta e gama na região CA3 (Tort et al., 2009). A conexão entre o córtex entorrinal e CA1 parece ter papel chave para localização e reconhecimento espacial, já que a ausência de CA3 não afeta o reconhecimento de novos ambientes; a conexão entre o córtex entorrinal e CA1 parece ser suficiente para manter a codificação de espaço por células de lugar em CA1, e a capacidade de reconhecimento de lugar (Brun et al., 2002). Tais características relacionadas a atividades oscilatórias serão discutidas na seção 1.4. 1.3 – Modulação da codificação de memória de reconhecimento pelas células OLMα2 (Artigo 1). Como dito seção 1.1, o hipocampo apresenta uma variedade de interneurônios GABAérgicos em diferentes camadas que modulam a atividade das células piramidais (Freund & Buzsáki, 1996). As projeções axonais perisomáticas tendem a inibir as saídas dos neurônios piramidais, enquanto que as dendríticas inibem as entradas (Klausberger 23 & Somogyi, 2008). Os interneurônios na região CA1 que possuem corpos celulares no stratum oriens e projeções axonais enviadas para o stratum lacunosum-moleculare são denominadas de células OLM (Figura 5 e 11). As células OLM modulam a atividade dos neurônios piramidais através da inibição de seus dendritos apicais distais (Amaral & Witter, 1989). As células OLM recebem projeções diretas de neurônios colinérgicos, que por sua vez são relacionados a aprendizagem e consolidação de memórias (Bunce et al., 2004; Easton et al., 2012; Elvander et al., 2004). Figura 11. Imagem de reconstrução do neurolúcida de dois interneurônios. Em preto o soma e dendritos, e em vermelho os axônios de um interneurônio IS-III que modula a atividade de células OLM. Em verde o corpo celular e os dendritos no stratum oriens, e em azul os axônios projetados no stratum lacunosum- moleculare de um célula OLM (Chamberland & Topolnik, 2012). 1.3.1 – Sistema Cre-loxp, optogenética e o controle das células OLMα2. As células OLM foram caracterizadas através de animais transgênicos, e ferramentas eletrofisiológicas e optogenéticas por Leão e colaboradores (2012). Nesse trabalho foi verificado que a subunidade α2 do receptor colinérgico (Chrnα2) é expressa, dentro do hipocampo, exclusivamente nas células OLM do CA1, o que possibilitou usá- la como marcador molecular desta subpopulação de células OLM (Leão et al., 2012; Mikulovic et al., 2015), aqui referida como “células OLMα2”. Para conseguir controlar a atividade dos interneurônios OLMα2 de forma específica, foi utilizado o sistema de manipulação genético Cre-loxp (Leão et al., 2012). Esse sistema foi descoberto no vírus bacteriófago P1, que o utiliza para reparação e 24 estabilização de ADN durante a infecção da bactéria alvo (Sauer, 1998). O Cre-loxp utiliza duas variáveis importantes: (1) Cre recombinase, uma enzima que identifica pares de sequências específicas de ADN e inverte sua sequência (por exemplo, 3’-5’ para 5’- 3’); e (2) loxp, que é uma sequência de 13-bp invertida identificada pela Cre recombinase (Brault et al., 2007; Fenno et al., 2011; Sauer, 1998). O uso desse sistema de identificação e inversão da sequência de ADN pode ser associado a uma grande variedade de manipulações genéticas (Brault et al., 2007). Por exemplo, através da inserção de genes de interesse flanqueados pela sequência de loxp, e pela interação com a Cre recombinase, é possível estabelecer o knock-out e o knock-in de genes específicos, ou a expressão de genes em células específicas (Brault et al., 2007). A optogenética é uma técnica experimental moderna que utiliza rodopsinas para manipular a atividade de subtipos específicos de neurônios (Fenno et al., 2011). As rodopsinas são estruturas proteicas que incluem canais ou bombas iônicas, cuja conformação tridimensional é modificada na presença de luz em faixas comprimento de onda específicos (Deisseroth, 2011). Existem diversos canais ou bombas iônicas sensíveis à luz; por exemplo, o canal de cátions ChR2 (channelrodopsin-2) é oriundo de uma espécie de alga verde, e a bomba de prótons Arch (archaerhodopsin) oriunda de archaea bactérias (Madisen et al., 2012; Schneider et al., 2015). O canal de cátions ChR2 é sensível ao comprimento de onda de ~473 nm, que corresponde ao azul. Na presença da luz azul, sua conformação é modificada e o canal permite a passagem de cátions (principalmente sódio) para dentro da célula, provocando a despolarização da membrana e facilitando a atividade neuronal (Schneider et al., 2015). Já a bomba de prótons Arch é sensível à luz de comprimento de onda 532 nm; na presença de luz verde, Arch retira prótons de dentro para fora da célula, provocando hiperpolarização da membrana (Madisen et al., 2012). Leão e colaboradores (2012) associaram o sistema de Cre-loxp à optogenética para manipular especificamente as células OLMα2. Um animal transgênico foi desenvolvido utilizando Chrnα2 (a proteína que é expressa no hipocampo exclusivamente nas células OLM) como promotor da expressão de Cre recombinase e de um marcador bioluminescente vermelho (tomato) para identificar as células Cre+. Dessa forma, 25 somente os neurônios OLM se tornaram Cre+ (Leão et al., 2012). Posteriormente, utilizando a estratégia doublefloxed inverted open-reading-frame (DIO; Figura 12), foram injetados nos animais Chrnα2-Cre/Tomato vetores virais duplamente flanqueados por lox contendo o gene de ChR2. Dessa maneira, o canal ChR2 foi exclusivamente expresso em células Chrnα2-Cre/Tomato infectadas (Leão et al., 2012). Um esquema da associação entre as ferramentas Cre-loxp e optogenética pode ser visto na Figura 12. Figura 12. Esquema do funcionamento do sistema Cre-loxp utilizando a estratégia de doublefloxed inverted open-reading-frame (DIO). Podemos observar em (a) o esquema da injeção viral, que infecta tanto células Cre+ (onde o Cre é expresso) e Cre- (onde não há expressão de Cre). A inversão da sequência específica de ADN só ocorre nas células Cre+. (b) Esquema do conteúdo da injeção viral. A primeira sequência gênica possui 5 genes: EF1α corresponde ao promotor; loxp corresponde à sequência a ser identificada e invertida por Cre; lox2722 é a sequência de parada; eYFP é o gene que codifica uma proteína bioluminescente; ChR2 é o gene que codifica o canal sensível à luz. Note que a sequência de eYFP e ChR2 está invertida. Ao final do processo, Cre identifica o loxp e inverte a sequência de eYFP e ChR2, que passam a ser expressas exclusivamente nas células Cre+ (Fenno et al., 2011). 26 1.3.2 – Células OLMα2 e o controle das entradas do córtex entorrinal Leão e colaboradores (2012) verificaram que as células OLMα2 modulam a atividade dos neurônios piramidais inibindo os dendritos apicais distais no stratum lacunosum-moleculare, e tal modulação diminui entradas do córtex entorrinal (Figura 13; Leão et al., 2012). Essa evidência foi obtida através de protocolos de indução de LTP em fatias de hipocampo. Em particular, os autores estimularam eletricamente a via têmporo- amônica (via de comunicação entre o córtex entorrinal com a região CA1) e registraram respostas de potencial de campo no stratum lacunosum-moleculare. Foram investigados dois animais transgênicos: (1) animal Chrna2-cre, e (2) animal Chrna2-cre/Viaatloxp/loxp, que não possuem transportadores vesiculares GABAérgicos nas células OLMα2, inviabilizando a função inibitória destes interneurônios. Ambos animais foram sujeitos à injeção hipocampal de vírus contendo o gene de ChR2 flanqueado por lox; portanto, em ambos animais as células OLMα2 tornaram-se sensíveis à luz azul. Ao estimular a via têmporo-amônica e registrar nas fatias dos animais Chrna2-cre sem incidência concomitante de luz, houve um aumento das respostas em relação à linha de base, indicando um aumento de excitabilidade característica do fenômeno de LTP (Leão et al., 2012). Entretanto, ao associar a estimulação elétrica da via têmporo-amônica com a incidência da luz azul, a potenciação da resposta pós-sináptica foi significativamente menor, indicando que as células OLMα2 – estimuladas optogeniticamente – inibiram a indução de LTP (Leão et al., 2012). Por último, ao utilizar animais Chrna2- cre/Viaatloxp/loxp, pôde-se verificar uma potenciação ainda maior que nas duas condições anteriores, corroborando a função inibitória das células OLMα2 sobre a via têmporo- amônica (Leão et al., 2012). Esse trabalho também mostrou que as células OLMα2 inibem interneurônios localizados no stratum radiatum que modulam as entradas de CA3 pela via colateral de Schaffer, facilitando assim a conexão CA3-CA1 (Leão et al., 2012). Por último, foi verificado que as células OLMα2 se conectam entre si por sinapses elétricas e recebem projeções colinérgicas diretas (Leão et al., 2012). Um esquema da conectividade apresentada pelas OLM pode ser visto na Figura 14. 27 Figura 13. Experimento de estimulação da via temporo- amônica em três condições experimentais: (1) Fatias de hipocampo de animais Chrna2- cre que expressam canais de sódio sensíveis à luz (ChR2) mas na ausência de luz (branco). (2) Como em (1) mas na presença de luz azul (preto). (3) Fatias de animais Chrna2- cre que expressam ChR2 mas não expressam transportador vesicular de GABA nas células OLMα2 (vermelho). Nesse experimento, a via têmporo-amônica é estimulada e o registro ocorre no stratum lacunosum-moleculare. As fatias da condição 2 exibem menor LTP, mostrando que as células OLMα2 modulam sinapses do córtex entorrinal para a região CA1. Figura 14 Esquema de conexões entre as células OLMα2 (laranja) e neurônios piramidais (preto) da região CA1. Pode ser visto as conexões elétricas entre as células OLMα2, a conexão inibitória entre células OLMα2 e interneurônios do stratum radiatum, e conexão inibitória entre células OLMα2 e neurônio piramidal no stratum lacunosum-moleculare. Pode ser visto também o input oriundo de neurônios colinérgicos (verde) a células OLMα2 (Leão et al., 2012). A região CA1 do hipocampo está implicada em aprendizagem e consolidação de memórias (Tsien et al., 1996), bem como na codificação de informações do ambiente 28 (Lenck-Santini et al., 2005), reconhecimento de objetos (Rampon et al., 2000), e condicionamento ao medo (Ji & Maren, 2008; Lee & Kesner, 2004). Levando em conta que (1) lesão da camada do córtex entorrinal que projeta para a região CA1 prejudica a localização espacial e a atividade das células de lugar (Brun et al., 2008; Van Cauter et al., 2008), e que (2) as células OLM atuam na organização temporal de oscilações na frequência de teta (Forro et al., 2015) relacionadas a processos cognitivos hipocampo- dependentes (Tort et al., 2009), nós hipotetisamos que as células OLMα2 podem controlar a formação de memórias hipocampo-dependentes. Para testar nossa hipótese, o artigo 1 desta tese investigou a participação das células OLMα2 na modulação da codificação da memória de objetos explorados em um campo aberto, e também na formação de uma nova memória associativa de medo a um contexto. Utilizando camundongos Chrna2-cre e ferramentas optogenética, fomos capazes de modular especificamente a atividade das células OLMα2 nas tarefas de reconhecimento de objetos (NOR, do inglês novel object recognition) e numa tarefa de esquiva contextual passiva. Descobrimos que a ativação optogenética de células OLMα2 pareada ao momento em que os animais exploram um objeto específico ("objeto iluminado") prejudica o seu reconhecimento subsequente, mas não afeta o reconhecimento de um segundo objeto que não teve pareamento com a ativação de células OLMα2 ("objeto não iluminado"). Por outro lado, a inibição de células OLMα2 aumenta seletivamente a memória de reconhecimento para o “objeto iluminado". A estimulação de células OLMα2 enquanto os animais não estavam engajados na exploração dos objetos não afetou a memória de reconhecimento. Finalmente, descobrimos que a ativação de células OLMα2 durante o treino na tarefa de esquiva contextual passiva também prejudica a aquisição desta memória associativa. Concluímos que as células OLMα2 possuem papel chave no controle da codificação das memórias hipocampo-dependentes, seja de objeto ou contextual. Provavelmente esse resultado é devido à capacidade das células OLMα2 de filtrar informação multimodal transmitida do córtex entorrinal para o hipocampo. 29 1.4 – Oscilações hipocampais e detecção de novidade (Artigo 2) Como dito na seção 1.2, o processo de aprendizagem, aquisição e consolidação de memórias leva a algumas assinaturas eletrofisiológicas (Berke et al., 2008; Hafting et al., 2005; O’Keefe & Dostrovsky, 1971; Tort et al., 2009). O estudo de oscilações em potenciais de campo local (LFPs, do inglês local field potential) é uma abordagem importante para o entendimento do funcionamento do sistema nervoso central. A compreensão dos ritmos cerebrais pode elucidar diversas características fisiológicas, desde atividades sinápticas até os circuitos envolvidos na formação de memórias e na transferência de informações entre regiões do cérebro. Diversos estudos ao longo das últimas décadas visaram relacionar a atividade oscilatória neuronal com a expressão de comportamentos (Brankack et al., 1993; Buzsáki et al., 2012; Buzsáki & Draguhn, 2004; Buzsáki & Watson, 2012). As oscilações corticais resultam de atividades eletroquímicas das membranas excitáveis; há participação de neurônios excitatórios e inibitórios com diferentes pesos na formação das oscilações (Buzsáki et al., 2012). As oscilações podem ser detectadas em neurônios individuais (Kamondi et al., 1998), mas são comumente investigadas na escala mesoscópica do potencial de campo local (Buzsáki & Draguhn, 2004), que representa a atividade de um conjunto de neurônios (Figura 15). Entre as funções atribuídas à atividade oscilatória, estão a modulação da excitabilidade de neurônios, sincronia de atividade neuronal, transferência de informações entre áreas do cérebro e combinação de informações (Buzsáki & Draguhn, 2004). 30 Figura 15 Exemplo de registros de atividade de neurônio individual e de populações neuronais (LFP) (Buzsáki et al., 2012). No hipocampo, muitos estudos têm centrado no papel das oscilações teta (5-12 Hz; Buzsáki, 2002; Vanderwolf, 1969; Winson, 1978), oscilações gama (30-100 Hz; Colgin et al., 2009; Csicsvari et al., 2003; Montgomery & Buzsáki, 2007), oscilações de alta-frequência (110-160 Hz; Scheffer-Teixeira et al., 2013, 2012; Tort et al., 2013), e oscilações ripples (150-250 Hz; Buzsáki et al., 1992; Ego-Stengel & Wilson, 2010; Girardeau et al., 2009) em diferentes comportamentos e estados cognitivos (Figura 16). Estas oscilações neuronais também variam de acordo com o estágio do ciclo sono e vigília (Gervasoni et al., 2004). Entre resultados recentes que relacionaram oscilações neuronais com funções cerebrais, citamos a modulação de oscilações de altas frequências por oscilações de baixas frequências durante tomada de decisão (Tort et al., 2008); o aumento de acoplamento entre teta e gama durante uma tarefa de distinção de contextos (Tort et al., 2009); e o déficit de memória espacial em ratos através de supressão da atividade de ondas ripples do hipocampo (Ego-Stengel & Wilson, 2010; Girardeau et al., 2009). 31 Figura 16. Exemplos de traçados de sinais brutos de potenciais de campo local do hipocampo. Cores dos traçados correspondem a faixa de frequência indicada na escala de cor abaixo, em preto o sinal de potencial de campo local filtrado nas frequências indicadas. De relevância para a presente tese, o trabalho de Berke e colaboradores (2008) mostrou uma associação entre o aumento de potência da oscilações beta2 (23 -30 Hz) e a exploração de ambientes novos. Esse trabalho mostrou que o beta2 aumenta de forma transiente no início da exploração de um ambiente novo, e que os neurônios da região CA1 e CA3 do hipocampo são acoplados a esta oscilação (Figura 17; Berke et al., 2008). Nesse trabalho é colocada a hipótese de que a oscilação beta2 constitui um estado funcional discreto do hipocampo que permite a plasticidade durante a aprendizagem de novos contextos (Berke et al., 2008). Beta2 seria dependente de transmissão de receptores NMDA (Berke et al., 2008), que por sua vez é envolvido com aprendizagem rápida (Nakazawa et al., 2003). 32 Figura 17 Espectros de potência onde pode ser visto o aumento transitório de potência na faixa 23-30 Hz em um ambiente novo, mas não em um familiar (Berke et al., 2008). De toda forma, se torna curioso o porquê de uma oscilação que é sugerida como componente do processo de aprendizagem de novos contextos não ter sido descrita anteriormente na literatura, principalmente levando-se em conta que o hipocampo é uma estrutura bastante estudada e que, segundo os achados de Berke e colaboradores (2008), a oscilações beta2 possuiriam magnitude similar às bem descritas oscilações teta. O artigo 2 desta tese investiga o aparecimento de oscilações beta2 na detecção de novidade. Através de registros com múltiplos eletrodos isolados no hipocampo, córtex motor primário e córtex somato-sensorial primário, caracterizamos as oscilações beta2 em camundongos durante o teste de reconhecimento de objetos. Encontramos que beta2 aparece de forma transiente durante a exploração de novos objetos. Verificamos também que esta oscilação não está presente no córtex motor primário nem no córtex somato- sensorial, mas somente no hipocampo. Consistente com esse achado, somente neurônios hipocampais são modulados pela fase de beta2, mas não neurônios neocorticais. Verificamos também que uma intervenção farmacológica que prejudica a consolidação 33 da memória de reconhecimento é capaz de modificar o padrão de aparecimento das oscilações beta2. Estes resultados dão suporte à hipótese de que as oscilações beta2 participam no processo de detecção de novidade, provavelmente sinalizando períodos para a ocorrência de plasticidade na rede. 34 2.0 – Artigo 1 Submetido para Neuron como Report OLMα2 cells control encoding of recognition and avoidance memory Arthur S. C. França1#,, Samer Siwani2#, Amilcar Reis2, Sanja Mikulovic2, Markus M. Hilscher1,2, Steven J. Edwards2, Richardson N. Leão1,2, Adriano B. L. Tort1, Klas Kullander2* # The first two authors contributed equally to this work. Running title: OLMα2 cells control memory encoding 1Brain Institute, Federal University of Rio Grande do Norte, Brazil. 2Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden. *Corresponding author: Klas Kullander: klas.kullander@neuro.uu.se Keywords: OLM cells; Object Recognition; Passive Inhibitory Avoidance; Memory. 35 SUMMARY Learning and memory depend on several brain structures and a variety of cell types within these structures. That inhibitory interneurons participate in mnemonic processes is undisputed; however, defined roles for identified interneuron populations are still scarce. Oriens lacunosum-moleculare (OLM) interneurons are positioned to control the flow of information into CA1. In particular, a subpopulation of OLM cells genetically defined by the expression of the nicotinergic receptor α2 subunit has been shown to gate information carried by either the temperoammonic pathway or Schaffer collaterals in vitro. Here we set out to determine whether selective modulation of OLMα2 cell activity can affect learning and memory in vivo. Our data show that OLMα2 cells control encoding of object and contextual fear memories in freely moving mice, suggesting that OLMα2 cells are an important component in the CA1 microcircuit regulating learning and memory processes. 36 INTRODUCTION The hippocampus has a variety of GABAergic interneurons that inhibit pyramidal cells in distinct subcellular domains (Freund and Buzsáki, 1996). While interneurons targeting perisomatic domains gate pyramidal cell output, dendritic- targeting interneurons modulate pyramidal cell input (Klausberger and Somogyi, 2008). Among the latter, oriens lacunosum-moleculare (OLM) cells have soma located in stratum oriens and send axonal projections to the distal dendrites of pyramidal cells in stratum lacunosum-moleculare, where inputs from the temporo-ammonic pathway arrive (Leão et al., 2012). OLM cells are thus positioned to control the entrance of multimodal information from the entorhinal cortex into the hippocampus. The hippocampal CA1 area is involved in the recognition of familiar objects (Basu et al., 2016; Rampon et al., 2000) as well as in contextual fear conditioning (Basu et al., 2016; Ji and Maren, 2008; Lee and Kesner, 2004), but the underlying neuronal circuitry remains largely unknown. In CA1, OLM cells that specifically express the nicotine acetylcholine receptor α2 subunit (encoded by the Chrna2 gene) form a genetically defined population of neurons (Leão et al., 2012), referred to as OLMα2 cells. We have previously shown that OLMα2 cells control the flow of information into CA1, facilitating transmission from CA3 while inhibiting entorhinal cortex inputs (Leão et al., 2012; Mikulovic et al., 2015). Interestingly, OLMα2 cells receive direct cholinergic transmission (Leão et al., 2012), and acetylcholine has been implicated in learning and memory processes (Elvander et al., 2004; Tian et al., 2015). Further, the interconnectivity between the neocortex and hippocampus is essential to memory formation (Brun et al., 2008). Because multimodal information about objects and contexts reaches CA1 through the temporoammonic pathway (Amaral and Witter, 1989), we hypothesized that OLMα2 cells could play a role in the encoding of new object representations and contextual fear memory. To test this hypothesis, we activated or silenced OLMα2 cells in freely moving Chrna2-cre mice during 37 training in novel object recognition (NOR) and contextual passive avoidance tasks. RESULTS To study the role of OLMα2 cells in memory encoding, we crossbred Chrna2-cre with tdTomato reporter mice to visualize red fluorescent Chrna2-cre expressing cells in the hippocampus (Figure 1A). Corroborating our previous study (Leão et al., 2012), the tomato protein was specifically expressed in OLM cells, that is, interneurons with soma in stratum oriens and massive projections to stratum lacunosum-moleculare (Figure 1A and Video S1). We delivered the light-gated cation channel channelrhodopsin (ChR2) or the proton pump archeorhodopsin (Arch) via bilateral injection of double-floxed inverted open-reading-frame adeno- associated viral vectors to the intermediate hippocampus (Figure 1B and D). Successfully infected OLMα2 cells also expressed the virally encoded yellow fluorescent protein (EYFP) (Figure 1A-D). We performed patch-clamp recordings to corroborate that OLMα2 cells became responsive to light. Rhythmic application of blue light at 8 Hz increased spiking in OLMα2 cells expressing ChR2 (Figure 1C). Conversely, green light inhibited spiking in OLMα2 cells expressing Arch (Figure 1E). We also examined the expression of the immediate early gene c-Fos following light stimulation of ChR2-expressing OLMα2 cells in freely moving animals implanted with optical fibers (Figure 1F and G; see Experimental Procedures). The number of cells in the stratum oriens that became immunopositive for c-Fos after in vivo light stimulation in ChR2 animals (Chrnα2- cre mice injected with ChR2 virus) was significantly increased compared to control mice (Chrnα2-cre mice injected with a sham virus; Figure 1G). These results show that optogenetic tools can control OLMα2 cell activity in freely moving animals. We next investigated the behavioral consequence of activating OLMα2 cells in hippocampal-dependent memory tasks. The recognition of novel objects 38 constitutes a test of episodic-like memory and is impaired in rodents with hippocampal lesions (Antunes and Biala, 2012; Blaser and Heyser, 2015). We used a novel object recognition task in which animals were allowed to explore two different objects during 10 minutes in two sessions, named training and test sessions. We first subjected mice to experimental protocols in which - in the training session - a computer coupled to a detection system delivered blue light to both hippocampi of control and ChR2 animals during exploration of one of the two objects (lit object) but not during exploration of the other object (non-lit; Video S2). In the test session performed 24 hours later, the mice were re-exposed to one familiar and one new object. In the protocol named “non-lit object replaced”, animals were exposed to the previously lit object and a new object in the test session. Control animals spent more time exploring the new object than ChR2 animals, who explored the new and the previously lit object equally (Figure 2A, Tables S1 and S2), indicating impairment in object recognition. In a control experiment (“lit object replaced”), animals were exposed to the non-lit object and a new object, i.e. two objects not previously associated with OLMα2 cell modulation. In this protocol, both ChR2 and control animals spent more time exploring the new object, with no difference between groups (Figure 2B, Table S1 and S2). Thus, light-stimulation of OLMα2 cells during encoding selectively impaired encoding of memory for the lit object. Since the length of the intersession interval relates to performance in the object recognition test (Hammond et al., 2004), we next investigated if activating OLMα2 cells would also impair object recognition with an intersession interval of one hour. We found similar results as in the 24-hour protocols: ChR2 animals spent equal time with the new and previously lit object, but recognized the non-lit object (Figure 2C and D, Tables S1 and S2). We therefore used 1-hour intersession intervals in subsequent protocols. We next investigated the effect of inhibiting OLMα2 cells on object recognition. To that end, we delivered green light during training to mice whose OLMα2 cells expressed Arch (Arch animals). In the test session with the non-lit 39 object replaced, both Arch and control animals exhibited preference for the new object (Table S2). Remarkably, Arch animals spent significantly more time exploring the new object than the previously lit object compared to control animals (Figure 2E, Tables S1 and S2). In contrast, replacing the lit object by a new object did not result in any significant differences between groups (Figure 2F, Tables S1 and S2), showing that light-inhibition of OLMα2 cells selectively improved discrimination for the lit object. In a set of control experiments, we stimulated OLMα2 cells while ChR2 animals were in the arena but disengaged from object exploration. This had no effect on the object preference in the test session (Figure 2E and Tables S1 and S2). Likewise, light stimulation of OLMα2 cells after the training session did not produce any measurable differences between ChrR2 animals and controls, with both groups showing the expected exploration preference for the novel object in the test session (Figure 2G and Tables S1 and S2). Interestingly, and consistent with our findings above, ChR2 but not control animals explored the lit object significantly more when both the lit and non-lit objects were kept in the test session (Figure 2I, Table S1 and S2), suggesting that ChR2 animals perceived the previously lit object as a new object. Previous studies have shown that CA1 is involved in contextual fear conditioning (Corcoran et al., 2005; Rudy and Matus-Amat, 2005), and that somatostatin positive interneurons play a role in fear learning (Lovett-Barron et al., 2014). We next investigated whether OLMα2 cells may also be involved in the encoding of contextual fear memories using a passive inhibitory avoidance task. We used an arena with a brightly lit and a dark compartment. During training sessions, the animals received a foot shock in the dark compartment in order to acquire an aversion to this normally preferred compartment in future exposures to the arena (test sessions). ChR2 animals that were light-stimulated during training (i.e., during foot shock delivery) displayed significantly lower latency to enter the dark compartment in the test sessions compared to control animals (Figure 3, Table S3 and Video S3). Moreover, ChR2 mice also showed 40 significantly higher velocity compared to controls. In contrast, mice whose OLMα2 cells expressed Arch and were light-inhibited during the training sessions showed no difference in latency or velocity compared to controls (Figure 3, Table S3). Thus, whereas inhibition of OLMα2 cells had no effect, activation of OLMα2 cells impaired contextual fear memory encoding. DISCUSSION Our results show that OLMα2 cells can control memory encoding, either object or contextual representations. Light-mediated activation of OLMα2 cells resulted in impaired learning when animals were tested for object as well as emotion-related memories. In contrast, inhibition resulted in improved object recognition but did not affect emotion-related memories. In this in vivo study, light was applied only when animals were interacting with the object, as automatically determined by a computer by snout direction and proximity to the object. This ensured objectivity in onset of light-induced activation or inhibition of OLMα2 cells. In addition, we have focused on behaviors that were readily quantifiable and objectively measured by computer software. Post- experiment analysis confirmed the proper location of viral injections and insertion of the light probe into the intermediate hippocampus. We used stimulation frequencies matching those previously measured in vivo in OLMα2 cells (Forro et al., 2015; Mikulovic et al, submitted), to as far as possible mimic endogenous activity. By using the clarity method (Chung and Deisseroth, 2013), we estimated the number of OLMα2 cells reached on each side to 338 out of a total of 3124 in the cleared hippocampus, based on our measured light power at ~1.5 mW/mm2 at 1 mm, which should suffice to induce activity (Video S1; Histed and Maunsell, 2014; Niyuhire et al., 2007). Corroborating this, we observed robust changes in behavior associated to light stimulation. In CA1, the intrahippocampal input from CA3 projects on proximal apical dendrites of pyramidal cells whereas the direct external input from the entorhinal 41 cortex contacts the distal apical tuft dendrites (Kajiwara et al., 2008; Takahashi and Magee, 2009). The intrahippocampal and indirect pathway is primarily responsible for pattern separation and completion and association of diverse sets of information, whereas the direct pathway seems more important for recognizing the novelty of an event or context (Andersen et al., 2006; Lisman and Otmakhova, 2001). Part of the multimodal information necessary for object and context recognition is directly related to the EC-CA1 connections through the temporoammonic pathway (Brun et al., 2008; Daumas et al., 2005; van Groen et al., 2003). Consistent with this, our findings suggest that when CA1 OLMα2 cells are activated and suppress distal direct inputs, learning is severely attenuated due to blockade of information mediated by the direct inputs from the entorhinal cortex. In further support, in the reverse situation, when OLMα2 cells were inactivated during learning, object recognition was improved. This result suggests that OLMα2 cells can potentially be used as a target for improving learning. Of note, dysfunctional OLM cell activity has been recently associated to memory deficits in an animal model of Alzheimer’s disease (Schmid et al., 2016). We found that OLMα2 cell activation also affected contextual fear learning. In the passive inhibitory avoidance test, mice which received OLMα2 cell activation concomitant with a foot shock maintained similar latency to enter in the dark compartment (shock associated) as in the training day, while control animals increased the latency showing normal encoding for the contextual fear memory. Indeed, rodents depend on the integrity of the hippocampus to produce contextual fear memories (Rudy and Matus-Amat, 2005; Wiltgen et al., 2006). In contrast, however, OLMα2 cell inactivation did not affect context fear memories. This is seemingly at odds with a previous study, which demonstrated that the inactivation of somatostatin positive interneurons in the oriens layer prevented fear learning (Lovett-Barron et al., 2014). This may be explained by the use of different genetic mouse lines (Mikulovic et al., 2015), genetic tools or stimulation protocols (Shapiro et al., 2012). In particular, it has been reported that the dynamic characteristics of the Cl- channel NphR3 can lead to a rebound action 42 potential after release of light (Madisen et al., 2012; Raimondo et al., 2012). This could in principle generate activation instead of the intended inactivation. In addition, the areas of stimulation differed between the two studies (dorsal and intermediate hippocampus). Recent studies have reported on functional subdivisions of the hippocampus along both the transverse and dorsoventral axis (Cembrowski et al., 2016; Ito and Schuman, 2012). Importantly, nicotine has opposite effects in the dorsal and ventral hippocampus: while nicotine administered in the dorsal hippocampus impairs contextual fear memory, when administered in the ventral hippocampus nicotine enhances it (Kenney et al., 2012). Since nicotine activates OLMα2 cells (Leão et al., 2012), this could indicate why we get similar results as Lovett-Barron through stimulation of OLMα2 cells in the intermediate hippocampus as was found by them through inhibition of somatostatin positive cells in the dorsal hippocampus. In this respect, it is also noteworthy that the number of OLMα2 cells displays a graded dorsoventral distribution, with a higher number of cells present ventrally (unpublished observations). In conclusion, this study provides direct evidence for a role of OLMα2 cells in memory formation processes, likely through gating of sensory information transmitted from the entorhinal cortex to hippocampus. 43 EXPERIMENTAL PROCEDURES Animals. We used heterozygote Chrnα2-cre transgenic mice bred with homozygote tdTomato reporter mice as described in our previous study3. Males and females were used as isolated groups and all animals were kept on a 12- hour light/dark cycle with food and water ad libitum. All procedures were approved by Uppsala Animal Ethics Committee, Jordbruksverket (C135/14, C132/13). Surgical procedures. We delivered channelrhodopsin (ChR2) or archeorhodopsin (Arch) using adeno-associated viral vectors (rAAV2/9.EF1a- DIO-hChR2(H134R)-EYFP.WPRE.hGH, rAAV2/EF1a-DIO-hChR2(H134R)- EYFP, rAAV9/Flex-ArchT-GFP and rAAV2/EF1a—DIO-eArch3.0-eYFP). Virus were bilaterally delivered using a nanofil syringe (World Precision Instruments) and a stereotaxic frame at the following coordinates: -3 mm rostrocaudal; -3 and 3 mm mediolateral; -2.7 and -3.6 mm dorsoventral. After virus injection, optical fibers (200 µm diameter) were implanted at the same coordinates at a depth of - 2.7 mm and fixed with dental cement. Before the behavior experiments, animals were given three weeks for recovery and viral vector driven expression. c-Fos analysis. Animals were anesthetized by isoflurane inhalation and thereafter deeply anesthetized with injections of a Ketalar/Domitor mix (Pfizer/OrionPharma, Sollentuna, Sweden). The mice were then perfused transcardially with phosphate buffered saline pH 7.4 (PBS) followed by 4% formaldehyde. Brains were removed and placed in 4% formaldehyde at 4°C overnight. Brains were washed 3x in PBS for 10 min, thereafter placed in a solution of 25% sucrose and allowed to settle overnight. Following this, brains were removed from the sucrose solution and stored at -80°C. For cryostat sections, brains were mounted in Tissue-tech™ (Miami, FL, USA) and placed on dry ice, then cut in coronal sections of 35 μm, mounted on glass slides and stored 44 at -80°C until use. Brain sections on glass slides were thawed at room temperature for 45 min. Slides were washed 4x in PBS for 10 min and blocked for 1 hr with blocking solution (2% donkey serum, 1% BSA, 0.1% Triton X-100, 0.05% Tween 20, 0.01M PBS) (1:10). Primary antibody c-Fos anti-goat (Santa Cruz, California, USA) was diluted (1:150) in Supermix (200 ml TBS, 0.5 g gelatin, 1 ml Triton X-100, heat up to 60 ° C until gelatin dissolves) and slides were incubated for 72 hours at 4°C. During the last 24 hours, primary antibody GFP anti-rabbit (Abcam, Cambridge, UK) diluted in Supermix (1:1000) was added to the slides. Slides were washed 4x in TBS for 10 min. Secondary antibodies (Thermofisher Scientific, Massachusetts, USA) Alexa fluor 647 donkey anti-goat, Alexa fluor 488 donkey anti-rabbit (1:300) and nuclear marker DAPI (1:100) were diluted in Supermix, added to the slides and left to incubate for 1.5 hours at room temperature. Finally, slides were washed 4x in TBST (0.01% tween) for 10 min and mounted with mowiol. Images were acquired on a Zeiss LSM 510 Meta confocal microscope, using 10x and 20x objectives and laser excitation within suitable wavelengths, and thereafter processed with Photoshop CS3 (Adobe) to create merged panoramic images and adjust input levels and color pallet for uniformity across images. Number of c-Fos positive cells was counted along the contour of the SO of multiple biological samples (see Figure1f) using ImageJ (NIH). Total number of c-Fos positive for control and ChR2 expressing mice was plot as mean ± s.e.m. and statistical analysis performed applying Student’s t-test. Electrophysiology. Horizontal hippocampal slices (300 µm) were obtained from Chrnα2-cre/R26tdTomato mice carrying hChR2 or Arch. Slices were cut using a vibratome (VT1200, Leica, Microsystems). The slices were transferred to a submerged chamber and maintained in artificial cerebrospinal fluid (aCSF: 126 mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 2 mM MgCl2, 2 mM CaCl2, 26 mM NaHCO3 and 10 mM glucose), constantly bubbled with 95% O2 and 5% CO2. Patch pipettes from borosilicate glass capillaries (GC150F-10 45 Harvard Apparatus) were pulled on a vertical puller (Narishige, Japan) with resistance around 7 MΩ and filled with internal solution containing: 130 mM K- gluconate, 7 mM NaCl, 0.3 mM MgCl2, 2 mM ATP, 0.5 mM GTP, 10 mM HEPES and 0.1 mM EGTA (pH was adjusted to 7.2 using KOH). Current-clamp recordings were obtained using a Multiclamp 700B (Molecular Devices) amplifier. Data was acquired by a National Instruments DAQ card and WinWCP/WinEDR softwares implemented by Dr. J. Dempster (University of Strathclyde, Glasgow, UK). 8-Hz sinusoid function (varying from 0 to 4 mW at the tip of the fiber) drove a 473-nm laser (Shanghai Dream Lasers analog modulated) to activate ChR2 expressing cells. Square light pulses (555-nm laser, Shanghai Dream Lasers) were used to inhibit Arch expressing cells. 46 Habituation Before the behavioral tasks, the animals were handled by the experimenter in 5-minute sessions inside the experimental room for three consecutive days. During these sessions, they were also habituated to mounting of the optic fiber. Novel object recognition (NOR) To assess the encoding of object memory, we used five different protocols of the NOR task (listed below). We placed two objects of similar size in a round arena (46 cm diameter; Supplementary Video 2). During the training session, animals were allowed to explore the arena with the objects for 10 min. The test session was performed either 1 hour (Figure 2) or 24 hours (Supplementary Figure 1) apart. In the test session, we replaced one of the objects with a novel one (except in Figure 2I) and once again allowed mice to explore the arena for 10 min. The preference ratio was defined as the time exploring the novel object divided by time exploring the familiar object (except in Figure 2I, where it was defined as the time exploring the lit object divided by the time exploring the non- lit object). Mice were subjected to the following protocols: (1) Non-lit object replaced: during the training session, light was delivered for a minimum of 1 second when the animal approached one of the objects (lit object), but not the other (non-lit object); light delivery was only turned off when the animal stopped exploring the object (Supplementary Video 2). In the test session, the non-lit object was replaced by a new object. (2) Lit object replaced: the training session was performed as described above, but in the test session the lit object was replaced by a new object. (3) Arena stimulation: during the training session light was delivered when animals were not engaged in object exploration. During the test session, one of the objects was replaced by a new object. (4) Stimuli after training: no light was delivered during the training session; immediately after 47 training, light was delivered in windows of 10 seconds on and off for 10 minutes. In the test session one of the objects was replaced by a new object. (5) Lit and non-lit objects maintained: the training session was performed as in protocol 1. In the test session, no object was replaced. During the training session, light was delivered bilaterally at theta frequency (8 Hz) with an intensity of ~4 mW. Light delivery was automated using a national instruments board (USB-6351) controlled by Ethovision software (XT, versions 9-11) through a custom designed Labview software. The same animal was not used in more than two different protocols. Passive inhibitory avoidance We assessed contextual fear conditioning using the passive inhibitory avoidance task. The apparatus consisted of two chambers without roof: one light chamber with white walls (~3200 lux) and one dark chamber with black walls (closed door ~4 lux, open door ~9 lux). The light chamber had two 3-W lamps illuminating the chamber. During training, the animal was placed in the light chamber for 30 seconds. Next, the door connecting the two chambers was opened (see Supplementary Video 3). When the animal entered the dark chamber, the door was closed and a shock was delivered after 5 seconds (1 mA, 100 ms). The animal was brought to the home cage for two minutes; afterwards, the animal was subjected to another trial in the same arena (same shock amplitude and duration). The maximum latency to enter the dark chamber was 90 seconds for the first trial and 270 seconds for the second trial. Animals that did not exit the light chamber in the training trials were excluded from further analysis. For the data analysis, the latency time to enter in the dark chamber was averaged for the two trials in the training session (day 0). During the training session, light was delivered bilaterally at theta frequency (8 Hz) with an intensity of ~4 mW in periods of 1 second on and 1 second off for the whole duration of the task. We performed three test sessions separated by 24 hours (day 1, day 2 and day 3). In the test session, no shock was delivered and animals were allowed 48 a maximum latency of 270 seconds to enter the dark chamber. Animals that did not exit the light chamber after 270 seconds were placed in the dark chamber for ~10 seconds before being returned to their home cage, so that all mice were exposed to the pairing of CS - no US before being retested in a subsequent day. This procedure was implemented to minimize differences in memory extinction within groups (Myers and Davis, 2006; Niyuhire et al., 2007; Vianna et al., 2001). Excluded animals In the NOR task, we excluded animals that had the optical fiber unplugged during the training session (n = 5). We also excluded one animal in the passive inhibitory avoidance task that managed to escape the chamber by jumping out of the arena. Statistical analyses Tracking data were extracted and scored from video recordings using the Ethovision software (XT, versions 9-11). The normality distribution test (Shapiro- Wilk normality test) was applied to each dataset. We performed t-tests to compare data with Gaussian distribution, otherwise the Mann-Whitney test was used. Data are presented as mean and standard error of the mean (s.e.m.). For the passive inhibitory avoidance task, we performed two-way repeated measures ANOVA using animal group and day as independent variables. Numerical details of all statistical analyses are provided in Tables S1 and S2. AUTHOR CONTRIBUTIONS França, ASC. and Siwani, S. designed and performed the behavior and optogenetics experiments; Reis, A, Mikulovic, S, Hilscher, MM, Edwards, SJ, Leao, RN performed the c-fos, clarity and ephys experiments; Tort, A and Kullander, K conceived the study, wrote and edited the final version of the manuscript. 49 REFERENCES Amaral, D.G., Witter, M.P., 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J., 2006. The Hippocampus Book. Oxford University Press. Antunes, M., Biala, G., 2012. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93–110. Basu, J., Zaremba, J.D., Cheung, S.K., Hitti, F.L., Zemelman, B.V., Losonczy, A., Siegelbaum, S.A., 2016. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 351, aaa5694. Blaser, R., Heyser, C., 2015. Spontaneous object recognition: a promising approach to the comparative study of memory. Front. Behav. Neurosci. 9, 183. Bria, A., Iannello, G., 2012. TeraStitcher - A tool for fast automatic 3D-stitching of teravoxel-sized microscopy images. BMC Bioinformatics 13, 316. Brun, V.H., Leutgeb, S., Wu, H.-Q., Schwarcz, R., Witter, M.P., Moser, E.I., Moser, M.-B., 2008. Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex. Neuron 57, 290–302. Cembrowski, M.S., Bachman, J.L., Wang, L., Sugino, K., Shields, B.C., Spruston, N., 2016. Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons. Neuron 89, 351–368. Chung, K., Deisseroth, K., 2013. CLARITY for mapping the nervous system. Nat. Methods 10, 508–513. Corcoran, K.A., Desmond, T.J., Frey, K.A., Maren, S., 2005. Hippocampal Inactivation Disrupts the Acquisition and Contextual Encoding of Fear Extinction. J. Neurosci. 25, 8978–8987. Daumas, S., Halley, H., Francés, B., Lassalle, J.-M., 2005. Encoding, consolidation, and retrieval of contextual memory: Differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn. Mem. 12, 375– 382. Elvander, E., Schött, P.A., Sandin, J., Bjelke, B., Kehr, J., Yoshitake, T., Ögren, S.O., 2004. Intraseptal muscarinic ligands and galanin: influence on hippocampal acetylcholine and cognition. Neuroscience 126, 541–557. Ennaceur, A., 2010. One-trial object recognition in rats and mice: Methodological and theoretical issues. Behav. Brain Res., Special issue on episodic memory 215, 244–254. 50 Ennaceur, A., Delacour, J., 1988. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31, 47–59. Forro, T., Valenti, O., Lasztoczi, B., Klausberger, T., 2015. Temporal organization of GABAergic interneurons in the intermediate CA1 hippocampus during network oscillations. Cereb. Cortex N. Y. N 1991 25, 1228–1240. Freund, T. f., Buzsáki, G., 1996. Interneurons of the hippocampus. Hippocampus 6, 347–470. Hammond, R.S., Tull, L.E., Stackman, R.W., 2004. On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol. Learn. Mem. 82, 26–34. Histed, M.H., Maunsell, J.H.R., 2014. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. Proc. Natl. Acad. Sci. 111, E178–E187. Ito, H.T., Schuman, E.M., 2012. Functional division of hippocampal area CA1 via modulatory gating of entorhinal cortical inputs. Hippocampus 22, 372–387. Ji, J., Maren, S., 2008. Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn. Mem. 15, 244–251. Kajiwara, R., Wouterlood, F.G., Sah, A., Boekel, A.J., Baks-te Bulte, L.T.G., Witter, M.P., 2008. Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1—An anatomical study in the rat. Hippocampus 18, 266–280. Kenney, J.W., Raybuck, J.D., Gould, T.J., 2012. Nicotinic receptors in the dorsal and ventral hippocampus differentially modulate contextual fear conditioning. Hippocampus 22, 1681–1690. Klausberger, T., Somogyi, P., 2008. Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations. Science 321, 53–57. Leão, R.N., Mikulovic, S., Leão, K.E., Munguba, H., Gezelius, H., Enjin, A., Patra, K., Eriksson, A., Loew, L.M., Tort, A.B.L., Kullander, K., 2012. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat. Neurosci. 15, 1524–1530. Lee, I., Kesner, R.P., 2004. Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear- conditioning. Hippocampus 14, 301–310. Lisman, J.E., Otmakhova, N.A., 2001. Storage, recall, and novelty detection of sequences by the hippocampus: elaborating on the SOCRATIC model to account for normal and aberrant effects of dopamine. Hippocampus 11, 551–568. Lovett-Barron, M., Kaifosh, P., Kheirbek, M.A., Danielson, N., Zaremba, J.D., Reardon, T.R., Turi, G.F., Hen, R., Zemelman, B.V., Losonczy, A., 2014. 51 Dendritic Inhibition in the Hippocampus Supports Fear Learning. Science 343, 857–863. Madisen, L., Mao, T., Koch, H., Zhuo, J., Berenyi, A., Fujisawa, S., Hsu, Y.-W.A., Garcia, A.J., Gu, X., Zanella, S., Kidney, J., Gu, H., Mao, Y., Hooks, B.M., Boyden, E.S., Buzsáki, G., Ramirez, J.M., Jones, A.R., Svoboda, K., Han, X., Turner, E.E., Zeng, H., 2012. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802. Mikulovic, S., Restrepo, C.E., Hilscher, M.M., Kullander, K., Leão, R.N., 2015. Novel markers for OLM interneurons in the hippocampus. Front. Cell. Neurosci. 9, 201. Myers, K.M., Davis, M., 2006. Mechanisms of fear extinction. Mol. Psychiatry 12, 120–150. Niyuhire, F., Varvel, S.A., Thorpe, A.J., Stokes, R.J., Wiley, J.L., Lichtman, A.H., 2007. The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology (Berl.) 191, 223–231. Raimondo, J.V., Kay, L., Ellender, T.J., Akerman, C.J., 2012. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat. Neurosci. 15, 1102–1104. Rampon, C., Tang, Y.P., Goodhouse, J., Shimizu, E., Kyin, M., Tsien, J.Z., 2000. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238– 244. Rudy, J.W., Matus-Amat, P., 2005. The Ventral Hippocampus Supports a Memory Representation of Context and Contextual Fear Conditioning: Implications for a Unitary Function of the Hippocampus. Behav. Neurosci. 119, 154–163. Schmid, L.C., Mittag, M., Poll, S., Steffen, J., Wagner, J., Geis, H.-R., Schwarz, I., Schmidt, B., Schwarz, M.K., Remy, S., Fuhrmann, M., 2016. Dysfunction of Somatostatin-Positive Interneurons Associated with Memory Deficits in an Alzheimer’s Disease Model. Neuron 92, 114–125. Shapiro, M.G., Frazier, S.J., Lester, H.A., 2012. Unparalleled Control of Neural Activity Using Orthogonal Pharmacogenetics. ACS Chem. Neurosci. 3, 619–629. Takahashi, H., Magee, J.C., 2009. Pathway Interactions and Synaptic Plasticity in the Dendritic Tuft Regions of CA1 Pyramidal Neurons. Neuron 62, 102– 111. Tian, S., Pan, S., You, Y., 2015. Nicotine enhances the reconsolidation of novel object recognition memory in rats. Pharmacol. Biochem. Behav. 129, 14– 18. 52 van Groen, T., Miettinen, P., Kadish, I., 2003. The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation. Hippocampus 13, 133–149. Vianna, M.R.M., Szapiro, G., McGaugh, J.L., Medina, J.H., Izquierdo, I., 2001. Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc. Natl. Acad. Sci. 98, 12251– 12254. Wiltgen, B.J., Sanders, M.J., Anagnostaras, S.G., Sage, J.R., Fanselow, M.S., 2006. Context Fear Learning in the Absence of the Hippocampus. J. Neurosci. 26, 5484–5491. 53 Figure 1. Optical control of OLMα2 cell activity. (A) Left, Coronal section of the hippocampus of a Chrnα2-cre/R26tdTomato mouse. Dapi (blue), Tomato (red) and ChR2 (green). Right panels show each marker separately. Notice co-expression of Tomato and ChR2 in SO and SLM. (B) Position of the optical fiber tip. (C) Patch clamp recordings of OLMα2 cells in hippocampal slices. 8-Hz blue light induced spiking in OLMα2 cells expressing ChR2. (D) Expression of Arch in SO and SLM. (E) Green light inhibited current-induced spiking in OLMα2 cells expressing Arch. (F) c-Fos expression assessed after in vivo delivery of blue light in ChR2 mice. Arrows in the inset point to cells co-expressing ChR2 and c-Fos. (G) Number of c-Fos positive cells in SO after in vivo light stimulation for control and ChR2 groups (horizontal traces show mean ± s.e.m.). ***p<0.001, t-test. Scalebars, 100 μm. 54 Figure 2. OLMα2 cells control object memory encoding. (A-F) Schematics show experimental protocol, in which blue (A-D) or green (E-F) light was selectively delivered during exploration of one of the objects (Lit) in the training session. In A, C and E, the lit object was kept in the test session while the non-lit object was replaced by a new one. In B, D and F, the lit object was replaced and the non-lit object was kept. ChR2 animals proportionally explored the lit object more than controls (A,C), however, when the lit object was replaced, there was no significant difference between groups (B,D). Conversely, Arch animals proportionally explored the lit object less than controls (E), with no difference between groups when the lit object was replaced (F). (G-H) Light stimulation while animals were not engaged in object exploration (G), or after the training session (H), led to no difference in object exploration compared to controls. (I) When both objects (lit and non-lit) were kept in the test session, 55 ChR2 mice explored the lit object more, while control animals exhibited no object preference. Heat maps depict average spatial occupancy during the test session; data points show individual animals. The preference ratios were computed for the new object during the test session (except in G, where preference is calculated for the lit object). *p<0.05, t-test. 56 Figure 3. OLMα2 cell activity impairs contextual fear memory. (A) Task scheme depicting training and test sessions. (B-E) Latency to enter in the dark compartment (B,D) and velocity in the light compartment (C,E) during a passive avoidance task (mean ± s.e.m.). ChR2 mice, but not Arch mice, exhibited significantly lower latency and higher velocity than controls. *p<0.05 between groups, two-way repeated measures ANOVA. 57 SUPPLEMENTARY INFORMATION SUPPLEMENTARY VIDEO LEGENDS Supplementary Video 1. Video of cleared tissue showing distribution of Chrnα2+ cells in the left hippocampus of a Chrnα2-cre/R26tdTomato mouse. Note the labeling of cell bodies in the stratum oriens and the massive projections in the stratum lacunosum-moleculare, which characterize OLMα2 cells. The video also shows the location of the optic fiber tip and an estimation of the light spread (green sphere). Supplementary Video 2. Example of object exploration during a training session of the NOR task. One of the objects is paired with light delivery (lit object), whereas the other object is not (non-lit object). Supplementary Video 3. Example of the passive inhibitory avoidance task and the behavior of two animals (control and ChR2) during training and test sessions. Note that the control animal enters the dark chamber during the training session, but not during the test session, while the ChR2 animal enters the dark chamber during both training and test sessions. 58 SUPPLEMENTARY EXPERIMENTAL PROCEDURES Tissue clearing and imaging. Dissected hippocampi were cleared using a CLARITY protocol (Chung and Deisseroth, 2013). Chrnα2-cre/R26tdTomato animals were first perfused and the brain fixed in 4% paraformaldehyde solution for 24 hours. Tissues were post-fixed in 10 mL hydrogel solution (Acrylamide 4%, VA-044 initiator 0,25%, 1X PBS, 4% PFA, dH2O) and stored at 4°C for three days. Samples were degased in a desiccation chamber for 10 min and air in the chamber was replaced with nitrogen, followed by polymerization at 37°C shaking for three hours. Next, samples were washed and cleared in clearing solution (200 mM Boric acid, 4% Sodium Dodecyl Sulfate, dH2O, NaOH; pH 8.5) at 37°C for two weeks and 45°C for another week. Clearing solution was replaced every third day. Cleared samples were washed twice in 1xPBST (0.1% Triton X-100) for 24 hours. The tissue was refractive index matched through 3x24h incubation in 20%, 40% and 63% 2,2’-Thiodiethanol (TDE, Sigma-Aldrich) in 1xPBS solution. Images were acquired on a Zeiss Light Sheet Z.1 (5x/0.16 objective) and image tiles were aligned and stitched using Tetrastitcher (Bria and Iannello, 2012). Imaris 8.1 (Bitplane) was used for volume rendering and soma detection. The optical sphere in Video S3 is an estimation of blue light spread made through theoretical calculations (Histed and Maunsell, 2014). Light power was ~4 mW at the tip of the fiber, and considering a wavelength of 473 nm, a core radius of 0.1 and a numerical aperture (NA) of 0.22, the light power is ~1.5 mW/mm2 at 1 mm from the tip (Histed and Maunsell, 2014), which suffices to induce spiking activity(Niyuhire et al., 2007). 59 Supplementary table 1 NOR - ChR2 Protocols Non-Lit Object Replaced Intersession Interval Metric Mean ± SEM, n Statistics 1h Preference Ratio Control: 1.57 ± 0.25, n=8 t(13)=2.24, p=0.043 ChR2: 0.89 ± 0.15, n=7 1h % of Exploration Control: 58.5% ± 3.80, n=8 t(13)=2.30, p=0.038 ChR2: 48.32% ± 3.81, n=7 24h Preference Ratio Control: 1.70 ± 0.20, n=9 t(15)=2.46, p=0.026 ChR2: 1.01 ± 0.14, n=8 24h % of Exploration Control: 60.9% ± 3.10, n=9 t(15)=2.57, p=0.021 ChR2: 48.32% ± 3.81, n=8 Lit Object Replaced Intersession Interval Metric Mean ± SEM, n Statistics 1h Preference Ratio Control: 2.54 ± 0.63, n=7 t(13)=0.93, p=0.36 ChR2: 1.92 ± 0.27, n=8 1h % of Exploration Control: 66.5% ± 5.20, n=7 t(13)=0.46, p=0.65 ChR2: 63.69% ± 3.36, n=8 24h Preference Ratio Control: 1.38 ± 0.15, n=12 t(21)=1.02, p=0.31 ChR2: 1.61 ± 0.16, n=11 24h % of Exploration Control: 54.01 ± 3.29, n=12 t(21)=1.35, p=0.18 ChR2: 59.96 ± 2.82, n=11 Arena Stimulation Intersession Interval Metric Mean ± SEM, n Statistics 1h Preference Ratio Control: 1.60 ± 0.32, n=9 t(14)=0.56, p=0.58 ChR2: 1.86 ± 0.31, n=7 1h % of Exploration Control: 57.25 ± 4.47, n=9 t(14)=0.79, p=0.43 ChR2: 62.39 ± 4.48, n=7 Stimulation After Training 60 Intersession Interval Metric Mean ± SEM, n Statistics 24h Preference Ratio Control: 1.54 ± 0.21, n=7 t(15)=0.37, p=0.71 ChR2: 1.65 ± 0.21, n=10 24h % of Exploration Control: 58.51 ± 4.42, n=7 U=31, p=0.73 ChR2: 57.37 ± 4.00, n=10 Lit and Non-Lit Objects Maintained Intersession Interval Metric Mean ± SEM, n Statistics 1h Preference Ratio Control: 0.90 ± 0.25, n=7 t(14)=2.51, p=0.024 ChR2: 1.84 ± 0.26, n=9 1h % of Exploration Control: 42.45 ± 6.41, n=7 t(14)=3.03, p=0.008 ChR2: 62.55 ± 3.08, n=9 NOR - Arch Protocols Non-Lit Object Replaced Intersession Interval Metric Mean ± SEM, n Statistics 1h Preference Ratio Control: 1.91 ± 0.35, n=12 t(18)=2.40, p=0.026 Arch: 3.26 ± 0.43, n=8 1h % of Exploration Control: 59.28 ± 5.19, n=12 t(18)=2.29, p=0.03 Arch: 74.75 ± 2.61, n=8 Lit Object Replaced Intersession Interval Metric Mean ± SEM, n Statistics 1h Preference Ratio Control: 1.86 ± 0.27, n=11 t(17)=1.28, p=0.21 Arch: 1.36 ± 0.23, n=8 1h % of Exploration Control: 60.63 ± 4.85, n=11 t(17)=0.90, p=0.37 Arch: 53.76 ± 5.92, n=8 % of Exploration and Preference Ratio were computed in the test session relative to the new object, except in Figure 2g protocol, where the metrics refer to the lit object. 61 Supplementary Table 2 NOR - ChR2 Protocols Non-Lit Object Replaced Intersession Interval Mean ± SEM, n Paired t test (against 1) 1h Control: 1.57 ± 0.25, n=8 t(7)=2.25, p=0.05 ChR2: 0.89 ± 0.15, n=7 t(6)=0.76, p=0.47 24h Control: 1.70 ± 0.23, n=9 t(8)=3.04, p=0.01 ChR2: 1.00 ± 0.14, n=8 t(7)=0.05, p=0.95 Lit Object Replaced 1h Control: 2.54 ± 0.63, n=7 t(6)=2.42, p=0.05 ChR2: 1.92 ± 0.27, n=8 t(7)=3.40, p=0.01 24h ChR2: 1.38 ± 0.15, n=12 t(11)=2.51, p=0.02 ChR2: 1.61 ± 0.16, n=11 t(10)=3.74, p=0.003 Arena Stimulation 1h Control: 1.60 ± 0.32, n=9 t(6)=2.42, p=0.10 ChR2: 1.86 ± 0.31, n=7 t(6)=3.40, p=0.03 Stimulation After Training 24h Control: 1.54 ± 0.20, n=7 t(6)=2.63, p=0.03 ChR2: 1.65 ± 0.21, n=10 t(9)=3.07, p=0.01 Lit and Non-Lit Object Maintained 1h Control: 0.89 ± 0.25, n=7 t(6)=0.40, p=0.70 ChR2: 1.85 ± 0.21, n=9 t(9)=3.19, p=0.01 NOR - Arch Protocols Non-Lit Object Replaced 1h Control: 1.91 ± 0.35, n=12 t(11)=2.58, p=0.02 Arch: 1.65 ± 0.21, n=8 t(7)=5.22, p=0.001 Lit Object Replaced 1h Control: 1.86 ± 0.27, n=11 t(10)=3.09, p=0.01 Arch: 1.65 ± 0.21, n=7 t(6)=2.60, p=0.04 62 Supplementary Table 3 Contextual Avoidance – ChR2 Protocol Latency to Entry in the Dark Compartment Descriptive Statistics Session Mean ± SEM, n Training Control: 20.36 ± 9.26, n=11 ChR2: 13.49 ± 4.74, n=10 Test Day 1 Control: 99.31 ± 39.85, n=11 ChR2: 12.52 ± 5.15, n=10 Test Day 2 Control: 111.60 ± 38.09, n=11 ChR2: 4.27 ± 1.44, n=10 Test Day 3 Control: 124.06 ± 41.30, n=11 ChR2: 32.62 ± 26.30, n=10 Two-Way Repeated Measures ANOVA Source of variation F DF P Value Interaction 3.66 (3,57) 0.017 Day 4.75 (3,57) 0.005 Group 4.91 (1,57) 0.039 Velocity (cm/s) Descriptive Statistics Session Mean ± SEM, n Training Control: 8.42 ± 1.12, n=11 ChR2: 9.83 ± 1.04, n=10 Test Day 1 Control: 7.12 ± 1.36, n=11 ChR2: 10.69 ± 1.19, n=10 Test Day 2 Control: 6.38 ± 1.16, n=11 ChR2: 11.64 ± 1.04, n=10 63 Test Day 3 Control: 5.13 ± 1.02, n=11 ChR2: 8.62 ± 1.08, n=10 Two-Way Repeated Measures ANOVA Source of variation F DF P Value Interaction 4.06 (3,57) 0.0108 Day 7.55 (3,57) 0.0002 Group 5.55 (1,57) 0.0287 Contextual Avoidance – Arch Protocol Latency to Entry in the Dark Compartment Descriptive Statistics Session Mean ± SEM, n Training Control: 28.36 ± 8.15, n=20 Arch: 14.15 ± 3.94, n=14 Test Day 1 Control: 104.46 ± 27.59, n=20 Arch: 60.56 ± 25.84, n=14 Test Day 2 Control: 99.85 ± 27.08, n=20 Arch: 111.02 ± 33.58, n=14 Test Day 3 Control: 113.59 ± 27.80, n=20 Arch: 89.21 ± 28.61, n=14 Two-Way Repeated Measures ANOVA Source of variation F DF P Value Interaction 0.40 (3,96) 0.749 Day 4.63 (3,96) 0.004 Group 0.99 (1,96) 0.319 Velocity (cm/s) Descriptive Statistics Session Mean ± SEM, n Training Control: 7.51 ± 0.76, n=20 Arch: 8.45 ± 0.98, n=14 Test Day 1 Control: 7.02 ± 0.91, n=20 Arch: 7.48 ± 1.04, n=14 Test Day 2 Control: 5.21 ± 0.76, n=20 64 Arch: 5.78 ± 0.74, n=14 Test Day 3 Control: 6.04 ± 0.71, n=20 Arch: 5.79 ± 0.80, n=14 Two-Way Repeated Measures ANOVA Source of variation F DF P Value Interaction 0.55 (3,96) 0.6475 Day 12.07 (3,96) 0.0001 Group 0.16 (1,96) 0.6908 65 3.0 Artigo 2 66 67 68 69 70 71 72 73 74 75 76 4.0 – Discussão Ao longo desta tese foram levantados diversos aspectos relacionados à memória, da descrição de estruturas anatômicas aos processos plásticos envolvidos em sua aquisição e manutenção. Como resultados novos, no artigo 1 investigamos a participação das células OLMα2 da região CA1 do hipocampo no processo de codificação da representação de objetos e também no aprendizado associativo de um contexto a um estímulo aversivo. No artigo 2 caracterizamos atividades oscilatórias da região CA1 que podem estar relacionadas à detecção de novidade. Abaixo fornecemos uma discussão expandida acerca dos resultados encontrados. 4.1 – Artigo 1 No primeiro capítulo de resultados investigamos a participação das células OLMα2 da região CA1 (Figura 1 – Artigo 1) na modulação da codificação de memórias contextual e de reconhecimento de objetos. Estes interneurônios inibem os dendritos apicais distais das células piramidais, onde chegam projeções do córtex entorrinal trazendo informação multimodal. Utilizando ferramentas de optogenética e animais Chrna2-cre, modulamos especificamente células OLMα2 expressando Channelrhodopsin-2 (ChR2) ou archaerhodopsin (ARCH) (Figura 1 – Artigo 1). A ChR2, proteína que forma um canal iônico, muda a conformação de sua estrutura possibilitando a passagem de cátions na presença da luz azul (~473 nm); através de uma luz nesse comprimento de onda somos capazes de facilitar a atividade da célula alvo (Deisseroth, 2011). Da mesma forma, somos capazes de inibir um neurônio alvo que expressa ARCH, sensível à luz verde (~532 nm), que por sua vez muda sua conformação estrutural bombeando prótons para fora da célula, hiperpolarizando sua membrana (Chow et al., 2010). De nota, uma vez que a luz pode aumentar a temperatura de um neurônio e modificar o catabolismo e anabolismo da célula, ou mesmo levar à morte celular (Allen et al., 2015), neste trabalho tivemos o cuidado de controlar a potência e duração da luz incidida. 77 Para acessar a memória do animal, utilizamos a tarefa de reconhecimento de objetos. Essa tarefa é baseada na característica apresentada pelos roedores de explorar a novidade em detrimento da familiaridade (Antunes and Biala, 2012). Utilizamos dois objetos similares em dimensão, textura e formato, que foram expostos em uma arena circular. Dividimos a tarefa em duas sessões, treino e teste, separadas por dois tempos distintos, 1 hora e 24 horas. Os animais foram submetidos a diferentes protocolos; em geral, na sessão de treino a exploração de um dos objetos foi pareada com a modulação das células OLMα2. Na sessão teste, ao expor o objeto iluminado junto a um objeto novo, os animais demonstraram dois diferentes comportamentos: (1) nenhuma preferência pelos objetos quando houve a prévia ativação das células OLMα2 na sessão treino, portanto prejuízo na capacidade de reconhecimento; (2) aumento da exploração do objeto novo quando houve inativação células OLMα2 na sessão treino, indicando aumento na discriminação entre os objetos. Os grupos controles (sem interferência nas células OLMα2) expressaram o comportamento natural de explorar a novidade em detrimento da familiaridade (Figura 2; Figura suplementar 1 – Artigo 1). Nos protocolos que não houve a presença do objeto iluminado, (1) seja quando a estimulação ocorreu fora dos períodos de exploração de algum objeto (Arena stimulation), (2) ou quando houve estimulação após a sessão de treino (Stimulation after training), ou (3) quando o objeto iluminado foi substituído pelo objeto novo (lit-object replaced), os animais exibiram o mesmo comportamento dos animais controle, ou seja, exploraram mais o objeto novo do que o objeto não iluminado (Figura 2; Figura suplementar 1 – Artigo 1). Por último, quando ambos objetos da sessão treino (iluminado e não iluminado) foram mantidos na sessão teste, os animais com ativação das células OLMα2 durante o treino exibiram preferência ao objeto iluminado. Isto indica que os animais consideraram o objeto previamente iluminado como um objeto novo, enquanto o grupo controle não demonstrou preferência por nenhum dos objetos (Figura 2 – Artigo 1). Outra tarefa utilizada no artigo 1 foi a esquiva contextual passiva, na qual os animais aprendem a evitar um contexto previamente associado a um choque. Essa tarefa se vale da tendência do animal de evitar ambientes abertos e iluminados, preferindo ambientes escuros e fechados. No entanto, na tarefa há associação de um estímulo 78 aversivo ao ambiente escuro (Rudy & Matus-Amat, 2005). Dividimos a tarefa em duas fases, treino e teste. A tarefa se deu numa arena que possuía um ambiente claro e um ambiente escuro. Durante a fase de treino, os animais são colocados no ambiente claro e tendem naturalmente a entrar no ambiente escuro, onde recebem um choque. Repetimos a associação do choque com o ambiente escuro em duas sessões de treino. Durante estas sessões, as células OLMα2 foram excitadas com luz azul em um grupo de animais Chrna2-cre expressando ChR2, ou inibidas com luz verde em outro grupo de animais expressando ARCH. A fase de teste consistiu de 3 dias consecutivos ao dia do treino, nos quais os animais foram expostos à mesma arena e foi contabilizada a latência que levaram para entrar no ambiente escuro. Os animais que tiveram suas células OLMα2 ativadas durante o treino não exibiram aversão ao ambiente em que sofreram o choque, indicando prejuízo na representação da memória de associação de contexto ao estímulo aversivo. Já os animais controles ou os que tiveram inibição da atividade das células OLMα2 evitaram o ambiente associado ao choque (Figura 3 – Artigo 1). Os resultados do Artigo 1 dão suporte ao papel da região CA1 no processo de codificação de memórias (Rampon et al., 2000); porém, parecem ser opostos aos resultados recentemente descritos por Lovett-Barron e colaboradores (2014). Nesse trabalho, os autores investigaram o papel da inibição de interneurônios somatostatina positivos durante uma tarefa de condicionamento de medo ao contexto. Através de experimentos com animais presos (head fixed) e em movimento livre, e da inibição da atividade dos interneurônios somatostatina positivos com o uso de quimiogenética, foi revelado um prejuízo no condicionamento aversivo (Lovett-Barron et al., 2014). Apesar de usar uma abordagem semelhante, no que tange o paradigma comportamental utilizado, especialmente nos experimentos com animais de movimento livre, o trabalho de Lovett-Barron e colaboradores diverge metodologicamente de nosso estudo. Primeiramente, nosso trabalho utilizou a subunidade α2 do receptor nicotínico que é expresso, no hipocampo, exclusivamente em células OLM de CA1, enquanto Lovett-Barron e colaboradores utilizaram como marcador a somatostatina, que é um marcador inespecífico, expressa por diferentes tipos de interneurônios (Lovett-Barron et al., 2014; Mikulovic et al., 2015). A saber, neurônios marcados por somatostatina podem 79 possuir características eletrofisiológicas distintas (Mikulovic et al., 2015), se localizar em estratos diferentes, e apresentar padrão de inervação distintos aos das células OLM (Leão et al., 2012; Mikulovic et al., 2015); isto gera uma diferença importante no controle das entradas e saídas das células piramidais em comparação com o controle exercido pelas células OLM (Mikulovic et al., 2015). Outra distinção importante foi a utilização de farmacogenética como ferramenta de modulação da atividade das células alvo, enquanto no artigo 1 utilizamos optogenética. O uso de farmacogenética diminui a especificidade temporal e espacial da modulação das células alvo comparada com a optogenética. Acredita-se que o PSEM utilizado no trabalho de Lovett-Barron e colaboradores atua por até 80 minutos, embora possa ser necessário até 24 horas para recuperação completa (Shapiro et al., 2012). Desta forma, a modulação pode não só ter atuado durante a fase de codificação, como na consolidação e até na fase de reativação. Portanto, junto da falta de especificidade da célula alvo, houve perda de especificidade temporal. Outra questão a ser levantada é a dinâmica característica do canal de Cl- que leva a um rebote de potencial de ação após seu uso (Madisen et al., 2012; Raimondo et al., 2012), que pode gerar uma ação modulatória oposta à esperada. O estudo apresentado nesta tese e as evidências in vitro das células OLM no controle da informação oriunda do córtex entorrinal para região CA1 (Leão et al., 2012; Lovett-Barron et al., 2014; Mikulovic et al., 2015) não implicam que este seja o único mecanismo de filtro entre essas regiões. A variedade de interneurônios que possuem potencial para tal controle, junto a outros sistemas modulatórios, é grande (Freund & Buzsáki, 1996; Klausberger & Somogyi, 2008). Mais ainda, há neurônios no próprio córtex entorrinal que enviam projeções inibitórias para a região CA1, modulando indiretamente a atividade das células piramidais (Basu et al., 2016). Basu e colaboradores (2016) demonstraram, através da estimulação de interneurônios LRIPs (long range inhibitory projections) do córtex entorrinal, que projetam para interneurônios no stratum lacunosum-moleculare, que é possível controlar indiretamente a entrada de informação do córtex entorrinal para a região CA1, modulando a discriminação de objetos e condicionamento de medo ao contexto (Basu et al., 2016). Desta forma, torna-se 80 necessário saber quais inputs os variados tipos de interneurônios recebem para melhor entender as funções desempenhadas. 4.2 – Artigo 2 Utilizando uma variação do teste de reconhecimento de objetos com quatro objetos em cada sessão, e registros de atividade neuronal e de potencial de campo local, investigamos no artigo 2 uma atividade organizada na região CA1 que parece surgir durante experiências novas: as oscilações beta2. Verificamos que esta atividade oscilatória na frequência de 23-30 Hz, originalmente relatada por Berke e colaboradores em 2008 durante a exploração de ambientes novos, também ocorre durante a exploração de objetos novos (Figura 3 – Artigo 2). Descrevemos também a característica transiente desta oscilação; seu pico de atividade ocorre nos primeiros 100 segundos de uma sessão de 600 segundos, e sua potência é bastante reduzinda ao final da sessão (Figuras 3 e 4 – Artigo 2). A dinâmica transiente do beta2 não é correlacionada com o padrão de exploração dos objetos por parte dos animais (Figura 5 – Artigo 2); diferentemente do beta2, a exploração dos objetos se mantém ao longo de toda sessão (Figura 2 – Artigo 2). Verificamos também que – entre as áreas registradas no trabalho – somente os registros do hipocampo exibiram aumento de potência de beta2 no começo das sessões de exploração de objetos (Figura 9 – Artigo 2). Do mesmo modo, somente os neurônios hipocampais exibiram atividade modulada por beta2 (Figura 9 – Artigo 2). Verificamos também que a potência de beta2 parece ter relação com a quantidade de novidade presente no ambiente: a atividade beta2 é mais proeminente em um ambiente com 4 objetos novos (sessão 1) em relação à sessão onde os animais exploram 2 objetos novos e 2 familiares (sessão 2) (Figuras 8 e 10 – Artigo 2). Interessantemente, uma maior potência de beta2 é também observada na sessão 2 quando há prejuízo da consolidação da memória através de intervenção farmacológica logo após a sessão 1 (Figura 10 – Artigo 2). As oscilações beta (15-30 Hz), que abrangem a subfaixa beta2 (23-30 Hz), têm sido descritas em diferentes regiões do cérebro, incluindo córtex motor (Lacey et al., 2014; Roopun et al., 2006), córtex somatossensorial (Haegens et al., 2011; Roopun et al., 81 2006), bulbo olfatório (Ravel et al., 2003), córtex entorrinal e CA1 (Igarashi et al., 2014). As oscilações beta do bulbo olfatório vêm sendo relacionadas com tarefas cognitivas de distinção de odor (Ravel et al., 2003); oscilações beta também foram descritas nas conexões entre a parte lateral do córtex entorrinal e a região CA1 numa tarefa de discriminação de contextos com pistas de odor (Igarashi et al., 2014). O nosso trabalho mostra que apenas a área CA1 entre as áreas registradas apresentou aumento transiente da potência de beta2 (ver Figura 9 – Artigo 2), afastando a possibilidade do beta2 detectado corresponder às oscilações beta reportadas para as áreas M1 e S1 (Haegens et al., 2011; Lacey et al., 2014; Roopun et al., 2006). Porém, o mesmo não pode ser afirmado para o beta apresentado pelo bulbo olfatório ou o beta relacionado a discriminação olfatória (Igarashi et al., 2014; Ravel et al., 2003). O aumento transiente em beta2, cuja potência sobe no início e diminui no final, não foi relacionado ao comportamento da exploração dos objetos, que se manteve ao longo da sessão (ver Figura 2 – Artigo 2); esta característica difere do aumento de beta na tarefa de Igarashi e colaboradores (2014), que ocorre após a exposição ao odor a ser discriminado. Caso fosse o mesmo beta descrito neste estudo, esperaríamos a presença de beta ao longo de toda sessão de exploração. Mas apesar de provavelmente não se tratar da mesma atividade oscilatória, ambos ritmos foram registrados em áreas semelhantes ao longo de uma tarefa de discriminação, seja de odor (Igarashi et al., 2014) ou objetos (França et al., 2014), o que pode indicar similaridades funcionais. 4.3 – Discussão geral As investigações realizadas em ambos os artigos dão suporte a participação do hipocampo na capacidade de reconhecimento de padrões, objetos e contextos (Brun et al., 2002a; Daumas et al., 2005; Dere et al., 2007; Nakazawa et al., 2002; Suzuki et al., 1997). O hipocampo, bem como outras regiões do lobo temporal, incluindo a formação hipocampal e o córtex perirrinal, participam do processo de aquisição e consolidação de memórias declarativas e são relacionados a capacidade de reconhecimento de novidade (Amaral & Witter, 1989; Andersen et al., 2006; Bliss & Lomo, 1973; Brown & Aggleton, 2001; Kandel, 2001; O’Keefe & Dostrovsky, 1971; Scoville & Milner, 1957). A memória 82 de reconhecimento requer a diferenciação do que está sendo experimentado de experiências prévias (Mandler, 1980); trata-se, portanto, de uma capacidade de associar inúmeros inputs informacionais, do discernimento do objeto em si até a localidade e contexto em que ele se apresenta, e envolve inúmeras regiões do cérebro (Brown & Aggleton, 2001). A região CA1 tem um papel chave na capacidade de reconhecimento de objetos (Rampon et al., 2000). Como explicitado na introdução, a aquisição e manutenção de traços de memória estão ligados a propriedades plásticas dos neurônios, que vão desde modificações nos níveis de cálcio até a modificação de expressão gênica (Bernabeu et al., 1997; Izquierdo & Cammarota, 2004; Izquierdo & Medina, 1997; Minatohara et al., 2015; Okuno et al., 2012). Já foi relacionada à região CA1 a ocorrência de plasticidade sináptica ligada a formação de traços de memória (Dere et al., 2007; Rampon et al., 2000), como por exemplo a indução de LTP e LTD após o processo de aprendizagem (Whitlock et al., 2006). A manipulação de receptores NMDA, em animais knock-out para NMDA especificamente na região CA1, leva ao prejuízo no reconhecimento de objetos (Rampon et al., 2000), enquanto que o mesmo não é visto com animais knock-out para NMDA na região CA3 (Nakazawa et al., 2003). De modo semelhante, a modulação dos sistemas dopaminérgicos e acetilcolinérgicos leva a modificação na capacidade de discriminação de objetos e contextos (França et al., 2016, 2015; Kutlu & Gould, 2015; Melichercik et al., 2012; Puma et al., 1999; Tian et al., 2015). O papel de CA1 no reconhecimento provavelmente está relacionado às projeções do córtex entorrinal que carregam informações multimodais oriundas de diversas partes do cérebro (van Groen et al., 2003). Lesões da via entre o córtex entorrinal e a região CA1 já foram relacionadas a prejuízos de localização espacial (Brun et al., 2008, 2002). A retirada dos inputs intra-hipocampais entre as regiões CA3-CA1, mantendo os inputs recebidos por CA1 do córtex entorrinal, não prejudica a capacidade de localização espacial, nem a memória relacionada ao reconhecimento espacial (Brun et al., 2002). Enquanto que a modulação da conexão entre a região CA1 e o córtex entorrinal leva a modulação da codificação de memórias de reconhecimento de objetos e contextos (Basu et al., 2016; Lovett-Barron et al., 2014). Os resultados mostrados no artigo 1, junto com 83 resultados prévios que demonstram que as células OLMα2 filtram informação do córtex entorrinal (Leão et al., 2012), reforçam o papel da conexão córtex entorrinal-CA1 na codificação de memórias relacionadas à capacidade de reconhecimento. As células OLMα2 inibem os dendritos apicais distais dos neurônios piramidais, que recebem projeções do córtex entorrinal (Leão et al., 2012); tal característica é esperada para a função de controle do fluxo de informação e, portanto, para a codificação de memórias hipocampo-dependentes. As células OLMα2 são inervadas pelo sistema colinérgico, em particular possuem receptores nicotínicos (Leão et al., 2012). O sistema colinérgico tem sido amplamente ligado ao processo de formação e consolidação de memórias (Aren- et al., 1995; Hasselmo, 2006; Levin, 2002; Puma et al., 1999; Tian et al., 2015; Anéxo 3), dando suporte ao papel das células OLMα2 reportado no artigo 1. Por sua vez, as células OLMα2 projetam seus axônios para interneurônios no stratum radiatum que inibem as projeções entre CA3-CA1; desta forma, ao serem ativadas, as células OLMα2 inibem as entradas do córtex entorrinal mas facilitam a comunicação pela via colateral de Schaffer entre as regiões CA3-CA1, via essa ligada ao processo de consolidação de memórias (Sacchetti et al., 2001). O sistema dopaminérgico e as células OLMα2 agem em regiões semelhantes, apesar de parecer ter características diferentes nas etapas de aquisição e manutenção de memórias hipocampo-dependentes. Neurônios dopaminérgicos invervam tanto o córtex entorrinal quanto a região CA1 do hipocampo (Andersen et al., 2006). Terminais de axônios da área tegmentar ventral e receptores dopaminérgicos são vistos em diversos estratos de CA1, incluindo o piramidale, oriens, radiatum e lacunosum-moleculare, bem como na região CA3 e nas células musgosas do giro denteado (Gangarossa et al., 2012; Otmakhova et al., 2013). Por outro lado, as células OLM agem mais localmente ao modular as conexões oriundas do córtex entorrinal nos dendritos apicais distais das células piramidais de CA1 (Leão et al., 2012; Lovett-Barron et al., 2014). O sistema dopaminérgico está relacionado ao processo de consolidação de informações, sendo necessário em etapas chave para manutenção do traço de memória (Rossato et al, 2009; França et al, 2015); sua função provavelmente é ligada ao sistema motivacional e de recompensa (Otmakhova et al, 2013). Já as células OLM parecem ter o papel ligado a 84 modulação da codificação das memórias, tendo destaque no filtro de informações espaciais oriundos do córtex entorrinal (Artigo 1; Brun et al., 2008, 2002; Basu et al., 2016; Lovett-Barron et al., 2014), provavelmente por intermédio da modulação do sistema colinérgico (Leão et al., 2012). Segundo Lisman e Grace (2005), o loop que ocorre entre a área tegmentar ventral e a formação hipocampal possui um papel importante na manutenção de traços de memória relacionados à novidade (Lisman & Grace, 2005). Tanto o modelo proposto por Lisman e Grace como os resultados encontrados com as células OLMα2 são consistentes com achados prévios da literatura (França et al., 2016, 2015, 2014; Gasbarri et al., 1996; Hansen and Manahan-Vaughan, 2012; Morice et al., 2007; Rossato et al., 2009; Silva et al., 2012; Basu et al., 2016; Lovett- Barron et al., 2014; Tian et al, 2015) e não são excludentes entre si, o que ilustra a complexidade da dinâmica dos circuitos envolvidos na memória. Em suma, os estudos apresentados no artigo 1 e artigo 2, bem como os 3 artigos em anexo desta tese dão suporte ao papel da região CA1 no processo de formação de memórias, e na capacidade de reconhecimento de novidade. Estes artigos adicionam ao nosso conhecimento atual acerca do funcionamento de CA1 ao descrever uma atividade oscilatória ligada à detecção de novidade, bem como ao demonstrar que um subtipo específico de célula é capaz de modular a codificação de novas memórias. 85 5.0 – Referências Allen, B.D., Singer, A.C., Boyden, E.S., 2015. Principles of designing interpretable optogenetic behavior experiments. Learn. Mem. 22, 232–238. Al-Onaizi, M.A., Parfitt, G.M., Kolisnyk, B., Law, C.S.H., Guzman, M.S., Barros, D.M., Leung, L.S., Prado, M.A.M., Prado, V.F., 2016. Regulation of Cognitive Processing by Hippocampal Cholinergic Tone. Cereb. Cortex p. bhv349. Amaral, D.G., Dolorfo, C., Alvarez-Royo, P., 1991. Organization of CA1 projections to the subiculum: A PHA-L analysis in the rat. Hippocampus 1, 415–435. Amaral, D.G., Scharfman, H.E., Lavenex, P., 2007. The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 163, 3–22. Amaral, D.G., Witter, M.P., 1989. The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591. Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J., 2006. The Hippocampus Book. Oxford University Press. Antunes, M., Biala, G., 2012. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn. Process. 13, 93–110. Aren-, G.W., Sanberg, P.R., Sengstock, G.J., 1995. Nicotine enhances the learning and memory of aged rats. Pharmacol. Biochem. Behav. 52, 517–523. Basu, J., Zaremba, J.D., Cheung, S.K., Hitti, F.L., Zemelman, B.V., Losonczy, A., Siegelbaum, S.A., 2016. Gating of hippocampal activity, plasticity, and memory by entorhinal cortex long-range inhibition. Science 351.6269. Bekinschtein, P., Cammarota, M., Medina, J.H., 2014. BDNF and memory processing. Neuropharmacology 76 Pt C, 677–683. Bengoetxea, X., Rodriguez-Perdigon, M., Ramirez, M.J., 2015. Object recognition test for studying cognitive impairments in animal models of Alzheimer’s disease. Front. Biosci. Sch. Ed. 7, 10–29. Bentivoglio, M., Swanson, L.W., 2001. On the fine structure of the pes Hippocampi major (with plates XIII-XXIII). Brain Res. Bull. 54, 461–483. Berke, J.D., Hetrick, V., Breck, J., Greene, R.W., 2008. Transient 23-30 Hz oscillations in mouse hippocampus during exploration of novel environments. Hippocampus 18, 519–529. Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., Medina, J.H., 1997. Involvement of hippocampal cAMP/cAMP- dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. 94, 7041– 7046. 86 Blake, M.G., Krawczyk, M.C., Baratti, C.M., Boccia, M.M., 2014. Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms. J. Physiol. Paris 108, 286–291. Blaser, R., Heyser, C., 2015. Spontaneous object recognition: a promising approach to the comparative study of memory. Front. Behav. Neurosci. 9, 183. Bliim, N., Leshchyns’ka, I., Sytnyk, V., Janitz, M., 2016. Transcriptional regulation of long-term potentiation. Neurogenetics. Bliss, T.V., Lomo, T., 1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356. Brankack, J., Stewart, M., Fox, S.E., 1993. Current source density analysis of the hippocampal theta rhythm: associated sustained potentials and candidate synaptic generators. Brain Res. 615, 310–327. Brault, V., Besson, V., Magnol, L., Duchon, A., Hérault, Y., 2007. Cre/loxP-mediated chromosome engineering of the mouse genome. Handb. Exp. Pharmacol. 29–48. Brown, M.W., Aggleton, J.P., 2001. Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2, 51–61. Brown, R.E., Milner, P.M., 2003. The legacy of Donald O. Hebb: more than the Hebb Synapse. Nat. Rev. Neurosci. 4, 1013–1019. Brun, V.H., Leutgeb, S., Wu, H.-Q., Schwarcz, R., Witter, M.P., Moser, E.I., Moser, M.- B., 2008. Impaired Spatial Representation in CA1 after Lesion of Direct Input from Entorhinal Cortex. Neuron 57, 290–302. Brun, V.H., Otnæss, M.K., Molden, S., Steffenach, H.-A., Witter, M.P., Moser, M.-B., Moser, E.I., 2002a. Place Cells and Place Recognition Maintained by Direct Entorhinal-Hippocampal Circuitry. Science 296, 2243–2246. Brun, V.H., Otnass, M.K., Molden, S., Steffenach, H.-A., Witter, M.P., Moser, M.-B., Moser, E.I., 2002b. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246. Bunce, J.G., Sabolek, H.R., Chrobak, J.J., 2004. Intraseptal infusion of the cholinergic agonist carbachol impairs delayed-non-match-to-sample radial arm maze performance in the rat. Hippocampus 14, 450–459. Buzsáki, G., 2002. Theta Oscillations in the Hippocampus. Neuron 33, 325–340. Buzsáki, G., Anastassiou, C.A., Koch, C., 2012. The origin of extracellular fields and currents--EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420. Buzsáki, G., Draguhn, A., 2004. Neuronal oscillations in cortical networks. Science 304, 1926–1929. Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J., Wise, K., 1992. High-frequency network oscillation in the hippocampus. Science 256, 1025–1027. 87 Buzsáki, G., Watson, B.O., 2012. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci. 14, 345–367. Cammarota, M., Bernabeu, R., Levi de Stein, M., Izquierdo, I., Medina, J.H., 1998. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin- dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur. J. Neurosci. 10, 2669–2676. Cammarota, M., Bevilaqua, L.R., Medina, J.H., Izquierdo, I., 2008. ERK1/2 and CaMKII-mediated events in memory formation: is 5HT regulation involved? Behav. Brain Res. 195, 120–128. Caporale, N., Dan, Y., 2008. Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 31, 25–46. Chamberland, S., Topolnik, L., 2012. Inhibitory control of hippocampal inhibitory neurons. Front. Neurosci. 6, 165. Cherubini, E., Miles, R.M., 2015. The CA3 region of the hippocampus: how is it? What is it for? How does it do it? Front. Cell. Neurosci. 9, 19. Chow, B.Y., Han, X., Dobry, A.S., Qian, X., Chuong, A.S., Li, M., Henninger, M.A., Belfort, G.M., Lin, Y., Monahan, P.E., Boyden, E.S., 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102. Colgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M.- B., Moser, E.I., 2009. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462, 353–357. Csicsvari, J., Jamieson, B., Wise, K.D., Buzsáki, G., 2003. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37, 311–322. Daumas, S., Halley, H., Francés, B., Lassalle, J.-M., 2005. Encoding, consolidation, and retrieval of contextual memory: Differential involvement of dorsal CA3 and CA1 hippocampal subregions. Learn. Mem. 12, 375–382. de Kloet, S.F., Mansvelder, H.D., De Vries, T.J., 2015. Cholinergic modulation of dopamine pathways through nicotinic acetylcholine receptors. Biochem. Pharmacol. 97, 425–438. de Lima, M.N.M., Presti-Torres, J., Dornelles, A., Siciliani Scalco, F., Roesler, R., Garcia, V.A., Schröder, N., 2011. Modulatory influence of dopamine receptors on consolidation of object recognition memory. Neurobiol. Learn. Mem. 95, 305– 310. Deisseroth, K., 2011. Optogenetics. Nat. Methods 8, 26–29. Dere, E., Huston, J.P., De Souza Silva, M.A., 2007. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 31, 673–704. 88 Ding, S.-L., 2013. Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent. J. Comp. Neurol. 521, 4145–4162. Dolorfo, C.L., Amaral, D.G., 1998. Entorhinal cortex of the rat: Topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J. Comp. Neurol. 398, 25–48. Easton, A., Douchamps, V., Eacott, M., Lever, C., 2012. A specific role for septohippocampal acetylcholine in memory? Neuropsychologia 50, 3156–3168. Ego-Stengel, V., Wilson, M.A., 2010. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20, 1–10. Elvander, E., Schött, P.A., Sandin, J., Bjelke, B., Kehr, J., Yoshitake, T., Ögren, S.O., 2004. Intraseptal muscarinic ligands and galanin: influence on hippocampal acetylcholine and cognition. Neuroscience 126, 541–557. Ennaceur, A., Delacour, J., 1988. A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31, 47–59. Feldman, D.E., 2012. The Spike-Timing Dependence of Plasticity. Neuron 75, 556–571. Fenno, L., Yizhar, O., Deisseroth, K., 2011. The Development and Application of Optogenetics. Annu. Rev. Neurosci. 34, 389–412. Ferrante, M., Ascoli, G.A., 2015. Distinct and synergistic feedforward inhibition of pyramidal cells by basket and bistratified interneurons. Front. Cell. Neurosci. 9, 439. Forro, T., Valenti, O., Lasztoczi, B., Klausberger, T., 2015. Temporal organization of GABAergic interneurons in the intermediate CA1 hippocampus during network oscillations. Cereb. Cortex N. Y. N 1991 25, 1228–1240. França, A.S.C., do Nascimento, G.C., Lopes-dos-Santos, V., Muratori, L., Ribeiro, S., Lobão-Soares, B., Tort, A.B.L., 2014. Beta2 oscillations (23–30 Hz) in the mouse hippocampus during novel object recognition. Eur. J. Neurosci. 40, 3693–3703. França, A.S.C., Lobão-Soares, B., Muratori, L., Nascimento, G., Winne, J., Pereira, C.M., Jeronimo, S.M.B., Ribeiro, S., 2015. D2 dopamine receptor regulation of learning, sleep and plasticity. Eur. Neuropsychopharmacol. 25, 493–504. França, A.S.C., Muratori, L., Nascimento, G.C., Pereira, C.M., Ribeiro, S., Lobão-Soares, B., 2016. Object recognition impairment and rescue by a dopamine D2 antagonist in hyperdopaminergic mice. Behav. Brain Res. 308, 211–216. Frémaux, N., Gerstner, W., 2015. Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules. Front. Neural Circuits 9, 85. Freund, T. f., Buzsáki, G., 1996. Interneurons of the hippocampus. Hippocampus 6, 347– 470. Gangarossa, G., Longueville, S., De Bundel, D., Perroy, J., Hervé, D., Girault, J.-A., Valjent, E., 2012. Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22, 2199–2207. 89 Gasbarri, A., Sulli, A., Innocenzi, R., Pacitti, C., Brioni, J.D., 1996. Spatial memory impairment induced by lesion of the mesohippocampal dopaminergic system in the rat. Neuroscience 74, 1037–1044. Gervasoni, D., Lin, S.-C., Ribeiro, S., Soares, E.S., Pantoja, J., Nicolelis, M.A.L., 2004. Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. Off. J. Soc. Neurosci. 24, 11137–11147. Giese, K.P., Mizuno, K., 2013. The roles of protein kinases in learning and memory. Learn. Mem. Cold Spring Harb. N 20, 540–552. Girardeau, G., Benchenane, K., Wiener, S.I., Buzsáki, G., Zugaro, M.B., 2009. Selective suppression of hippocampal ripples impairs spatial memory. Nat. Neurosci. 12, 1222–1223. Gould, T.J., Lommock, J.A., 2003. Nicotine Enhances Contextual Fear Conditioning and Ameliorates Ethanol-Induced Deficits in Contextual Fear Conditioning. Behav. Neurosci. 117, 1276–1282. Grayson, B., Leger, M., Piercy, C., Adamson, L., Harte, M., Neill, J.C., 2015. Assessment of disease-related cognitive impairments using the novel object recognition (NOR) task in rodents. Behav. Brain Res. 285, 176–193. Haegens, S., Nácher, V., Hernández, A., Luna, R., Jensen, O., Romo, R., 2011. Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making. Proc. Natl. Acad. Sci. 108, 10708–10713. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I., 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806. Hansen, N., Manahan-Vaughan, D., 2012. Dopamine D1/D5 Receptors Mediate Informational Saliency that Promotes Persistent Hippocampal Long-Term Plasticity. Cereb. Cortex bhs362. Hasselmo, M.E., 2006. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol., Motor systems / Neurobiology of behaviour 16, 710–715. Igarashi, K.M., Lu, L., Colgin, L.L., Moser, M.-B., Moser, E.I., 2014. Coordination of entorhinal-hippocampal ensemble activity during associative learning. Nature 510, 143–147. Insausti, R., Herrero, M.T., Witter, M.P., 1997. Entorhinal cortex of the rat: Cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus 7, 146–183. Ito, M., Sakurai, M., Tongroach, P., 1982. Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J. Physiol. 324, 113–134. Izquierdo, I., Cammarota, M., 2004. Zif and the Survival of Memory. Science 304, 829– 830. 90 Izquierdo, I., Medina, J.H., 1997. Memory Formation: The Sequence of Biochemical Events in the Hippocampus and Its Connection to Activity in Other Brain Structures. Neurobiol. Learn. Mem. 68, 285–316. Ji, J., Maren, S., 2008. Differential roles for hippocampal areas CA1 and CA3 in the contextual encoding and retrieval of extinguished fear. Learn. Mem. 15, 244–251. Kamondi, A., Acsády, L., Wang, X.J., Buzsáki, G., 1998. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity-dependent phase- precession of action potentials. Hippocampus 8, 244–261. Kandel, E.R., 2001. The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses. Science 294, 1030–1038. Karunakaran, S., Chowdhury, A., Donato, F., Quairiaux, C., Michel, C.M., Caroni, P., 2016. PV plasticity sustained through D1/5 dopamine signaling required for long- term memory consolidation. Nat. Neurosci. 19, 454–464. Kemp, A., Manahan-Vaughan, D., 2004. Hippocampal long-term depression and long- term potentiation encode different aspects of novelty acquisition. Proc. Natl. Acad. Sci. U. S. A. 101, 8192–8197. Klausberger, T., Somogyi, P., 2008. Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations. Science 321, 53–57. Knox, D., 2016. The role of basal forebrain cholinergic neurons in fear and extinction memory. Neurobiol. Learn. Mem. 133, 39–52. Kobayashi, K., 2010. Hippocampal mossy fiber synaptic transmission and its modulation. Vitam. Horm. 82, 65–85. Konorski, J., 1948. Conditioned reflexes and neuron organization. Cambridge University Press, New York, NY, US. Kutlu, M.G., Gould, T.J., 2015. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochem. Pharmacol. 97, 498– 511. Lacey, M.G., Gooding-Williams, G., Prokic, E.J., Yamawaki, N., Hall, S.D., Stanford, I.M., Woodhall, G.L., 2014. Spike Firing and IPSPs in Layer V Pyramidal Neurons during Beta Oscillations in Rat Primary Motor Cortex (M1) In Vitro. PLOS ONE 9, e85109. Leal, G., Afonso, P.M., Salazar, I.L., Duarte, C.B., 2015. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res., Brain and Memory: Old Arguments and New Perspectives 1621, 82–101. Leão, R.N., Mikulovic, S., Leão, K.E., Munguba, H., Gezelius, H., Enjin, A., Patra, K., Eriksson, A., Loew, L.M., Tort, A.B.L., Kullander, K., 2012. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat. Neurosci. 15, 1524–1530. 91 Lee, I., Kesner, R.P., 2004. Differential contributions of dorsal hippocampal subregions to memory acquisition and retrieval in contextual fear-conditioning. Hippocampus 14, 301–310. Lenck-Santini, P.-P., Rivard, B., Muller, R. u., Poucet, B., 2005. Study of CA1 place cell activity and exploratory behavior following spatial and nonspatial changes in the environment. Hippocampus 15, 356–369. Levin, E.D., 2002. Nicotinic receptor subtypes and cognitive function. J. Neurobiol. 53, 633–640. Li, F., Wang, L.P., Shen, X., Tsien, J.Z., 2010. Balanced dopamine is critical for pattern completion during associative memory recall. PloS One 5, e15401. Lisman, J., Schulman, H., Cline, H., 2002. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190. Lisman, J.E., Grace, A.A., 2005. The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46, 703–713. López-Muñoz, F., Boya, J., Alamo, C., 2006. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res. Bull. 70, 391–405. Lorente De Nó, R., 1934. Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J. Für Psychol. Neurol. 46, 113–177. Lovett-Barron, M., Kaifosh, P., Kheirbek, M.A., Danielson, N., Zaremba, J.D., Reardon, T.R., Turi, G.F., Hen, R., Zemelman, B.V., Losonczy, A., 2014. Dendritic Inhibition in the Hippocampus Supports Fear Learning. Science 343, 857–863. Madisen, L., Mao, T., Koch, H., Zhuo, J., Berenyi, A., Fujisawa, S., Hsu, Y.-W.A., Garcia, A.J., Gu, X., Zanella, S., Kidney, J., Gu, H., Mao, Y., Hooks, B.M., Boyden, E.S., Buzsáki, G., Ramirez, J.M., Jones, A.R., Svoboda, K., Han, X., Turner, E.E., Zeng, H., 2012. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802. Mandler, G., 1980. Recognizing: The judgment of previous occurrence. Psychol. Rev. 87, 252–271. Martí Barros, D., Ramirez, M.R., dos Reis, E.A., Izquierdo, I., 2004. Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience 126, 651–656. McGaugh, J.L., 2000. Memory--a Century of Consolidation. Science 287, 248–251. Melichercik, A.M., Elliott, K.S., Bianchi, C., Ernst, S.M., Winters, B.D., 2012. Nicotinic receptor activation in perirhinal cortex and hippocampus enhances object memory in rats. Neuropharmacology 62, 2096–2105. Mikulovic, S., Restrepo, C.E., Hilscher, M.M., Kullander, K., Leão, R.N., 2015. Novel markers for OLM interneurons in the hippocampus. Front. Cell. Neurosci. 9, 201. Milner, B., Corkin, S., Teuber, H.-L., 1968. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6, 215–234. 92 Minatohara, K., Akiyoshi, M., Okuno, H., 2015. Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace. Front. Mol. Neurosci. 8, 78. Montgomery, S.M., Buzsáki, G., 2007. Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proc. Natl. Acad. Sci. 104, 14495–14500. Morice, E., Billard, J.-M., Denis, C., Mathieu, F., Betancur, C., Epelbaum, J., Giros, B., Nosten-Bertrand, M., 2007. Parallel loss of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 32, 2108–2116. Nakazawa, K., Quirk, M.C., Chitwood, R.A., Watanabe, M., Yeckel, M.F., Sun, L.D., Kato, A., Carr, C.A., Johnston, D., Wilson, M.A., Tonegawa, S., 2002. Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall. Science 297, 211–218. Nakazawa, K., Sun, L.D., Quirk, M.C., Rondi-Reig, L., Wilson, M.A., Tonegawa, S., 2003. Hippocampal CA3 NMDA Receptors Are Crucial for Memory Acquisition of One-Time Experience. Neuron 38, 305–315. Navakkode, S., Sajikumar, S., Korte, M., Soong, T.W., 2012. Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learn. Mem. Cold Spring Harb. N 19, 294–299. O, D., 1949. The organization of behavior; a neuropsychological theory. Wiley, Oxford, England. Okamoto, K., Bosch, M., Hayashi, Y., 2009. The roles of CaMKII and F-actin in the structural plasticity of dendritic spines: a potential molecular identity of a synaptic tag? Physiol. Bethesda Md 24, 357–366. O’Keefe, J., Dostrovsky, J., 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175. Okuno, H., Akashi, K., Ishii, Y., Yagishita-Kyo, N., Suzuki, K., Nonaka, M., Kawashima, T., Fujii, H., Takemoto-Kimura, S., Abe, M., Natsume, R., Chowdhury, S., Sakimura, K., Worley, P.F., Bito, H., 2012. Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with CaMKIIβ. Cell 149, 886– 898. O’Mara, S., 2005. The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J. Anat. 207, 271–282. Otmakhova, N., Duzel, E., Deutch, A.Y., Lisman, J., 2013. The Hippocampal-VTA Loop: The Role of Novelty and Motivation in Controlling the Entry of Information into Long-Term Memory 235–254. Pogorelov, V.M., Rodriguiz, R.M., Insco, M.L., Caron, M.G., Wetsel, W.C., 2005. Novelty seeking and stereotypic activation of behavior in mice with disruption of the Dat1 gene. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 30, 1818–1831. 93 Puma, C., Deschaux, O., Molimard, R., Bizot, J.C., 1999. Nicotine improves memory in an object recognition task in rats. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 9, 323–327. Raimondo, J.V., Kay, L., Ellender, T.J., Akerman, C.J., 2012. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat. Neurosci. 15, 1102–1104. Rajagopal, L., W Massey, B., Huang, M., Oyamada, Y., Y. Meltzer, H., 2014. The Novel Object Recognition Test in Rodents in Relation to Cognitive Impairment in Schizophrenia. Curr. Pharm. Des. 20, 5104–5114. Rampon, C., Tang, Y.P., Goodhouse, J., Shimizu, E., Kyin, M., Tsien, J.Z., 2000. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat. Neurosci. 3, 238–244. Ravel, N., Chabaud, P., Martin, C., Gaveau, V., Hugues, E., Tallon-Baudry, C., Bertrand, O., Gervais, R., 2003. Olfactory learning modifies the expression of odour- induced oscillatory responses in the gamma (60–90 Hz) and beta (15–40 Hz) bands in the rat olfactory bulb. Eur. J. Neurosci. 17, 350–358. Remondes, M., Schuman, E.M., 2004. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature 431, 699–703. Rezvani, A.H., Levin, E.D., 2001. Cognitive effects of nicotine. Biol. Psychiatry, Nicotine Mechanisms in Alzheimer’s Disease 49, 258–267. Ribeiro, S., Mello, C.V., Velho, T., Gardner, T.J., Jarvis, E.D., Pavlides, C., 2002. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J. Neurosci. Off. J. Soc. Neurosci. 22, 10914–10923. Ribeiro, S., Nicolelis, M.A.L., 2004. Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn. Mem. Cold Spring Harb. N 11, 686–696. Ribeiro, S., Shi, X., Engelhard, M., Zhou, Y., Zhang, H., Gervasoni, D., Lin, S.-C., Wada, K., Lemos, N.A.M., Nicolelis, M.A.L., 2007. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front. Neurosci. 1, 43–55. Roopun, A.K., Middleton, S.J., Cunningham, M.O., LeBeau, F.E.N., Bibbig, A., Whittington, M.A., Traub, R.D., 2006. A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc. Natl. Acad. Sci. 103, 15646–15650. Rossato, J.I., Bevilaqua, L.R.M., Izquierdo, I., Medina, J.H., Cammarota, M., 2009. Dopamine controls persistence of long-term memory storage. Science 325, 1017– 1020. Rudy, J.W., Matus-Amat, P., 2005. The Ventral Hippocampus Supports a Memory Representation of Context and Contextual Fear Conditioning: Implications for a Unitary Function of the Hippocampus. Behav. Neurosci. 119, 154–163. 94 Sacchetti, B., Lorenzini, C.A., Baldi, E., Bucherelli, C., Roberto, M., Tassoni, G., Brunelli, M., 2001. Long-lasting hippocampal potentiation and contextual memory consolidation. Eur. J. Neurosci. 13, 2291–2298. Sauer, B., 1998. Inducible gene targeting in mice using the Cre/lox system. Methods San Diego Calif 14, 381–392. Scheffer-Teixeira, R., Belchior, H., Caixeta, F.V., Souza, B.C., Ribeiro, S., Tort, A.B.L., 2012. Theta phase modulates multiple layer-specific oscillations in the CA1 region. 1991. Cereb. Cortex N. Y. N 22, 2404–2414. Scheffer-Teixeira, R., Belchior, H., Leão, R.N., Ribeiro, S., Tort, A.B.L., 2013. On high- frequency field oscillations (>100 Hz) and the spectral leakage of spiking activity. J. Neurosci. Off. J. Soc. Neurosci. 33, 1535–1539. Schneider, F., Grimm, C., Hegemann, P., 2015. Biophysics of Channelrhodopsin. Annu. Rev. Biophys. 44, 167–186. Schultz, C., Engelhardt, M., 2014. Anatomy of the hippocampal formation. Front. Neurol. Neurosci. 34, 6–17. Scoville, W.B., Milner, B., 1957. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21. Shapiro, M.G., Frazier, S.J., Lester, H.A., 2012. Unparalleled Control of Neural Activity Using Orthogonal Pharmacogenetics. ACS Chem. Neurosci. 3, 619–629. Shinohara, Y., Hosoya, A., Yahagi, K., Ferecskó, A.S., Yaguchi, K., Sík, A., Itakura, M., Takahashi, M., Hirase, H., 2012. Hippocampal CA3 and CA2 have distinct bilateral innervation patterns to CA1 in rodents. Eur. J. Neurosci. 35, 702–710. Silva, W.C.N. da, Köhler, C.C., Radiske, A., Cammarota, M., 2012. D1/D5 dopamine receptors modulate spatial memory formation. Neurobiol. Learn. Mem. 97, 271– 275. Subramaniyan, M., Dani, J.A., 2015. Dopaminergic and cholinergic learning mechanisms in nicotine addiction. Ann. N. Y. Acad. Sci. 1349, 46–63. Suzuki, W.A., Miller, E.K., Desimone, R., 1997. Object and Place Memory in the Macaque Entorhinal Cortex. J. Neurophysiol. 78, 1062–1081. Szirmai, I., Buzsáki, G., Kamondi, A., 2012. 120 years of hippocampal Schaffer collaterals. Hippocampus 22, 1508–1516. Tian, S., Pan, S., You, Y., 2015. Nicotine enhances the reconsolidation of novel object recognition memory in rats. Pharmacol. Biochem. Behav. 129, 14–18. Tort, A.B.L., Komorowski, R.W., Manns, J.R., Kopell, N.J., Eichenbaum, H., 2009. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. U. S. A. 106, 20942–20947. Tort, A.B.L., Kramer, M.A., Thorn, C., Gibson, D.J., Kubota, Y., Graybiel, A.M., Kopell, N.J., 2008. Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. U. S. A. 105, 20517–20522. 95 Tort, A.B.L., Scheffer-Teixeira, R., Souza, B.C., Draguhn, A., Brankačk, J., 2013. Theta- associated high-frequency oscillations (110-160Hz) in the hippocampus and neocortex. Prog. Neurobiol. 100, 1–14. Tsien, J.Z., Huerta, P.T., Tonegawa, S., 1996. The Essential Role of Hippocampal CA1 NMDA Receptor–Dependent Synaptic Plasticity in Spatial Memory. Cell 87, 1327–1338. Van Cauter, T., Poucet, B., Save, E., 2008. Unstable CA1 place cell representation in rats with entorhinal cortex lesions. Eur. J. Neurosci. 27, 1933–1946. van Groen, T., Miettinen, P., Kadish, I., 2003. The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation. Hippocampus 13, 133–149. Vanderwolf, C.H., 1969. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418. Wang, Y., Zhang, P., Wyskiel, D.R., 2016. Chandelier Cells in Functional and Dysfunctional Neural Circuits. Front. Neural Circuits 10. Wheeler, D.W., White, C.M., Rees, C.L., Komendantov, A.O., Hamilton, D.J., Ascoli, G.A., 2015. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus. eLife 4. Whitlock, J.R., Heynen, A.J., Shuler, M.G., Bear, M.F., 2006. Learning Induces Long- Term Potentiation in the Hippocampus. Science 313, 1093–1097. Winson, J., 1978. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science 201, 160–163. Woodruff, A.R., Anderson, S.A., Yuste, R., 2010. The Enigmatic Function of Chandelier Cells. Front. Neurosci. 4. Zhang, G., Stackman, R.W., 2015. The role of serotonin 5-HT2A receptors in memory and cognition. Front. Pharmacol. 6, 225. 96 6.0 – Anexos D2 dopamine receptor regulation of learning, sleep and plasticity A.S.C. Françaa,1, B. Lobão-Soaresb,1,n, L. Muratoria,c,1, G. Nascimentod,e, J. Winnee, C.M. Pereirae, S.M.B. Jeronimoc, S. Ribeiroa,n aBrain Institute, Federal University of Rio Grande do Norte (UFRN), 59056-450 Natal, RN, Brazil bDepartment of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Brazil cDepartment of Biochemistry, Federal University of Rio Grande do Norte (UFRN), Brazil dDepartment of Biomedical Engineering, Federal University of Rio Grande do Norte (UFRN), Brazil eEdmond and Lily Safra International Institute of Neuroscience of Natal (ELS-IINN), Natal, RN, Brazil Received 2 September 2014; received in revised form 8 January 2015; accepted 16 January 2015 KEYWORDS REM sleep; CaMKII; Zif-268; BDNF; Haloperidol; Object recognition Abstract Dopamine and sleep have been independently linked with hippocampus-dependent learning. Since D2 dopaminergic transmission is required for the occurrence of rapid-eye-movement (REM) sleep, it is possible that dopamine affects learning by way of changes in post-acquisition REM sleep. To investigate this hypothesis, we first assessed whether D2 dopaminergic modulation in mice affects novel object preference, a hippocampus-dependent task. Animals trained in the dark period, when sleep is reduced, did not improve significantly in performance when tested 24 h after training. In contrast, animals trained in the sleep-rich light period showed significant learning after 24 h. When injected with the D2 inverse agonist haloperidol immediately after the exploration of novel objects, animals trained in the light period showed reduced novelty preference upon retesting 24 h later. Next we investigated whether haloperidol affected the protein levels of plasticity factors shown to be up-regulated in an experience-dependent manner during REM sleep. Haloperidol decreased post-exploration hippocampal protein levels at 3 h, 6 h and 12 h for phosphorylated Ca2+/calmodulin-dependent protein kinase II, at 6 h for Zif-268; and at 12 h for the brain-derived neurotrophic factor. Electrophysiological and kinematic recordings showed a significant decrease in the amount of REM sleep following haloperidol injection, while slow-wave sleep remained unaltered. Importantly, REM sleep decrease across animals was strongly correlated with deficits in novelty preference (Rho=0.56, p=0.012). Altogether, the www.elsevier.com/locate/euroneuro http://dx.doi.org/10.1016/j.euroneuro.2015.01.011 0924-977X/& 2015 Elsevier B.V. and ECNP. All rights reserved. nCorresponding authors. Tel.: +55 84 9127 7141. E-mail addresses: brunolobaosoares@gmail.com (B. Lobão-Soares), sidartaribeiro@neuro.ufrn.br (S. Ribeiro). 1The first three authors contributed equally to this work. European Neuropsychopharmacology (2015) 25, 493–504 results suggest that the dopaminergic regulation of REM sleep affects learning by modulating post-training levels of calcium-dependent plasticity factors. & 2015 Elsevier B.V. and ECNP. All rights reserved. 1. Introduction The neurotransmitter dopamine is involved with the acquisi- tion of hippocampal-dependent memories (Rossato et al., 2009). While most studies have focused on D1/D5 receptors (Lisman and Grace, 2005; Lemon and Manahan-Vaughan, 2006; Rossato et al., 2009), a role for D2 receptors in hippocampus- dependent memory acquisition and/or consolidation has been proposed (Manahan-Vaughan and Kulla, 2003; De Lima et al., 2011). D2 receptors are also known to control the sleep–wake cycle (Dzirasa et al., 2006; Monti and Monti, 2007; Lima et al., 2007, Morice et al., 2007; Lima et al., 2008). Hyperdopami- nergic mice knockout for the dopamine transporter display robust REM sleep (Dzirasa et al., 2006), but REM sleep disappears when animals are treated with alpha-methyl-p- tyrosine, a dopamine synthesis inhibitor (Dzirasa et al., 2006). Importantly, a D2 (but not D1) receptor agonist is able to rescue REM sleep (Dzirasa et al., 2006). These findings are consistent with the evidence that blockade of D2 receptors specifically decreases REM sleep (Lima et al., 2008). The acute blockade of D2 receptors by haloperidol is known to impair learning in the novel object preference test in rats (Proença et al., 2014) and mice (França et al., 2014). Could the effects of dopamine on learning be mediated by REM sleep? Hippocampus-dependent learning increases the duration and number of REM sleep episodes (Binder et al., 2012). Several studies have reported the up-regulation of calcium- dependent plasticity factors during post-acquisition REM sleep (Ribeiro et al., 1999, 2002, 2007; Ulloor and Datta, 2005), in line with evidence that sleep deprivation impairs cAMP sign- aling in the hippocampus (Vecsey et al., 2009). Neural pla- sticity related to learning is associated with both molecular and electrophysiological events that lead to gradual changes in synaptic strength and morphology (Kandel et al., 2014; Whitlock et al., 2006). Key molecular events include the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Lisman et al., 2002), and up-regulation of the protein levels of immediate-early gene Zif-268 (Guzowski, 2002) and brain-derived neurotrophic factor (BDNF) (Panja and Bramham, 2014). The early increase in pCaMKII levels imme- diately after memory acquisition is followed by a rise of Zif- 268 protein levels after 1–2 h, and then increased BDNF levels after 12 h (Bekinschtein et al., 2007; Medina et al., 2008). These events are necessary for the consolidation of long-las- ting memories (Bozon et al., 2003; Xia and Storm, 2005), and for the long-term potentiation (LTP) of electrophysiological responses implicated as the cellular basis of learning and memory (Jones et al., 2001; Whitlock et al., 2006). To gain insight into the relation of dopamine, sleep and learning, we set out to investigate whether the D2 regulat- ion of REM sleep correlates with changes in the consolidat- ion of the object recognition task, a hippocampus-depend- ent task (Piterkin et al., 2008). To this end, we assessed electrophysiological and behavioral alterations induced by haloperidol in mice subjected to the object recognition task. We also investigated how the post-training administration of haloperidol modulates the hippocampal levels of pCaMKII, Zif-268 and BDNF. Finally, we combined behavioral, electro- physiological and kinematic recordings to determine the re- lationship between learning deficits and haloperidol-induced changes in sleep. The results suggest that D2 dopaminergic transmission affects learning by way of changes in REM sleep and calcium-dependent plasticity factors. 2. Experimental procedures 2.1. Animals A total of 116 adult male mice were used (C57Bl-6 strain, 2–5 months). After surgery, animals were housed in cages under a 12 h/12 h light/ dark schedule, with lights on at 07:00, and food and water ad libitum. Animals were daily handled 10 times for 5 min before the experi- ments, in order to decrease stress responses. Housing, surgical and behavioral procedures were in accordance with the guidelines of the National Institutes of Health, and were approved by the ELS-IINN Ethics Committee (Protocol number 08/2010). 2.2. Novelty preference task The task was based on the spontaneous tendency of rodents to explore novelty (Hughes, 2007). Our task employed 6 different objects presented over 2 consecutive days; 4 objects were presented during the initial exploration session (training session, 10 min); and 2 unfamiliar objects replaced 2 familiar objects during the second exploration session, 24 h later (testing session, 10 min). To evaluate memory consolidation, an object preference ratio was calculated (time spent with unfamiliar/familiar objects). Behavioral recordings began at 10:00 or 22:00 in an open field apparatus (50 cm diameter and 30 cm high). Following object exploration, animals were injected with haloperidol or vehicle, and were then allowed to behave freely in their home cages until the second exploration session (Figure 1A). For animals subjected to electrophysiological recordings, two training-testing pairs of session were performed within seven days of each other, the first with vehicle and the second with haloperidol. Locomotion was estimated as the total distance traveled per session. In behavioral sessions, experiments during the dark period were conducted under white light. 2.3. Single object exposure and perfusion times for histochemical analyses For histochemical analyses, we used mice previously exposed to 10 sessions of handling and a single exposure of 10 min to 4 novel objects, identical to the training session described above. All experiments in this case were conducted from 8:00 to 10:00; animals (N=7–10 per group) received 0.1 ml/10 g injections of haloperidol (0.3 mg/kg) or vehicle (saline) immediately after object exploration. An additional group (naïve; N=7) was studied in which the mice were immediately perfused after being removed from their cages, without object exploration. With the exception of the naïve group, animals were returned to their home cages after injection and allowed to cycle freely through waking (WK) and sleep states for 3 h (n=10 A.S.C. França et al.494 VH/haloperidol), 6 h (n=7 VH/haloperidol) or 12 h (n=7 VH/haloper- idol); at the criterion time, animals were deeply anesthetized and perfused (Figure 1B). 2.4. Immunohistochemistry Animals were anesthetized with isoflurane and perfused with paraformaldehyde 4% in phosphate buffer (PB). The brains were removed and placed in a solution of 30% sucrose at 4 1C for 24 h. Subsequently the brains were frozen, frontally sectioned at 30 mm in a criostat (Zeiss), and thaw-mounted over glass slides. Sections were incubated as a single batch per plasticity factor in blocking buffer solution (0.5% fresh skim milk and 0.3% Triton X-100 in 0.1 M PB) for 30 min, and then incubated overnight at 18 1C in primary antibody (pCaMKII – 1:200, Millipore; Zif-268–1:100, Santa Cruz Biotechnology, USA) diluted in blocking buffer. Next, the sections were washed in PB for 15 min, incubated with a biotinylated secondary antibody for 2 h, washed again in PB for 15 min, and then incubated in avidin–biotin–peroxidase solution (Vector Labs, USA) for another 2 h. Slides were then placed in a solution containing 0.03% DAB and 0.001% hydrogen peroxide in 0.1 M PB, dehydrated and cover-slipped with Entellan (Merck, USA). In order to confirm labeling specificity, the primary antibodies were replaced by blocking buffer in test sections. For BDNF staining, some changes were made in the protocol. First, we used an antigenic recovery protocol that consisted in immersing sections in borate buffer (0.1 M, pH 9.0) and then heating them in a microwave oven, for two periods of 30 s. Sections were washed in PB for 15 min. To block endogenous peroxidase, sections were then incubated for 30 min in 3% H2O2 diluted in 20% methanol. The sections were then washed in PB for 15 min, incubated in blocking buffer for 2 h and incubated for 72 h in primary antibody (BDNF – 1:100, Santa Cruz Biotechnology, USA). After this procedure the steps were the same as described above (Figure 1B). Figure 1 Behavioral task, pharmacology, immunohistochemistry and LFP recordings. (A) Behavioral and pharmacological procedures. C57BL-6 mice were presented to 4 novel objects at light or dark periods (training session). Haloperidol or vehicle was injected immediately after exploration (I.A.E.) or 6 h after exploration (6 h A.E.) of novel objects. One day after training, animals were exposed to 2 novel objects and 2 familiar objects. (B) Immunohistochemistry and histology. At 3, 6 or 12 h after injection, animals were euthanized, and the brains were processed. Frontal sections were cresyl-stained or subjected to immunohistochemistry for the transcription factor Zif-268, phosphorylated calcium-calmodulin kinase II (pCaMKII), and brain- derived neurotrophic factor (BDNF). Labeling quantification in hippocampal regions DG, CA3, and CA1 comprised densitometry for Zif-268, pCaMKII, and BDNF, as well as cell countings for Zif-268, which shows nuclear staining. (C) Local field potential recordings (LFP) were performed in the primary somatosensory (S1) and motor cortices (M1), and in CA1. Inertial recordings from an accelerometer were also obtained. (D) Spectral maps used to quantitatively sort the major behavioral states of the sleep–wake cycle (Gervasoni et al., 2004). Top left panel indicates waking (WK, in black), slow wave sleep (SWS, in red), and rapid-eye-movement sleep (REM, in green); blue denotes state transitions. Top right panel show accelerometer data. High acceleration (hot colors) was only observed during WK. Bottom left panel shows LFP power in the theta range (6–12 Hz); peak theta power occurs during REM. Bottom right panel show LFP power in the delta range (1–4.5 Hz); peak delta power occurs during SWS. (E) Placement of the microelectrode arrays on neuroanatomical diagram overlaid with cresyl-violet stained section. Note electrode tracks in CA1. 495Dopaminergic regulation of learning, sleep and plasticity 2.5. Staining quantification Densitometric measurements of pCaMKII, Zif-268 and BDNF staining were performed with ImageJ software (3 sections/animal, 1.46– 2.06 mm posterior to bregma). Measurements of the corpus callo- sum were used to subtract staining background values in each section. Densitometric measurements of the different hippocampal regions of interest (DG, CA3, CA1) were then normalized by dividing the mean grey value (in black and white photographs) measured for each animal by the average of these values from all compared groups. Unlike pCaMKII and BDNF, which present diffuse cytoplasmic staining, Zif-268 exhibits nuclear staining. For the cellular quanti- fication of Zif-268 staining, labeled nuclei were counted using Stereo Investigator software (MBF bioscience, USA). In each region of interest (3 sections/animal, 1.46 mm–2.06 mm posterior to Bregma), labeled cells were counted within 50 50 μm2 grid squares. The number of labeled cells per grid (R1) was obtained for each section. Individual values were then normalized by the average value of all groups: naïve, VH and haloperidol for each time point, as well as VH and haloperidol inter-time comparisons (Figure 1B). Results are presented as the average of the normalized staining ratio across the three regions of interest (Figure 4), as well as separated by anatomical region (Supplementary Figure 1). 2.6. Behavioral and kinematic recordings Behaviors were recorded using a Panasonic camera and AMcap 9.21 free software in behavioral groups. Video recordings were synchro- nized to local field potentials (LFPs) and kinematic data obtained with a three axis accelerometer sensor (ADXL330, Analog Devices) tightly installed over the multi-electrode implant. 2.7. Multi-electrode implantation and recordings For intracranial LFP recordings (Figure 1C), 9 animals were chronically implanted with 5 electrodes in the hippocampus, 4 electrodes in the primary motor cortex (M1), and 4 electrodes in the primary somato- sensory cortex (S1). Each multi-electrode array was 0.9 2.10 mm2 with length 1.5 mm, composed of 50 μm diameter tungsten wires coated with polyamide, attached to an 18-pin connector (Omnetics A79040-001). Arrays were implanted under isoflurane through an opening in the skull (Bregma coordinates: 0.55 and 1.65 ML, 0.0 and 2.2 mm AP). An acrylic cap built over the head was secured by 3 screws attached to the skull. One of the screws touched the dura- mater and was used as recording ground soldered to a silver wire. A 10- fold pre-amplification circuitry was placed 4 cm distant from the animal's head, in order to reduce noise. LFP signals sampled at a 1000 Hz were pre-amplified 500 and recorded in a 32-channel system for neural recording analysis (MAP, Plexon Inc). 2.8. Identification of wake–sleep states LFP, video and kinematic recordings were combined to sort the different sleep–wake states. Online LFP spectral analysis of the sleep–wake cycle (Gervasoni et al., 2004; Ribeiro et al., 2007) was used to identify and quantify occurrence of WK, slow wave-sleep (SWS) and REM sleep (Figure 1D). Animal behavior and LFPs were continuously observed and recorded in real time for 12 h. The first 4 h of recording were used for comparisons among treatments. 2.9. Haloperidol treatment in behavioral groups Animals received i.p. injections of haloperidol or vehicle (saline 0.9%). Haloperidol doses of 0.3 mg/kg i.p. were used, based on previous studies (Dzirasa et al., 2006; Morice et al., 2007). Depending on the animal group (Figure 1A), drug or vehicle was applied immediately after exploration (I.A.E.) or 6 h after exploration (6 h A.E.). 2.10. Haloperidol treatment in electrophysiological groups Animals subjected to object exploration received haloperidol (0.3 mg/kg i.p.) or vehicle I.A.E., defining the Exploration/Halo- peridol and Exploration/Vehicle groups, respectively. Animals not subjected to object exploration were injected with haloperidol (0.3 mg/kg, group Control/Haloperidol) or vehicle (group Control/ Vehicle). 2.11. Histological confirmation of electrode placement In order to confirm electrode positioning, animals subjected to multi-electrode implantation were subjected to post-mortem ana- lysis by Nissl staining. In all cases the electrode tips were located at the depth of 1.5 mm for cortical electrodes, or in the CA1 layer in the case of hippocampal electrodes. A representative example is shown in Figure 1E. 2.12. Statistical analysis The data were first subjected to the Shapiro–Wilk and Kolmogorov– Smirnov normality tests. The data showed parametric distributions, and were expressed as mean7the standard error of mean (SEM), with statistical significance set at α=0.05. Two-way ANOVA compar- isons followed by Bonferroni post-hoc tests were used for behavioral analyses (period and treatment as independent variables, in Figure 2A), for immunohistochemical analyses (using time of injec- tion and treatment as independent variables in Figure 4) and in electrophysiology groups (with object exposure and treatment as independent variables in Figure 6A). Bonferroni-corrected one-way ANOVA followed by Bonferroni post-hoc tests were used for multiple comparisons among the cell counting groups (Figure 5) and the staining ratio of separate hippocampal regions (Supplementary Figure 1). Spearman's correlations were used for verifying the relation between REM sleep duration and novelty preference ratio (Figure 6C). The descriptive statistics comprise F, p values and degrees of freedom (DF) of corresponding one or two-way ANOVAs, followed by mean7SEM and summary of p values for each post-hoc test (Table 1, Supplementary Tables 1–4). 3. Results 3.1. Time-dependent effect of haloperidol injection in the object recognition task First, we measured the effect of haloperidol on performa- nce of the object recognition task. A two-way ANOVA (Time of injection: F (1, 28)=22.24, po0.0001; Treatment: F (1, 28)=11.44, p=0.0021; Interaction: F (1,28)=5.4, p=0.027) revealed that animals injected with haloperidol and subje- cted to the task during the dark period showed significantly less object recognition in comparison to animals treated during the light period (Figure 2A). Next we compared the effect of haloperidol at two different time points during the light phase: I.A.E. and 6 h A.E. Figure 2B shows that the only treatment to impair object recognition was the administration of haloperidol 0.3 mg/kg I.A.E (two- way ANOVA: Time of injection: F (1, 28)=2.30, p=0.14, Treat- ment: F (1, 28)=5.04, p=0.037; Interaction: F (1, 28)=9.5, A.S.C. França et al.496 p=0.0044). This result indicates that haloperidol impaired object discrimination within the initial hours after injection. 3.2. Haloperidol has a time-dependent effect on pCaMKII, Zif-268 and BDNF levels The protein levels of the plasticity factors assessed varied substantially across naïve, vehicle-treated and haloperidol- treated animals (Figure 3). 3D illustrates regions of interest differentially stained for pCaMKII, Zif-268 and BDNF, respec- tively. Quantitative results are shown in Figure 4, Supplementary Figure 1 (densitometry) and Figure 5 (cell counting, only for zif-268). Figure 4 shows that pCaMKII levels in pooled hippocampal data 3 h after injection were lower in the haloperidol and vehicle groups, in comparison with naïve animals. Haloperidol- treated animals showed lower levels than naïve and vehicle animals 6 h after injection. Animals killed 12 h after injection showed lower levels of pCaMKII in the haloperidol group, in comparison with the vehicle group (statistics in Table 1). In the analysis of separate hippocampal regions 3 h after injection, a significant difference was observed only in the CA3 region (Supplementary Figure 1A, F=5.58, p=0.049, statistics in Supplementary Table 2). At 6 h post-injection, a decrease of pCaMKII levels was detected in the haloperidol group in CA1 (F=33.22; p=0.0003), CA3 (F=28.28; p=0.0003) and DG (F=11.56; p=0.0027) (Supplementary Figure 1A; statistics in Supplementary Table 3). At 12 h post-injection, pCaMKII levels were lower in the haloperidol group in comparison with the vehicle group in CA1 (F=9.23; p=0.0051), CA3 (F=14.24; p=0.0003) and DG (F=11.12; p=0.0024; Supplementary Figure 1A statistics in Supplementary Table 4). Significant differences in Zif-268 levels were observed only at 6 h post-injection. The haloperidol group showed lower Zif- 268 levels than the vehicle and naïve groups (two-way ANOVA: Time: F (2, 45)=0.14, p=0.86, Treatment: F (2, 45)=7.82, po0.0012; Interaction: F (4, 45)=5.58, po0.0007; see Table 1). Similar results were observed when we analyzed the different hippocampal regions: at 6 h post injection, Zif-268 staining was significantly decreased in the haloperidol group in CA1 (F=14.27; p=0.0009) and CA3 (F=9.92; p=0.0054), in comparison with naïve and vehicle groups (Supp- lementary Figure 1B; statistics in Supplementary Table 3). The effect of haloperidol in BDNF levels was observed only at 12 h post injection. Staining in the haloperidol group was significant lower than in the vehicle group (two-way ANOVA: Time: F (2, 43)=0.22, p=0.80, Treatment: F (2, 43) =5.18, po0.009; Interaction: F (4, 43)=0.91, p=0.91, sta- tistics in Table 1). A non-significant statistical trend was observed in the DG at 12 h post-injection, with lower levels in the haloperidol group than in animals injected with vehicle (F=2.06, p=0.056) (Supplementary Figure 1C, sta- tistics in Supplementary Table 4). 3.3. VH and haloperidol inter-time comparisons We then analyzed the data through separate comparisons over time for the VH and haloperidol groups. For pCaMKII levels, ANOVA revealed lower immunostaining in the VH 3 h group, in comparison with the other groups (naive, 6 h and 12 h), in DG (F=8.346; p=0.0009), CA1 (compared only to 6 h and 12 groups; F=10.28; p=0.0002) and CA3 (compared only to 6 h and 12 h groups; F=9.218; p=0.0004). No differences were found for the VH inter-time comparisons of Zif-268 and BDNF staining among naïve, 3 h, 6 h and 12 h groups (Figure 4). For inter-time comparisons among groups injected with haloperidol, there was decreased immunor- eactivity for pCaMKII levels at 6 h compared in DG (F= 6.708; p=0.0026, comparison to naïve), and CA1 (F=16.34; p=0.0001, comparison to naïve and haloperidol 12 h). In CA3 there was decreased pCaMKII labeling in haloperidol 3 h and haloperidol 6 h in comparison to the naïve group. (F=9.400; p=0.0004). For Zif-268 staining, ANOVA revealed a decrease at 6 h when compared to all other time points, in both CA1 (F=12.42; Po0.0001) and CA3 (F=9.672; p= 0.0004; Figure 4). For BDNF, ANOVA revealed no differences in haloperidol inter-time comparisons (Figure 4). Light Dark 0 1 2 3 Pr ef er en ce R at io *** *** IAE 6h 0.0 0.5 1.0 1.5 2.0 2.5 Vehicle Halo ** Figure 2 Haloperidol modulates memory for novel objects in mice (N=7–8 animals per group) Preference ratio was calculated as the exploration time of unfamiliar/familiar objects. (A) Animals trained during the light phase (morning) showed clear preference for novel objects when injected with vehicle immediately after training, but not when injected with haloperidol. Animals trained during the dark phase (night) failed to show novel object preference for either treatment. Two-way ANOVA followed by Bonferroni post-hoc test was applied for the comparisons. (B) Effect on preference ratio of haloperidol injected in the light phase. Two-way ANOVA followed by Bonferroni post-hoc test were applied. Haloperidol impairs learning when injected immediately after training, but this effect disappeared when animals were injected 6 h after training.*po0.05, **po0.01, ***po0.001. 497Dopaminergic regulation of learning, sleep and plasticity 3.4. IHC quantification of Zif-268 by cell counting Most of the results obtained by cell counting (Figure 5) were in accordance with the densitometry measurements. For the 3 h post-injection time, we observed increased Zif-268 reactivity in the VH group in CA1 comparison to the naïve group (F=5.323; p=0.066), and in CA3 when compared to naïve and haloperidol groups (F=12.59; p=0.003). At 6 h post- injection, we found a decrease in CA1 in the haloperidol group, when compared to naïve and vehicle groups (F=24.97; Table 1 Statistical summary of the significant results in the densitometry analysis for pCaMKII, Zif-268 and BDNF staining. MANOVA comparisons of labeling measurements in the hippocampus were followed by Bonferroni post-hoc tests. Comparisons were performed considering two independent variables: treatment and time of injection. pCaMKII Source of variation MANOVA F P value DF Interaction 7.87 0.0001 (4,54) Treatment 42.88 0.0001 (2,54) Time 1.67 0.19 (2,54) Time Bonferroni Groups Mean7SEM; N P value 3 h NVHalo 1.0870.05; N=7 Po0.001 0.8370.05; N=6 NVVH 1.0870.05; N=6 Po0.05 0.9270.04; N=5 6 h NVHalo 1.0570.05; N=7 Po0.001 0.7070.02; N=6 VHHalo 1.1770.01; N=6 Po0.001 0.7070.02; N=6 12 h NV halo 1.1470.01; N=7 Po0.01 0.8770.03; N=7 Zif-268 Source of variation MANOVA F P value DF Interaction 5.58 0.0007 (4,45) Treatment 7.82 0.0012 (2,45) Time 0.14 0.86 (2,45) Time Bonferroni Groups Mean7SEM; N P value 6 h NVHalo 1.1770.05; N=6 Po0.001 0.6570.08; N=6 VHHalo 1.0970.07; N=6 Po0.001 0.6570.08; N=6 BDNF Source of variation MANOVA F P value DF Interaction 0.24 0.91 (4,43) Treatment 5.18 0.009 (2,43) Time 0.22 0.80 (2,43) Time Bonferroni Groups Mean7SEM; N P value 12 h VHHalo 1.1470.06; N=7 Po0.05 0.8970.04; N=7 A.S.C. França et al.498 Po0.0001). At 12 h post-injection, no significant differences were found among groups in CA1 and CA3. In VH inter-time comparisons, we observed no differences among naïve, 3 h, 6 h and 12 h groups. Nevertheless, haloperidol-injected ani- mals presented differential staining at these time points (ANOVA F=7.689; p=0.004). In CA1, we observed a decrease in Zif-268 at 6 h when compared to naïve (P40.01) haloper- idol 3 h (Po0.01) and 12 h groups (Po0.05). At CA3 we observed a similar reduction in animals injected with haloper- idol at a 6 h time point (ANOVA F=9.181 and p=0.002), when compared to 3 h (Po0.05) and 12 h groups (Po0.05), and a reduction in naïve animals compared to the haloperidol 3 h group (Po0.05). 3.5. Haloperidol impairs memory recognition and decreases REM sleep duration To test the influence of haloperidol on specific sleep states, we subjected animals to the object recognition task, injected either haloperidol or vehicle, and performed sub- sequent electrophysiological recordings across the sleep– wake cycle. Two-Way ANOVA was used to compare exposed animals (vehicle and haloperidol 0.3 mg/kg I.A.E.) to con- trols (vehicle and haloperidol 0.3 mg/kg I.A.E.). Compar- isons were independently made for the duration of each state (WK, SWS, REM) versus the independent variables tre- atment (haloperidol/vehicle) and task (exposure and con- trol). For WK and SWS, the two-way ANOVA detected no difference regarding treatment (F (1, 14)=1.76 p=0.21 for WK; F (1, 14)=0.07 p=0.80 for SWS) or task (F (1, 14)=3.63 p=0.07 for WK; F (1, 14)=0.50 p=0.49 for SWS). For REM sleep, however, significant differences were detected for both treatment (F (1, 14)=7.69 p=0.014) and task: (F (1, 14)=32.85 Po0.0001). Bonferroni post hoc tests pointed to decreased REM sleep duration in both haloperidol and vehicle control groups, in comparison with corresponding object-exposed groups (Figure 6A). We also detected a significant reduction of the preference ratio in haloperidol-injected I.A.E. mice (Figure 6B). Finally, to investigate the relationship between object recognition and REM sleep duration, we calculated the Spearman correlation between normalized preference ratio and normalized REM sleep duration (Haloperidol or Vehicle divided by [Haloperidol+Vehicle]). We found that lower preference indexes in haloperidol-injected animals were significantly correlated with lower REM sleep durations, just like the higher preference and higher REM sleep durations verified in control animals were also correlated (Figure 6C; Rho=0.56 p=0.0125). 4. Discussion In the present work we aimed at a better understanding of the biological mechanisms that link sleep, memory formation and dopamine receptor regulation. The behavioral and electro- physiological data showed that haloperidol impairs novel object recognition when injected immediately after training, but has no effect when injected 6 h later. Haloperidol also decreases total REM sleep duration for up to 4 h after training. Importantly, for injections immediately after training, learning and REM sleep duration showed strong positive correlation, suggesting a possible common cause linking REM sleep reduc- tion and learning deficits. Mechanistic insight was sought thr- ough an assessment of calcium-dependent plasticity factors. We found that haloperidol injection immediately after training decreased the hippocampal levels of these factors for several hours after treatment, starting with pCaMKII at 3 h, Zif-268 at 6 h and then BDNF at 12 h. Our data point to the calcium- dependent plasticity pathway as a candidate to mediate the effects of haloperidol on both sleep and learning. Figure 3 Haloperidol injection decreases the hippocampal levels of pCaMKII, Zif-268 and BDNF according to a temporal gradient. The columns exemplify representative data of different groups. Arrows indicate hippocampal regions (DG, CA3, CA1) with significant labeling differences in the haloperidol group, in comparison with naive and vehicle groups (empty and filled arrows, respectively). Non-exposed, not injected naive animals (NV), and animals injected with haloperidol (HALO) or vehicle (VH) immediately after training were euthanized at 3 h, 6 h and 12 h post-exploration. The first three rows represent frontal hippocampal sections at 40 labeled for pCaMKII (A), Zif-268 (B) or BDNF (C). The last row at 200 focuses on regions where significant differences were detected (D). Panels show differential labeling for pCaMKII (naïve and 3 h), Zif-268 labeling at 6 h (vehicle), and BDNF at 12 h (vehicle). Please note that haloperidol decreased the hippocampal levels of pCaMKII at all time points. Decreased Zif-268 levels in the haloperidol group were detected only after 6 h, while decreased BDNF levels occurred only after 12 h. 499Dopaminergic regulation of learning, sleep and plasticity The possible involvement of the dopaminergic system in the consolidation of memories has been previously reported in the literature. While haloperidol impairs water maze learning (Morice et al., 2007), dopamine D2 agonists decr- ease memory consolidation in fear conditioning (Nader and LeDoux, 1999), and impair the extinction of conditioned fear memory (Ponnusamy et al., 2005). Both antagonists and agonists of D1 receptors reduce memory consolidation in a fear-conditioning task (Rossato et al., 2009). Haloperidol works as an inverse agonist of D2 receptors, disinhibiting adenylyl cyclase activity and therefore leading to elevated cyclic AMP levels (Konradi and Heckers, 1995). Zif-268 and BDNF are thought to be directly influenced by prior activation of pCaMKII-mediated signaling pathways (Hasbi et al., 2009). It is therefore expected that the levels of cAMP-influenced targets such as pCaMKII (Blitzer et al., 1998), Zif-268 (Kang et al., 2007) and BDNF (Ji et al., 2005; Bekinschtein et al., 2007) are decreased after haloperidol treatment. The putative mechanism to explain the dopaminergic influence on memory- related plasticity factors is the regulation of non-NMDA glutamatergic receptor activation by D2 dopamine receptor (Hakansson et al., 2006). Since these factors show experience- dependent up-regulation during REM sleep (Ribeiro et al., 1999, 2007; Ulloor and Datta, 2005), the decrease in REM sleep promoted by haloperidol is likely to contribute further to the decrease in the levels of plasticity factors. One important aspect to consider is the possible motor effect of haloperidol. At high doses, haloperidol impairs motility for several hours after injection. However, no motility differences were detected when total travelled distance was assessed one day after drug injection (data not shown). Furthermore, haloperidol-injected animals injected immediately after training exhibited no object preference 24 h later, indicating that these learning deficits are not related to a possible decrease in motor activity during expl- oration of the novel objects, but rather reflect an impair- ment in post-exploration memory consolidation. A time course analysis of the molecular data indicates that haloperidol impairs calcium signaling through a broad cascade of events distributed over time (Figure 4). At 3 h post-exploration, haloperidol decreased pCaMKII levels in the CA3 field; at 6 h and 12 h post-exploration, the decrease in pCaMKII levels occurred in all hippocampal regions (Sup- plementary Figure 1, left panels). Zif-268 levels were sign- ificantly reduced by haloperidol 6 h after training (Supp- lementary Figure 1, middle panels), and BDNF levels were decreased by haloperidol 12 h after training in the DG field (Supplementary Figure 1, right panels). Although several studies have reported increased pCaMKII activity after task training or LTP induction, the exact time window for the activation of this kinase after stimulus remains controversial. A study using in vitro LTP recordings found a significant increase in pCaMKII in the CA1 field 30 min after tetanic stimulation (Ouyang et al., 1997), whereas another study revealed that CaMKII remained in a specific, but enh- anced phosphorylated state during the induction, and through- out early- and late-LTP, maintaining high levels for 8 h (Ahmed and Frey, 2005). The use of different tetanization paradigms in those studies possibly resulted in large calcium influx changes, affecting other signaling mechanisms in a dose-dependent manner. Additionally, in vitro CaMKII phosphorylation in the hippocampus was increased 30 min after inhibitory avoidance, but not after 120 min (Cammarota et al., 1998). CaMKII plays a role in plasticity-related synaptic tagging, a mechanism whe- reby suitable synapses are sorted for subsequent strengthening (Hernandez and Abel, 2011). Zif-268 levels were lower in animals treated with haloper- idol at 6 h (Figures 4, 5 and Supplementary 1). Since Zif-268 levels in the hippocampus are increased 1–2 h after a novel stimulus (Barbosa et al., 2013), we believe that a 6 h increase in vehicle-injected animals could be related to a second wave of Zif-268 transcription and translation. This re-induction is probably related to the occurrence of REM sleep in vehicle- injected animals, but not in haloperidol-injected animals, during the 4 h interval following object exposure. Our results corroborate the notion of a late phase of BDNF synthesis in the rat hippocampus 12 h after training, related to the long-term persistence of memories (Bekinschtein et al., 2007, 2014). A significant decrease of BDNF levels Figure 4 Densitometry quantification of pCaMKII, Zif-268 and BDNF staining at three distinct time points. The three graphs represent pCaMKII, Zif-268 and BDNF staining measures at different time points (3 h, 6 h and 12 h as indicated). Vehicle and haloperidol were injected immediately after exploration. Naïve animals did not receive any injection, nor were presented to objects. Two-way ANOVAs and Bonferroni post-hoc tests were performed for comparisons among these groups for each molecule, considering time and treatment as independent variables. *po0.05, ***po0.001 related to vehicle groups; po0.05, po0.001 related to control groups. A.S.C. França et al.500 in the hippocampus of animals treated with haloperidol was detected in the pooled data (Figure 4). Injections of anti- BDNF antibodies into the DG demonstrated BDNF's essential role in the spontaneous location recognition task, impairing task execution when animals had to disambiguate two similar locations within an open field, but not when these locations were made less similar (Bekinschtein et al., 2014). Injection of recombinant BDNF into the DG enhanced patt- ern separation. Furthermore, exposure of the animals to either similar or dissimilar objects led to a 4-fold increase in BDNF levels in the DG when rats explored two similar loc- ations, but not when dissimilar locations were explored (Katche et al., 2010; Bekinschtein et al., 2014). Various studies have described the relation of BDNF with other molecules involved in synaptic and cellular plasticity. Activity-dependent BDNF upregulation may depend on interaction with the NMDA receptor, which in turn interacts with CaMKII (Sanhueza et al., 2011). The blockade of NMDA and pCaMKII fully abolishes exercise-induced increases in synapsin I and TrkB mRNA levels, promoting a decrease of CREB and BDNF mRNA levels (Vaynman et al., 2003). Complementarily, BDNF blockade 12 h after a behavioral task prevents a late increase in c-Fos and Zif-268 proteins, 24 h after the initial stimulus (Bekinschtein et al., 2007). The cyclic reactivation of plasticity-related proteins during the post-training time may be essential to consolidate certain kinds of memory Ribeiro and Nicolelis 2004; Hernandez and Abel, 2011). For instance, the long-term persistence of some memories depends on the circadian reactivation of the cAMP/ MAPK/CREB transcriptional pathway in the hippocampus (Eckel-Mahan et al., 2008). This pathway can be modulated by sleep deprivation, circadian rhythms, and neurotransmitter systems involved in sleep–wake regulation (Hernandez and Abel, 2011). The dopaminergic regulation of calcium- dependent signaling pathways is a likely candidate mechanism to causally connect sleep deficits and learning impairment. Conflicts of interest We declare no conflicts of interest with regard to the study “D2 dopamine receptor regulation of learning, sleep and plasticity”. Figure 5 Cell counting quantification of Zif-268 staining at three distinct time points. The first three plots from left to right illustrate Zif-268 individual cell staining of naïve (NV), vehicle (VH) and haloperidol (Halo) groups at different time points, set at 3 h (A), 6 h (B) and 12 h (C) after injection, using Bonferroni-corrected ANOVAs followed by Bonferroni post-hoc tests. The two last plots on the right illustrate inter-time ANOVA followed by Bonferroni post-hoc comparisons in vehicle groups (D) and Halo groups (E) performed to evaluate the time course of Zif-268 protein levels in CA1 and CA3. Bars in black and white represent CA3 and CA1, respectively. In A, B, C, *po0.05, **po0.01, ***po0.001 related to vehicle groups; po0.05, po0.01, po0.001 related to control groups. In D and E, the differences are indicated by linked lines. 501Dopaminergic regulation of learning, sleep and plasticity List of grants Here follows a list of grants received by the authors during preparation of this work: Grant (1) FAPERN- PPP (Dr. Lobão-Soares: 2013-2014). Grant (2) CNPQ- Universal; Grant number: 484408/2013- 5 (Dr. Lobão-Soares). Grant (3) CNPq Universal; Grant number: 481351/2011-6 (Dr. Ribeiro). Grant (4) FINEP Grant number 01.06.1092.00 (Dr. Ribeiro). Grant (5) FAPERN/CNPq Pronem. Grant Number: 003/ 2011 (Dr. Ribeiro). Grant (6) FAPESP Center for Neuromathematics Grant number: 2013/ 07699-08 (Dr. Ribeiro). Grant (7) UFRN. Grant number 00001/2010 (Dr. Ribeiro). Only Grant 1 was used for salary support. Nobody except the authors had a role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. Contributors Arthur S. C. França helped design the experimental procedures, participated in the acquisition of the electrophysiological and beha- vioral data, performed data analysis, prepared figures and helped to edit the manuscript. Bruno Lobão-Soares supervised the experimen- tal design and data acquisition, helped in the analysis and helped write the last version of the manuscript. Larissa Muratori collected and analyzed histochemical and immunohistochemical data, prepa- red figures and helped to edit the manuscript. George Nascimento participated in surgical procedures and manufactured the head-stage used in the electrophysiological recordings. Jessica Winne helped to collect immunohistochemical data, Catia Pereira conducted behavioral and immunohistochemical experiments, Selma Jeronimo supervised histochemical and immunohistochemical procedures and contributed to the experimental design. Sidarta Ribeiro coordinated the experi- mental design, data analysis, figure preparation, and manuscript writing. Acknowledgement Support was obtained from the Pew Latin American Fellows Program in the Biomedical Sciences, Financiadora de Estudos e Projetos (FINEP) Grant 01.06.1092.00, Ministério da Ciência, Tecnologia e Inovação (MCTI), CNPq Universal 481351/2011-6, PQ 306604/2012- 4, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior SWS Exposure Control Waking Control REM Exposure Control P re fe re nc e R at io Vehicle Halo 0.3mg/Kg Novelty Preference N or m al iz ed R E M Normalized Preference Ratio Vehicle Haloperidol Exposure Vehicle Haloperidol D ur at io n (m in ) 150 150 40 50 50 100 10 20 30 50 0.0 0.5 1.5 1.0 2.0 2.5 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 Figure 6 Haloperidol reduces REM sleep and proportionally impairs novelty preference. (A) Duration (minutes over a 4 h interval) of WK, SWS and REM sleep in control versus exposed animals, injected with either vehicle or haloperidol immediately after exploration. Haloperidol treatment or novelty exposure had no effect on the duration of WK or SWS (two-way ANOVA). In contrast, REM sleep was significantly affected by both factors, with increased REM sleep duration after novelty exposure, and decreased REM duration after haloperidol. (B) Animals injected with haloperidol showed decreased novelty preference ratio in comparison with vehicle-injected controls group. (C) Normalized REM sleep duration and normalized preference ratio (Halo or Vehicle/Halo+Vehicle) are positively correlated (Spearman's regression R=0.56, p=0.0127). *po0.05 and ***po0.001. A.S.C. França et al.502 (CAPES), FAPERN/CNPq Pronem 003/2011, Capes SticAmSud, FAPESP Center for Neuromathematics (Grant no. 2013/07699-0, São Paulo Research Foundation), Associação Alberto Santos Dumont para Apoio à Pesquisa (AASDAP), and NIMBIOS working group “Multi-scale analysis of cortical networks.” We thank V. Arboes for veterin- ary care, A. Ragoni and A. Karla for administrative help, G.L. Borba Filho for electrode manufacture, and D. Koshiyama for library support. Appendix. Supporting information Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/ j.euroneuro.2015.01.011. References Ahmed, T., Frey, J.U., 2005. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocam- pal slices in vitro. Neuropharmacology 49, 477–492. Barbosa, F.F., Santos, J.R., Meurer, Y.S.R., Macêdo, P.T., Ferreira, L. M.S., Pontes, I.M.O., Ribeiro, A.M., Silva, R.H., 2013. Differ- ential cortical c-Fos and Zif-268 expression after object and spatial memory processing in a standard or episodic-like object recognition task. Front. Behav. Neurosci. 7, 112. Bekinschtein, P., Cammarota, M., Igaz, L.M., Bevilaqua, L.R.M., Izquierdo, I., Medina, J.H., 2007. Persistence of long-term memory storage requires a late protein synthesis- and bdnf- dependent phase in the hippocampus. Neuron 53, 261–277. Bekinschtein, P., Cammarota, M., Medina, J.H.,, 2014. BDNF and memory processing. Neuropharmacology. BDNF Regulation of Synaptic Structure, Function, and Plasticity 76 (Part C), 677–683. Binder, S., Baier, P.C., Mölle, M., Inostroza, M., Born, J., Marshall, L., 2012. Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats. Neurobiol. Learn. Mem. 97, 213–219. Blitzer, R.D., Connor, J.H., Brown, G.P., Wong, T., Shenolikar, S., Iyengar, R., Landau, E.M., 1998. Gating of CaMKII by cAMP- regulated protein phosphatase activity during LTP. Science 280, 1940–1942. Bozon, B., Davis, S., Laroche, S., 2003. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40, 695–701. Cammarota, M., Bernabeu, R., Levi De Stein, M., Izquierdo, I., Medina, J.H., 1998. Learning-specific, time-dependent increases in hippocampal Ca2+/calmodulin-dependent protein kinase II activity and AMPA GluR1 subunit immunoreactivity. Eur. J. Neurosci. 10, 2669–2676. De Lima, M.N.M., Presti-Torres, J., Dornelles, A., Scalco, F.S., Roesler, R., Garcia, V.A., Schröder, N., 2011. Modulatory influence of dopamine receptors on consolidation of object recognition memory. Neurobiol. Learn. Mem. 95, 305–310. Dzirasa, K., Ribeiro, S., Costa, R., Santos, L.M., Lin, S.-C., Grosmark, A., Sotnikova, T.D., Gainetdinov, R.R., Caron, M.G., Nicolelis, M.A. L., 2006. Dopaminergic control of sleep–wake states. J. Neurosci. 26, 10577–10589. Eckel-Mahan, K.L., Phan, T., Han, S., Wang, H., Chan, G.C.K., Scheiner, Z.S., Storm, D.R., 2008. Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nat. Neurosci. 11, 1074–1082. França, A.S.C., do Nascimento, G.C., Lopes-dos-Santos, V., Mur- atori, L., Ribeiro, S., Lobão-Soares, B., Tort, A.B.L., 2014. Beta2 oscillations (23–30 Hz) in the mouse hippocampus during novel object recognition. Eur. J. Neurosci 40, 3693–3703. Gervasoni, D., Lin, S.C., Ribeiro, S., Soares, E.S., Pantoja, J., Nicolelis, M.A.L., 2004. Global forebrain dynamics predict rat behavioral states and their transitions. J. Neurosci. 24, 11137–11147. Guzowski, J.F., 2002. Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleo- tide and fluorescent imaging approaches. Hippocampus 12, 86–104. Hakansson, K., Galdi, S., Hendrick, J., Snyder, G., Greengard, P., Fisone, G., 2006. Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D 2 receptors. J. Neurochem. 96, 482–488. Hasbi, A., Fan, T., Alijaniaram, M., Nguyen, T., Perreault, M.L., O'Dowd, B.F., George, S.R., 2009. Calcium signaling cascade links dopamine D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc. Natl. Acad. Sci. USA 106, 21377–21382. Hernandez, P.J., Abel, T., 2011. A molecular basis for interactions between sleep and memory. Sleep Med. Clin. 6, 71–84. Hughes, R.N., 2007. Neotic preferences in laboratory rodents: issues, assessment and substrates. Neurosci. Biobehav. Rev. 31, 441–464. Ji, Y., Pang, P.T., Feng, L., Lu, B., 2005. Cyclic AMP controls BDNF- induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat. Neurosci. 8, 164–172. Kandel, E.R., Dudai, Y., Mayford, M.R., 2014. The molecular and systems biology of memory. Cell 157, 163–186. Kang, J.H., Kim, M.J., Jang, H.I., Koh, K.H., Yum, K.S., Rhie, D.J., Yoon, S.H., Hahn, S.J., Kim, M.S., Jo, Y.H., 2007. Proximal cyclic AMP response element is essential for exendin-4 induction of rat EGR-1 gene. Am. J. Physiol. Endocrinol. Metab. 292, E215–E222. Katche, C., Bekinschtein, P., Slipczuk, L., Goldin, A., Izquierdo, I. A., Cammarota, M., Medina, J.H., 2010. Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proc. Natl. Acad. Sci. USA 107, 349–354. Konradi, C., Heckers, S., 1995. Haloperidol-induced Fos expression in striatum is dependent upon transcription factor cyclic amp response element binding protein. Neuroscience 65, 1051–1061. Lemon, N., Manahan-Vaughan, D., 2006. Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J. Neurosci. 26, 7723–7729. Lima, M.M.S., Andersen, M.L., Reksidler, A.B., Vital, M.A.B.F., Tufik, S., 2007. The role of the substantia nigra pars compacta in regulating sleep patterns in rats. PLoS One 2 (6), e513. Lima, M.M.S., Andersen, M.L., Reksidler, A.B., Silva, A., Zager, A., Zanata, S.M., Vital, M.A.B.F., Tufik, S., 2008. Blockage of dopaminergic D(2) receptors produces decrease of REM but not of slow wave sleep in rats after REM sleep deprivation. Behav. Brain Res. 188, 406–411. Lisman, J., Schulman, H., Cline, H., 2002. The molecular basis of CaMKII function in synaptic and behavioural memory. Nat. Rev. Neurosci. 3, 175–190. Lisman, J.E., Grace, A.A., 2005. The hippocampal-VTA loop: con- trolling the entry of information into long-term memory. Neuron 46, 703–713. Manahan-Vaughan, D., Kulla, A., 2003. Regulation of depotentiation and long-term potentiation in the dentate gyrus of freely moving rats by dopamine D2-like receptors. Cereb. Cortex N.Y. 1991 (13), 123–135. Medina, J.H., Bekinschtein, P., Cammarota, M., Izquierdo, I., 2008. Do memories consolidate to persist or do they persist to consolidate? Behav. Brain Res. 192, 61–69. Monti, J.M., Monti, D., 2007. The involvement of dopamine in the modulation of sleep and waking. Sleep Med. Rev. 11, 113–133. Morice, E., Billard, J.M., Denis, C., Mathieu, F., Betancur, C., Epelbaum, J., Giros, B., Nosten-Bertrand, M., 2007. Parallel loss 503Dopaminergic regulation of learning, sleep and plasticity of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia. Neuropsychopharmacol.: Off. Publ. Am. Coll. Neuropsychopharmacol. 32, 2108–2116. Nader, K., LeDoux, J.E., 1999. Inhibition of the mesoamygdala dopaminergic pathway impairs the retrieval of conditioned fear associations. Behav. Neurosci. 113, 891–901. Ouyang, Y., Kantor, D., Harris, K.M., Schuman, E.M., Kennedy, M. B., 1997. Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J. Neurosci. 17, 5416–5427. Panja, D., Bramham, C.R., 2014. BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76 (Part C), 664–676. Piterkin, P., Cole, E., Cossette, M.P., Gaskin, S., Mumby, D.G., 2008. A limited role for the hippocampus in the modulation of novel- object preference by contextual cues. Learn. Mem. 15, 785–791. Ponnusamy, R., Nissim, H.A., Barad, M., 2005. Systemic blockade of D2-like dopamine receptors facilitates extinction of conditioned fear in mice. Learn. Mem. 12, 399–406. Proença, M.B., Dombrowski, P.A., Da Cunha, C., Fischer, L., Ferraz, A.C., Lima, M.M.S., 2014. Dopaminergic D2 receptor is a key player in the substantia nigra pars compacta neuronal activation mediated by REM sleep deprivation. Neuropharmacology 76 (Part A), 118–126. Ribeiro, S., Goyal, V., Mello, C.V., Pavlides, C., 1999. Brain gene expression during REM sleep depends on prior waking experi- ence. Learn. Mem. 6, 500–508. Ribeiro, S., Mello, C.V., Velho, T., Gardner, T.J., Jarvis, E.D., Pavlides, C., 2002. Induction of hippocampal long-term poten- tiation during waking leads to increased extrahippocampal zif- 268 expression during ensuing rapid-eye-movement sleep. J. Neurosci. 22, 10914–10923. Ribeiro, S., Nicolelis, M.A.L., 2004. Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn. Mem. 11, 686–696. Ribeiro, S., Shi, X., Engelhard, M., Zhou, Y., Zhang, H., Gervasoni, D., Lin, S.C., Wada, K., Lemos, N.A.M., Nicolelis, M.A.L., 2007. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front. Neurosci. 1, 43–55. Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S., Davis, S., 2001. A requirement for the immediate early gene Zif268 in the expres- sion of late LTP and long-term memories. Nat. Neurosci. 4, 289–296. Rossato, J.I., Bevilaqua, L.R.M., Izquierdo, I., Medina, J.H., Cam- marota, M., 2009. Dopamine controls persistence of long-term memory storage. Science 325, 1017–1020. Sanhueza, M., Fernandez-Villalobos, G., Stein, I.S., Kasumova, G., Zhang, P., Bayer, K.U., Otmakhov, N., Hell, J.W., Lisman, J., 2011. Role of the CaMKII/NMDA receptor complex in the main- tenance of synaptic strength. J. Neurosci. 31, 9170–9178. Ulloor, J., Datta, S., 2005. Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskele- tal-associated protein and brain-derived nerve growth factor: a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memor. J. Neurochem. 95, 418–428. Vaynman, S., Ying, Z., Gomez-Pinilla, F., 2003. Interplay between brain-derived neurotrophic factor and signal transduction mod- ulators in the regulation of the effects of exercise on synaptic- plasticity. Neuroscience 122, 647–657. Vecsey, C.G., Baillie, G.S., Jaganath, D., Havekes, R., Daniels, A., Wimmer, M., Huang, T., Brown, K.M., Li, X.Y., Descalzi, G., Kim, S.S., Chen, T., Shang, Y.Z., Zhuo, M., Houslay, M.D., Abel, T., 2009. Sleep deprivation impairs cAMP signalling in the hippo- campus. Nature 461, 1122–1125. Whitlock, J.R., Heynen, A.J., Shuler, M.G., Bear, M.F., 2006. Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097. Xia, Z., Storm, D.R., 2005. The role of calmodulin as a signal integrator for synaptic plasticity. Nat. Rev. Neurosci. 6, 267–276. A.S.C. França et al.504 All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately. N V VH H A LO N V VH H A LO N V VH H A LO 0.0 0.5 1.0 1.5 N V VH H A LO N V VH H A LO N V VH H A LO 0.0 0.5 1.0 1.5 st N V VH 3 H VH 6 H VH 1 2H N V VH 3 H VH 6 H VH 1 2H N V VH 3 H VH 6 H VH 1 2H 0.0 0.5 1.0 1.5 N V VH 3 H VH 6 H VH 1 2H N V VH 3 H VH 6 H VH 1 2H 0.0 0.5 1.0 1.5 N V V H 3 H V H 6 H V H 1 2H N V V H 3 H V H 6 H V H 1 2H N V V H 3 H V H 6 H V H 1 2H 0.0 0.5 1.0 1.5 DG CA1 CA3 * *** *** ****** N V H A LO 3 H H A LO 6 H H A LO 1 2H N V H A LO 3 H H A LO 6 H H A LO 1 2H N V H A LO 3 H H A LO 6 H H A LO 1 2H 0.0 0.5 1.0 1.5 DG CA1 CA3 ** *** *** ** *** ** *** Ce ll st ai ni ng ra tio N V H A LO 3 H H A LO 6 H H A LO 1 2H N V H A LO 3 H H A LO 6 H H A LO 1 2H 0.0 0.5 1.0 1.5 *** *** *** *** *** * N V H A LO 3 H H A LO 6 H H A LO 1 2H N V H A LO 3 H H A LO 6 H H A LO 1 2H N V H A LO 3 H H A LO 6 H H A LO 1 2H 0.0 0.5 1.0 1.5 CaMKII-P N V VH H A LO N V VH H A LO N V VH H A LO 0.0 0.5 1.0 1.5 # N V VH H A LO N V VH H A LO N V VH H A LO 0.0 0.5 1.0 1.5 ## ** *** ### *** ### N V VH H A LO N V VH H A LO N V VH H A LO DG CA1 CA3 0.0 0.5 1.0 1.5 *** ** *** ## ZIF-268 N V VH H A LO N V VH H A LO 0.0 0.5 1.0 1.5 N V VH H A LO N V VH H A LO 0.0 0.5 1.0 1.5 ### ** ## * NV VH HA LO NV VH HA LO 0.0 0.5 1.0 1.5 BDNF NV VH HA LO NV VH HA LO NV VH HA LO 0.0 0.5 1.0 1.5 A B C 3h 6h 12h VH Inter time Halo Inter time Ce ll st ai ni ng ra tio Ce ll st ai ni ng ra tio Ce ll st ai ni ng ra tio DG CA1 CA3 DG CA1 CA3 Ce ll st ai ni ng ra tio Figura relacionada as tabelas suplementares do anexo1. (Figura não publicada). A figura mostra a comparação entre as regiões CA1, CA3 e giro denteado de animais submetidos aos tratamentos de haloperidol 0.3 mg/Kg, veículo e naive. pCaMKII Source of Variation MANOVA F P Value DF Interaction 7.87 0.0001 (4,54) Treatment 42.88 0.0001 (2,54) Time 1.67 0.19 (2,54) Time Bonferroni Groups Mean ± SEM; N P Value 3 hours VH x Halo 0.92 ± 0.04; N = 5 0.83 ± 0.05; N = 6 P > 0.05 6 hours NV X VH 1.05 ± 0.05; N = 7 1.17 ± 0.01; N = 6 P > 0.05 12 hours NV x VH 1.01 ± 0.03; N = 7 1.14 ± 0.04; N = 7 P > 0.05 NV x Halo 1.01 ± 0.03; N = 7 0.87 ± 0.03; N = 7 P > 0.05 Zif-268 Source of Variation MANOVA F P Value DF Interaction 5.58 0.0007 (4,45) Treatment 7.82 0.0012 (2,45) Time 0.14 0.86 (2,45) Time Bonferroni Groups Mean ± SEM; N P Value 3 hours NV x Halo 0.98 ± 0.06; N = 6 0.98 ± 0.07; N = 5 P > 0.05 VH x Halo 1.03 ± 0.05; N = 5 0.98 ± 0.07; N = 5 P > 0.05 NV x VH 0.98 ± 0.06; N = 6 1.03 ± 0.05; N = 5 P > 0.05 6 hours NV x VH 1.17 ± 0.06; N = 6 1.08 ± 0.07; N = 6 P > 0.05 12 hours NV x Halo 1.07 ± 0.06; N = 6 0.98 ± 0.04; N = 7 P > 0.05 VH x Halo 0.94 ± 0.05; N = 7 0.98 ± 0.04; N = 7 P > 0.05 NV x VH 1.07 ± 0.06; N = 6 0.94 ± 0.05; N = 7 P > 0.05 BDNF Source of Variation MANOVA F P Value DF Interaction 0.24 0.91 (4,43) Treatment 5.18 0.009 (2,43) Time 0.22 0.80 (2,43) Time Bonferroni Groups Mean ± SEM; N P Value 3 hours NV x Halo 1.02 ± 0.11; N = 6 0.89 ± 0.06; N = 5 P > 0.05 VH x Halo 1.06 ± 0.05; N = 5 0.89 ± 0.06; N = 5 P > 0.05 NV x VH 1.02 ± 0.11; N = 6 1.06 ± 0.05; N = 5 P > 0.05 6 hours NV x Halo 1.01 ± 0.03; N = 5 0.96 ± 0.08; N = 5 P > 0.05 VH x Halo 1.11 ± 0.03; N = 5 0.96 ± 0.08; N = 5 P > 0.05 NV x VH 1.01 ± 0.03; N = 5 1.11 ± 0.03; N = 5 P > 0.05 12 hours NV x Halo 1.07 ± 0.06; N = 6 0.98 ± 0.04; N = 7 P > 0.05 NV x VH 1.07 ± 0.06; N = 6 0.94 ± 0.06; N = 7 P > 0.05 Supplementary Table 1: Statistical summary of the non-significant results in the densitometry analysis for p-CAMKII, Zif-268 and BDNF staining. MANOVA comparisons of labeling measurements in the hippocampus were followed by Bonferroni post-hoc tests. Comparisons were performed considering two independent variables: treatment and time of injection. 3h Group Molecule Region ANOVA Bonferroni F P value* DF Groups Mean ± SEM; N P Value pCaMKII CA1 1.98 0.51 2;18 VH X halo 0.95 ± 0.07; N = 5 0.81 ± 0.08; N = 6 P > 0.05 NV x halo 1.03 ± 0.08; N = 7 0.81 ± 0.08; N = 5 P > 0.05 VH x NV 0.95 ± 0.07; N = 5 1.03 ± 0.08; N = 7 P > 0.05 CA3 5.58 0.049 2;17 VH X halo 0.98 ± 0.10; N = 5 0.86 ± 0.06; N = 5 P > 0.05 NV X halo 1.18 ± 0.10; N = 7 0.86 ± 0.06; N = 5 P < 0.05 VH x NV 0.98 ± 0.10; N = 5 1.18 ± 0.10; N = 7 P > 0.05 DG 3.02 0.25 2;15 VH x halo 0.83 ± 0.05; N = 5 0.91 ± 0.08; N = 5 P > 0.05 NV x halo 1.05 ± 0.05; N = 6 0.91 ± 0.08; N = 5 P > 0.05 VH x NV 0.83 ± 0.05; N = 5 1.05 ± 0.05; N = 6 P > 0.05 Zif-268 CA1 0.43 0.65 2;15 VH X halo 1.05 ± 0.05; N = 5 0.95 ± 0.05; N = 5 P > 0.05 NV x halo 0.98 ± 0.09; N = 6 0.95 ± 0.05; N = 5 P > 0.05 VH x NV 1.05 ± 0.05; N = 5 0.98 ± 0.09; N = 6 P > 0.05 CA3 0.05 0.94 2;15 VH X halo 1.00 ± 0.07; N = 5 1.01 ± 0.09; N = 5 P > 0.05 NV X halo 0.98 ± 0.05; N = 6 1.01 ± 0.09; N = 5 P > 0.05 VH x NV 1.00 ± 0.07; N = 5 0.98 ± 0.05; N = 6 P > 0.05 BDNF CA1 2.03 0.49 2;15 VH X halo 1.07 ± 0.08; N = 5 0.86 ± 0.08; N = 5 P > 0.05 NV x halo 1.08 ± 0.08; N = 6 0.86 ± 0.08; N = 5 P > 0.05 VH x NV 1.07 ± 0.08; N = 5 1.08 ± 0.08; N = 6 P > 0.05 CA3 1.74 0.63 2;15 VH X halo 1.06 ± 0.09; N = 5 0.86 ± 0.07; N = 5 P > 0.05 NV X halo 1.09 ± 0.09; N = 6 0.86 ± 0.07; N = 5 P > 0.05 VH x NV 1.09 ± 0.09; N = 6 1.18 ± 0.10; N = 7 P > 0.05 DG 1.04 0.99 2;15 VH x halo 1.10 ± 0.03; N = 5 0.96 ± 0.05; N = 5 P > 0.05 NV x halo 1.03 ± 0.08; N = 6 0.96 ± 0.05; N = 5 P > 0.05 VH x NV 1.10 ± 0.03; N = 5 1.08 ± 0.05; N = 6 P > 0.05 Supplementary Table 2: Statistical summary of the densitometry analysis at 3h post-exploration for different hippocampal regions (CA1, CA3, DG). Bonferroni-corrected ANOVA comparisons of labeling measurements for pCAMKII, Zif-268 and BDNF staining were followed by Bonferroni post-hoc tests. The significant difference is indicated in red. 6h Group Molecule Region ANOVA Bonferroni F P value* DF Groups Mean ± SEM; N P Value pCaMKII CA1 33.22 0.0003 2;16 VH x halo 1.25 ± 0.02; N = 6 0.63 ± 0.05; N = 6 P < 0.001 NV x halo 1.06 ± 0.06; N = 7 0.63 ± 0.05; N = 6 P < 0.001 VH x NV 1.25 ± 0.02; N = 6 1.06 ± 0.06; N = 7 P > 0.05 CA3 28.28 0.0003 2;16 VH x halo 1.17 ± 0.02; N = 6 0.71 ± 0.05; N = 6 P < 0.001 NV x halo 1.05 ± 0.04; N = 7 0.71 ± 0.05; N = 6 P < 0.001 VH x NV 1.17 ± 0.02; N = 6 1.05 ± 0.04; N = 7 P > 0.05 DG 11.56 0.0027 2,15 VH x halo 1.10 ± 0.05; N = 6 0.77 ± 0.03; N = 6 P < 0.01 NV x halo 1.05 ± 0.05; N = 6 0.77 ± 0.03; N = 6 P < 0.01 VH x NV 1.10 ± 0.05; N = 6 1.05 ± 0.05; N = 6 P > 0.05 Zif-268 CA1 14.27 0.0009 2;15 NV x halo 1.18 ± 0.07; N = 6 0.61 ± 0.09; N = 6 P < 0.001 VH x halo 1.11 ± 0.06; N = 6 0.61 ± 0.09; N = 6 P < 0.01 VH x NV 1.18 ± 0.07; N = 6 1.11 ± 0.06; N = 6 P > 0.05 CA3 9.92 0.0054 2;15 NV x halo 1.18 ± 0.07; N = 6 0.70 ± 0.06; N = 6 P < 0.01 VH x halo 1.07 ± 0.09; N = 6 0.70 ± 0.06; N = 6 P < 0.05 VH x NV 1.18 ± 0.07; N = 6 1.07 ± 0.09; N = 6 P > 0.05 BDNF CA1 2.83 0.27 2;15 VH X halo 1.19 ± 0.06; N = 5 0.99 ± 0.06; N = 5 P > 0.05 NV x halo 1.04 ± 0.05; N = 6 0.99 ± 0.06; N = 5 P > 0.05 VH x NV 1.19 ± 0.06; N = 5 1.04 ± 0.05; N = 6 P > 0.05 CA3 0.61 0.99 2;15 VH X halo 1.05 ± 0.07; N = 5 0.94 ± 0.07; N = 5 P > 0.05 NV X halo 1.05 ± 0.05; N = 6 0.94 ± 0.07; N = 5 P > 0.05 VH x NV 1.05 ± 0.07; N = 5 1.05 ± 0.05; N = 6 P > 0.05 DG 1.24 0.96 2;15 VH x halo 1.10 ± 0.08; N = 5 0.95 ± 0.02; N = 5 P > 0.05 NV x halo 1.00 ± 0.08; N = 6 0.95 ± 0.02; N = 5 P > 0.05 VH x NV 1.10 ± 0.08; N = 5 1.00 ± 0.08; N = 6 P > 0.05 Supplementary Table 3: Statistical summary of the densitometry analysis at 6h post-exploration for different hippocampal regions (CA1, CA3, DG). Bonferroni-corrected ANOVA comparisons of labeling measurements for pCaMKII, Zif-268 and BDNF staining were followed by Bonferroni post-hoc tests. The significant differences are indicated in red. 12h Group Molecule Region ANOVA Bonferroni F P value* DF Groups Mean ± SEM; N P Value pCaMKII CA1 9.23 0.0051 2;21 VH x halo 1.13 ± 0.01; N = 7 0.87 ± 0.04; N = 7 P < 0.01 NV x halo 0.97 ± 0.05; N = 7 0.87 ± 0.04; N = 7 P > 0.05 VH x NV 1.13 ± 0.01; N = 7 0.97 ± 0.05; N = 7 P > 0.05 CA3 14.24 0.0003 2;21 VH x halo 1.17 ± 0.02; N = 7 0.84 ± 0.04; N = 7 P < 0.001 NV x halo 1.04 ± 0.03; N = 7 0.84 ± 0.04; N = 7 P < 0.01 VH x NV 1.17 ± 0.02; N = 7 1.04 ± 0.03; N = 7 P > 0.05 DG 11.12 0.0024 2;21 VH x halo 1.14 ± 0.02; N = 7 0.90 ± 0.04; N = 7 P < 0.001 NV x halo 1.01 ± 0.04; N = 7 0.90 ± 0.04; N = 7 P > 0.05 VH x NV 1.14 ± 0.02; N = 7 1.01 ± 0.04; N = 7 P > 0.05 Zif-268 CA1 0.56 0.99 2;20 VH x halo 0.93 ± 0.08; N = 7 0.99 ± 0.06; N = 7 P > 0.05 NV x halo 1.05 ± 0.08; N = 6 0.99 ± 0.06; N = 7 P > 0.05 VH x NV 0.93 ± 0.08; N = 7 1.05 ± 0.08; N = 6 P > 0.05 CA3 1.27 0.90 2;15 VH x halo 0.95 ± 0.07; N = 7 0.96 ± 0.06; N = 7 P > 0.05 NV x halo 1.09 ± 0.06; N = 6 0.96 ± 0.06; N = 7 P > 0.05 VH x NV 0.95 ± 0.07; N = 7 1.09 ± 0.06; N = 6 P > 0.05 BDNF CA1 1.18 0.96 2;20 VH X halo 1.12 ± 0.05; N = 7 1.01 ± 0.05; N = 7 P > 0.05 NV x halo 0.98 ± 0.08; N = 6 1.01 ± 0.05; N = 7 P > 0.05 VH x NV 1.12 ± 0.05; N = 7 0.98 ± 0.08; N =6 P > 0.05 CA3 2.99 0.21 2;19 VH X halo 1.11 ± 0.06; N = 7 0.87 ± 0.05; N = 7 P > 0.05 NV X halo 0.95 ± 0.09; N = 6 0.87 ± 0.05; N = 7 P > 0.05 VH x NV 1.11 ± 0.06; N = 7 0.95 ± 0.09; N = 6 P > 0.05 DG 5.06 0.0560 2;20 VH x halo 1.19 ± 0.08; N = 7 0.81 ± 0.08; N = 7 P > 0.05 NV x halo 1.01 ± 0.09; N = 6 0.81 ± 0.08; N = 7 P > 0.05 VH x NV 1.19 ± 0.08; N = 7 1.01 ± 0.09; N = 6 P > 0.05 Supplementary Table 4: Statistical summary of the densitometry analysis at 12h post-exploration for different hippocampal regions (CA1, CA3, DG). Bonferroni-corrected ANOVA comparisons of labeling measurements for pCaMKII, Zif-268 and BDNF staining were followed by Bonferroni post-hoc tests. The significant differences are indicated in red. Note the statistical trend for a difference between VH and Halo for BDNF in the DG (p=0.056). Behavioural Brain Research 308 (2016) 211–216 Contents lists available at ScienceDirect Behavioural Brain Research jou rn al hom epage: www.elsev ier .com/ locate /bbr Short communication Object recognition impairment and rescue by a dopamine D2 antagonist in hyperdopaminergic mice Arthur S.C. Franc¸ aa, Larissa Muratorib, George Carlos Nascimentoc, Catia Mendes Pereirad, Sidarta Ribeiroa, Bruno Lobão-Soarese,∗ a Brain Institute, Federal University of Rio Grande do Norte, RN 59056-450, Brazil b Biochemistry Department, Federal University of Rio Grande do Norte, Brazil c Medical Engineering Department, Federal University of Rio Grande do Norte, Brazil d Edmond & Lily Safra International Institute of Neuroscience of Natal, Brazil e Biophysics and Pharmacology Department, Federal University of Rio Grande do Norte, RN 59078-970, Brazil h i g h l i g h t s • Heterozygous mice for dopamine transporter (DAT+/−) exhibit higher levels of synaptic dopamine. • Here we confirmed that D2 antagonism can interfere in object recognition. • We observed in DAT+/− a natural phenotype of impaired novel object memory recognition. • The injection of haloperidol at 0.05 mg before object exposition restored object recognition. • This effect could be explained by restoring D2 activity to optimal levels, acting on memory acquisition. a r t i c l e i n f o Article history: Received 4 September 2015 Received in revised form 29 March 2016 Accepted 4 April 2016 Available online 6 April 2016 Keywords: DAT-KO Heterozygous Haloperidol Dopamine Object recognition a b s t r a c t Genetically-modified mice without the dopamine transporter (DAT) are hyperdopaminergic, and serve as models for studies of addiction, mania and hyperactive disorders. Here we investigated the capacity for object recognition in mildly hyperdopaminergic mice heterozygous for DAT (DAT +/−), with synap- tic dopaminergic levels situated between those shown by DAT −/− homozygous and wild-type (WT) mice. We used a classical dopamine D2 antagonist, haloperidol, to modulate the levels of dopaminergic transmission in a dose-dependent manner, before or after exploring novel objects. In comparison with WT mice, DAT +/− mice showed a deficit in object recognition upon subsequent testing 24 h later. This deficit was compensated by a single 0.05 mg/kg haloperidol injection 30 min before training. In all mice, a 0.3 mg/kg haloperidol injected immediately after training impaired object recognition. The results indi- cate that a mild enhancement of dopaminergic levels can be detrimental to object recognition, and that this deficit can be rescued by a low dose of a D2 dopamine receptor antagonist. This suggests that novel object recognition is optimal at intermediate levels of D2 receptor activity. © 2016 Elsevier B.V. All rights reserved. Dopamine (DA) is a neurotransmitter related to complex behav- iors, such as: reward perception, social interaction [1,2], and is also linked to memory consolidation both in humans and rodents [3]. Alterations in DA synaptic regulation are related to a large vari- ety of mental diseases, such as schizophrenia, hyperactivity, mood disorders, and Parkinson disease [4,5]. ∗ Corresponding author. E-mail addresses: brunolobaosoares@gmail.com, brunolobaosoares@hotmail.com (B. Lobão-Soares). DA has many receptor subtypes, but they are basically divided in D1 and D2 families [3]. DA, mainly through D1 receptors, elicits the onset of the late phase of long term potentiation in the hip- pocampus [6], control plasticity-induced protein synthesis [6], and enhance the persistence of hippocampus-dependent memories [7]. The involvement of both dopamine receptors families with learning and memory is widely reported for working memory [3], spatial learning [3,6], aversive memory [7], reward-related learn- ing [8] and cognitive flexibility [9]. In particular, impairment in object recognition has been induced by D2 activity suppression due to haloperidol IP injection [10], by D1 activity suppression trough http://dx.doi.org/10.1016/j.bbr.2016.04.009 0166-4328/© 2016 Elsevier B.V. All rights reserved. 212 A.S.C. Franc¸ a et al. / Behavioural Brain Research 308 (2016) 211–216 IP injection of SCH-23390 [11], or by D1 activity facilitation via SKF81297 microinfusion in the prefrontal cortex [12]. More specifically, the lack of D2 receptors was associated to odor discrimination in mice [13]. The impairment of D2 activity was related to sleep regulation and memory consolidation, through the down-regulation of plasticity factors and reduction of rapid eye movement (REM) sleep amount [10]. The antagonism of D2 receptors also led to electrophysiological changes during object exploration [14]. Furthermore, mice lacking D2 receptors do show memory consolidation deficits [15]. On the other hand, animals with high levels of synaptic DA, namely knockout mice for the DA transporter (DAT-KO), show impairment in the Morris water maze task [9], and also impairment of spatial memory in the Y-maze [16]. These animals presented, however, less immobility time in the forced swimming task [17], and exhibited an increase in loco- motion, reversed by D2 receptor blocking [17]. DAT-KO mice were initially generated to study the influence of hyperdopaminergia in physiological and behavioral parame- ters, and in response to dopaminergic drug administration [13]. DAT—heterozygous (defined here as DAT +/−) mice, expressing only one copy of the DAT gene, were also investigated [18]. Clear- ance of dopamine released in the synapse takes thrice more time in DAT +/− mice than in wild-type (WT) mice [18]. Yet, in addition to neurochemical alterations leading to a mild DA increase at the synaptic level, only a handful of studies have described memory alterations in DAT +/− mice [19,20]. Previous studies revealed that DAT +/− mice show impairment in pattern completion in a partial cue environment [19], and exhibit decreased anxiety-related behaviors [20]. The mild hyperdopaminergic DAT +/− mice present biochemical changes [18] related to memory impairment that could be reversed by D2 down regulation [19]. The present work aimed to investigate the relation between D2 activity and novel object recognition in mild hyperdopaminergic DAT +/− mice. To that end, we investigated DAT +/− mice trained in the object recognition (OR) task, with assessment at basal levels of dopamine transmission as well as under the influence of differ- ent doses of haloperidol, (0.05 and 0.3 mg/Kg) before or after the training session of the task. A total of 75 adult (2–5 months) male mice were used, com- prising 39 WT (C57Bl-6 strain) and 36 heterozygous (DAT +/− strain, on C57Bl/6J background). The animals were housed in cages (2–4 animals/cage), under a 12 h/12 h light/dark cycle, with lights on at 07:00, and food and water ad libitum. Ani- mals were daily handled for 5 min for 10 sessions prior to the experiments, in order to decrease stress responses WT and KO littermates were generated form C57BL/6J-129/SvJ hybrid DAT het- erozygotes as previously described [18]. Mice were genotyped by PCR using sense WT (5′-CCCGTCTACCCATGAGTAAAA-3′), sense KO (5′-TGACCGCTTCCTCGTGC-3′) and a common antisense primer (5′-CTCCACCTTCCTAGCACTAAC-3′). The procedures applied in the study followed guidelines of the National Institutes of Health and were approved by the Edmond and Lily Safra International Insti- tute of Neuroscience of Natal Ethics Committee (protocol number 08/2010). Animals were submitted to an OR task, based on the novelty exploration tendency of rodents. The task was performed in a cir- cular arena (50 cm diameter and 30 cm high) in a room with dim and well-spread light, so as to avoid producing shadows in the apparatus. Animals were naïve to the apparatus when exposed. We employed 6 different objects presented over 2 consecutive days (two sessions); 4 objects (A–D) were presented during the initial exploration session (First session, 10 min); and 2 unfamiliar objects (E and F) replaced 2 familiar objects (C and D) during the second session, 24 h later (testing session, 10 min). In order to eval- uate memory recognition, an object preference ratio was calculated (time spent with E and F/A and B objects). Notice that if the animal follows the natural behavior, they will spend more time exploring novel objects [14,15] (ratio E and F/A and B > 1), if they had impair- ment in OR they will explore similarly the familiar and the novel objects (ratio E and F/A and B = 1). Based on the D2 influence on learning and memory [8–10], we used haloperidol to induce OR impairment. At the time point of 30 min before exploration (B.E.) of the object, as well as immediately after exploration (I.A.E.), animals were injected with haloperidol (0.3 mg/Kg and 0.05 mg/Kg) or vehicle, and were then allowed to behave freely in their home cages until the second explo- ration session. In order to differentiate whether a possible memory deficit could be due to memory acquisition, or specifically related to the memory consolidation phase, we performed injections of haloperidol at low dose both before and after object exploration. The injection of 0.3 mg/Kg haloperidol before the exploration phase results in partial deficit of movement that impairs object explo- ration [17,21]. Therefore, we could not determine whether the decrease in object recognition was due to impaired consolida- tion, or to a deficit in locomotor activity during the exploration phase. For this reason, we did not investigate animals injected with 0.3 mg/Kg haloperidol before the exploration. In contrast, the use of the 0.3 mg/Kg dose after the exploration could not affect the mobility neither during the acquisition phase nor during the test/evocation phase, and therefore we set out to investigate this condition. The parameter of object exploration considered the time ani- mals spent with the whiskers or front paws in contact with one of the objects for at least 0.5 s, with a 0.5 s as a minimum inter- val bout. On test session, by presenting half of objects as novelty, animals should spend more time with novel objects, giving rise to unequal exploration time between novel and familiar objects [22]. By recording videos with a Panasonic camera and AMcap 9.21 free software, we defined the preference ratio as the exploration dura- tion of novel objects (E and F) divided by the time spent exploring the objects that were the same as in training in sessions (objects A and B). First we measured the influence of haloperidol (0.3 and 0.05 mg/Kg) in the WT mice strain during OR task (Fig. 1). We exe- cuted two different statistical analyses; one-way ANOVA followed by Bonferroni correction was performed to analyze the difference among groups submitted to vehicle or haloperidol. We also per- formed the difference between the group (vehicle or haloperidol) and the ratio = 1 (described above), t test against 1, to find out if the preference ratio presented by WT groups was significant different of the hypothesis of non-recognition of objects. To verify possible effects of haloperidol in the motor and motivation system [8,17] we measured the total distance traveled and the total time spent in object exploration. 2 We applied Shapiro-Wilk normality tests to assess the dis- tribution of the data. For the comparison within strains, in which treatment is the only independent variable, we used one-way ANOVAs of three dependent variables (Preference Ratio, Total Exploration Time and Total Distance Traveled). For the comparison between strains we used a Two-way ANOVA with strain and treat- ment as independent variables, followed by Bonferroni post-hoc tests. The comparison against one was performed by a paired t-test (alpha = 95%, all data with Bonferroni correction). The descriptive statistics comprise normality test values (W), mean ± SEM, F, p val- ues and degrees of freedom (DF) First we applied the Shapiro-Wilk normality tests with all data set groups to verify if the data followed the normal distribu- tion in order to choose correctly parametric or non-parametric tests. W values for the Wild Type groups were: Vehicle 30 min B.E., W = 0.94; Halo0,05 mg/Kg 30 min B.E. I.A.E. W = 0.95; Halo 0,3 mg/Kg I.A.E, W = 0.93; Vehicle I.A.E., W = 0.97; Halo 0,05 mg/Kg I.A.E, W = 0.95 (Shapiro-Wilk p summary values p > 0.05). For the A.S.C. Franc¸ a et al. / Behavioural Brain Research 308 (2016) 211–216 213 Fig. 1. Behavioral and pharmacological procedures. Handled C57BL-6 and DAT +/− mice were presented to 4 novel objects at light periods (training session). Haloperidol or vehicle was injected 30 min before of the exploration (B.E.) or immediately after exploration (I.A.E.) of novel objects exploration. One day after training, animals were exposed to 2 novel objects and 2 familiar objects (test session). DAT +/− animals, Shapiro-Wilk normality test W values were: Vehicle 30 min B.E., W = 0.89; Halo0,05 mg/Kg 30 min B.E. I.A.E. W = 0.81; Halo 0,3 mg/Kg I.A.E, W = 0.90; Vehicle I.A.E., W = 0.86; Halo 0,05 mg/Kg I.A.E, W = 0.77. (Shapiro-Wilk p summary values p > 0.05). Therefore, in this we used only parametric tests to analyze all comparisons Fig. 1. We applied ANOVA to compare the preference ratio among WT groups. ANOVA comparison of preference ratio revealed a signif- icant difference among groups (F = 11.74, df = 4,38 and p < 0.0001) (Fig. 2A). The Bonferroni’s post-hoc showed significant preference ratio decreases of haloperidol 0.3 mg/Kg in comparison to the other groups (see details in Table 1). The higher dose of haloperidol was the only treatment that led to impairment in OR, supported by the t-test against 1, t = 1.74, p = 0.6. The other groups showed signif- icant preference ratio higher than 1: Vehicle I.A.E. (t = 4.57 df = 6, p = 0.019); Haloperidol 0.05 mg/Kg I.A.E. (t = 4.14 df = 7, p = 0.021); Vehicle 30 min B.E. (t = 11.13 df = 7, p < 0.0001); and Haloperidol 0.05 mg/Kg 30 min B.E. (t = 11.05 df = 7, p < 0.0001). The second part of the study tested if the mild disbalance of the DA levels in DAT +/− mice strain had influence in OR task. Therefore, we analyzed the effect of haloperidol (0.3 and 0.05 mg/Kg) during OR task. We applied one-way ANOVA to compare all the groups of DAT +/− (Fig. 2B). The ANOVA comparison of preference ratio revealed a significant difference among groups (F = 12.44, df = 4,35 and p < 0.0001). Bonferroni post hoc revealed that the treatment with haloperidol (0.05 mg/Kg) injected 30 min before exploration led to a higher preference ratio in comparison to the other groups (see details in Table 1). When we performed the comparison to 1, DAT +/− with haloperidol 0.05 mg/Kg 30 min B.E. was the only group to present difference (t = 5.621, df = 6, p = 0.007), demonstrating to be the only group with a preference ratio compatible with novel OR. The other comparisons between 1 and DAT +/− groups revealed no difference: Vehicle I.A.E. (t = 0.73 df = 6, p > 0.99); Haloperidol 0.05 mg/Kg I.A.E. (t = 0.39, df = 7, p > 0.99); Haloperidol 0.3 mg/Kg I.A.E. (t = 0.26 df = 6, p > 0.99); and Vehicle 30 min B.E. (t = 2.095, df = 6, p = 0.4). We also measured the influence of haloperidol in WT or DAT +/− by using the strains and haloperidol dosage as independent vari- ables. The Two-way ANOVA (Strain: F (1, 65) = 21.78, p < 0.0001; Treatment: F (4, 65) = 41.65, p < 0.0001; Interaction: F (4, 65) = 4.39, p = 0.072) revealed that both treatment and strain has influence in the preference ratio of the animals (Fig. 2C). Finally, we applied the Bonferroni post hoc to be able to compare where in each treatment both strains have different preference ratios. Bonfer- roni post hoc showed in haloperidol 0.3 mg/Kg I.A.E. group similar results considering WT and DAT +/− preference ratios (p > 0.05). Both strains presented ratios similar to 1 indicating that both strains have impairment in OR. Haloperidol at 0.05 mg/Kg 30 min B.E. also induced a similar preference ratio considering the two strains (p > 0.5). Nevertheless, in this case both strains revealed a preference ratio higher than 1 indicating that they are able to rec- ognize novel objects. Regarding the comparison of WT and DAT P re fe re nc e R at io P re fe re nc e R at io P re fe re nc e R at io A - Haloperidol Effects on WT Mice B - Haloperidol Effects on DAT +/- Mice C - WT vs DAT +/- Mice Fig. 2. Haloperidol differentially modulates memory consolidation in WT and DAT+/− mice in a novel object recognition task. A—Effect of two different haloperidol (halo) doses (0.05 and 0.3 mg/Kg) when injected immediately after exposition (I.A.E.) and 30 min before exposition (B.E.) in wild type (WT) mice novel object preference ratio (unfamiliar/familiar object exploration duration), used as memory consolida- tion (M.C.) parameter. Comparison through ANOVA revealed that injection of halo 0.3 mg/Kg immediately after exploration led to a decrease on M.C when compared to control group (p < 0.01) and other groups. Also, the dose of 0.05 mg/Kg injected 30 min before the exploration (B.E.) revealed an association with increased novel object exploration when compared to other groups excepting its control vehicle group (p < 0.001). B—Effect of different halo doses when injected I.A.E. and 30 min B.E. in heterozygous mice in novel object preference ratio. ANOVA revealed that injection of halo 0.05 mg/Kg B.E. increased preference ratio when compared to all other groups (p < 0.01). C—DAT +/− and WT mice disclose different preference ratios and specific responses to halo injection. WT and DAT +/− group pairs were compared in each treatment using Student’s T test. DAT +/− groups revealed no novelty recog- nition in vehicle and halo 0.3 and 0.05 I.A.E., as well as vehicle B.E. (ratios close to 1.0), and decreased ratios compared to WT in both vehicle treatments (I.A.E and B.E.) and in halo 0.05 mg/kg I.A.E. There was no difference concerning WT and DAT +/− in halo 0.05 mg/kg B.I. * p < 0.05; ** p < 0.01; *** p < 0.001. +/− groups: vehicle I.A.E., haloperidol 0.05 mg/Kg I.A.E. and vehicle 30 min B.E. revealed a difference in the preference ratio (see details in Table 1). Among those three treatments, WT animals presented a preference ratio higher than 1 and DAT +/− similar to 1 (Fig. 2C). 214 A.S.C. Franc¸ a et al. / Behavioural Brain Research 308 (2016) 211–216 Table 1 Statistical summary of the significant results in the comparisons among WT and DAT +/−. ANOVA comparisons of preference ratio were applied among WT and DAT +/− separately. Two-way ANOVA comparisons were applied to compare the WT and DAT +/− groups followed by Bonferroni post-hoc tests. Comparisons were performed considering two independent variables: treatment and strain line. Wild-Type Mice ANOVA F P Value DF 11.74 0.0001 (4.38) Bonferroni Groups Mean ± SEM; N P Value Vehicle I.A.E. x Halo 0.3 mg/Kg I.A.E. 2.28 ± 0.28; N = 7 P < 0.01 1.23 ± 0.13; N = 8 Halo 0.05 mg/Kg B.E. x Halo 0.05 mg/Kg I.A.E 2.73 ± 0.15; N = 8 P < 0.001 1.66 ± 0.16; N = 8 Vehicle B.E. x Halo0.3 mg/Kg I.A.E. 2.20 ± 0.10; N = 8 P < 0.01 1.23 ± 0.13; N = 8 Halo0.05 mg/Kg B.E. x Halo0.3 mg/Kg I.A.E 2.73 ± 0.15; N = 8 P < 0.001 1.23 ± 0.13; N = 8 DAT+/-Mice ANOVA F P Value DF 12.44 0.0001 (4.35) Bonferroni Groups Mean ± SEM; N P Value Halo 0.05 mg/Kg B.E. x Vehicle I.A.E 2.25 ± 0.22; N = 7 P < 0.001 1.07 ± 0.10; N = 7 Halo 0.05 mg/Kg B.E. x Halo 0.05 mg/Kg I.A.E 2.25 ± 0.22; N = 7 P < 0.001 0.96 ± 0.10; N = 8 Halo 0.05 mg/Kg B.E. x Halo 0.3 mg/Kg I.A.E 2.25 ± 0.22; N = 7 P < 0.001 0.97 ± 0.12; N = 7 Halo 0.05 mg/Kg B.E. x Vehicle B.E 2.25 ± 0.22; N = 7 P < 0.01 1.38 ± 0.18; N = 7 Wild-Type vs DAT+/-Mice Two-Way ANOVA Source of variation F P Value DF Interaction 4.39 0.0720 (4.65) Strain 21.78 0.0001 (1.65) Treatment 41.65 0.0001 (4.65) Bonferroni Groups Mean ± SEM; N P Value Vehicle I.A.E (WT vs Hz) 2.28 ± 0.28; N = 7 P < 0.01 1.07 ± 0.10; N = 7 Halo0.05mg/Kg I.A.E. (WT vs Hz) 1.66 ± 0.16; N = 8 P < 0.05 0.96 ± 0.10; N = 8 Vehicle B.E 2.20 ± 0.10; N = 8 P < 0.01 (WT vs Hz) 1.38 ± 0.18; N = 7 To test whether the involvement of D2 receptors in the motiva- tional and motor systems played a role during the exploration of objects in the test session, we measured the total exploration time and the total distance traveled. We applied ANOVA to compare the total exploration time among WT groups. ANOVA compari- son of total exploration revealed a significant difference among groups (F = 17.59, df = 4, 39 and p < 0.0001), but the comparison of the total distance traveled in the WT groups revealed no signifi- cant difference (F = 2.372, df = 4, 39 and p = 0.0712). We applied the same comparison to the DAT +/− groups. The comparison of total exploration time revealed no difference (F = 1.805, df = 4, 35 and p = 0.153). When we compared the total distance traveled, a signif- icant difference was detected (F = 4.684, df = 4, 35 and p = 0.0045). Finally, we applied the Two-Way ANOVA to compare both strains. We found a significant interaction regarding total exploration (Strain: F (1.65) = 11.27, p = 0.0013; Treatment: F (4, 65) = 8.398, p <0.0001; Interaction: F (4, 65) = 9.301, p <0.0001), while the com- parison of total distance traveled did not reveal any significant interaction (Strain: F (1, 65) = 27.30, p <0.0001; Treatment: F (4, 65) = 6.746, p <0.0001; Interaction: F (4, 65) = 1.236, p = 0.304). The present study shows that DA D2 antagonist haloperidol was able to both decrease and increase memory formation, depend- ing on the mouse strain, and on the time of injection. Specifically, we replicated WT mice data, in which haloperidol 0.3 mg/Kg after exploration led to an impairment in a memory task related to OR [10,14]. We also showed that mild hyperdopaminergic DAT +/− mice have a basal impairment in this parameter. Thereafter, in DAT +/− mice, we demonstrated that halo injection before (0.05 mg/kg), but not after exploration (0.05 or 0.3 mg/kg), was able to recover OR capacity to similar levels of their WT correspondents. Dopamine D1 and D2 receptors are linked to attention and memory consolidation and to both mesolimbical and mesocorti- cal dopaminergic pathways [3,6]. Rossato et al. reported that D1 family receptor modulates the long-term memory storage persis- tence in the inhibitory avoidance task [7], as well D1 participate in the spatial memory process [23]. Similarly, the systemic injection and intra-accumbens of D2 antagonist impair spatial memory. Both D1 and D2 suppression results in impairment to recognize changes in the environment [24]. The use of DAT-KO mice as a model to study the behaviors asso- ciated with dopamine is widely described. DAT-KO mice exhibit hyper locomotion [18] and this phenotype can be reversed by haloperidol injection [17,20]. DAT-KO animals also exhibit a pref- erence for the borders of an open field [20], and a decrease of immobility time in the forced swimming task [17]. When main- tained in isolation, DAT-KO mice exhibit increase in reactivity and aggression when submitted to social interactions [2]. DAT-KO mice also present deficits in odor recognition [13] and impairment in the normal wake-sleep cycle [25]. Using DAT-KO, Morice et al. showed that these animals had impairment in the water-maze paradigm, and long-term depression [9]. In contrast, only a few studies have been published on DAT +/− mice, a mild model of hyperdopaminer- gia. In this model, a mild disbalance of dopamine results in several cognitive changes [17,19,20]. DAT +/− mice exhibit less immobility time during the forced swimming test [17], higher time spent in the center of an open field [20], and more time spent in the open arms in comparison to WT mice in a plus maze [19] or zero maze [20]. In addition, these heterozygous mice showed an increase in the explo- ration of objects placed in an open field [17], and in the frequency of object exploration [20]. DAT +/− mice showed impaired pattern completion in an environment with few spatial cues, which could be reversed by haloperidol [19]. However, no impairment of OR has been described [19,20]. In the present work we found basal impairment in OR in the DAT +/− mice (without pharmacological interference), differently from previous studies [19,20], but our OR protocol was quite dif- ferent from the protocol used by Li et al. We used 50% less time of object exploration sessions and twice the number of novel objects than the protocol of that study [19]. The increase in the amount of novel objects, combined with less time to explore them, likely led to the differences between the previously published results and our own. In the Pogorolev protocol, animals were submitted to 7 consecutive days of novel exploration. The animals had 3 daily sessions to explore the same objects. In the fourth day the place- ment of the objects was changed, and in the sixth day one of the objects was replaced [20]. Most likely, any mild impairment of OR in DAT+/− mice should be reversed by several consecutive contacts with the same objects. Similarly to our results, pattern completion impairment was reversed by haloperidol injection in DAT +/− mice. [19]. Secondly, regarding exploration and overall mobility, note that both behaviors are modulated by dopamine. Yet the results in this A.S.C. Franc¸ a et al. / Behavioural Brain Research 308 (2016) 211–216 215 study, related to memory in DAT +/− or WT mice, are probably not influenced by an alteration of these two variables. As shown in the results above, the WT 0.3 mg/Kg I.A.E. group exhibited the same levels of total exploration seen in the vehicle I.A.E group, but they explored differently the new and familiar objects (see Fig. 2A). Furthermore, we observed no difference among groups comparing 0.3 mg/kg and their respective controls in the mobility parameter (distance traveled). The same basic explanation can be applied to the DAT +/−: the statistics indicate no difference in total exploration time when we compare DAT with vehicle and with halo 0.05 mg/kg or 0.5 mg/kg, (and only differences between I.A.E and B.E. treat- ments, treated in sequence) but these groups exhibited differential exploration of the new and familiar objects (see Fig. 2B). A useful rationale in this case is to explain the results as an increase in potentially stressful stimuli presented to the DAT+/− animals, since more objects were presented and the animals had less time to be familiarized with the environment. This increase in potentially stressful conditions may be subtle for wild type animals, but not for DAT+/− animals with a mild dopamine excess. In agreement with this hypothesis, it has been demonstrated that the enhanced activity regulation of DAT receptor in WT mice occurs as a synaptic response to restraint stress, and this effect occurs even in haloperidol-treated animals [26]. Since DAT+/− mice have less DAT receptors, they might be more susceptible to this stress-associated phenomenon. Despite of the scarcity of pharmacological and neuroanatomical data in DAT+/− mice, DAT- KO littermate mice exhibit a different neurocircuitry [27] and a non-dopaminergic acute response to psychostimulant drugs [28]. Future investigation of the neurocircuitry of DAT+/− animals shall clarify what are the neural correlates of the differential modulation of its reward system implied by our results. Interestingly, with regard to motor parameters, we observed that WT mice with injection before exploration and DAT+/− mice with B.E. injection at 0.05 mg/Kg of haloperidol, presented locomo- tion alterations when compared to both control and to 0.3 mg/kg after exploration. The differences are more evident in DAT+/− mice, which presented, antagonically, a decrease of total explo- ration in injections B.E. as well as an increase in distance traveled (0.05 mg/kg B.E.). These findings, together with an increase in DAT +/− (distance traveled) at 0.05 mg/kg after exposure, also suggest, additionally, an increased susceptibility of motor modulation in DAT-+/− animals due to previous injection stress, and to haloperi- dol action at lower doses. Object recognition deficits in DAT+/− were, in fact, the main findings in this study: this finding is supported by related research. There is involvement of D2 receptor activity in neuroplasticity markers impairment associated with OR deficits [10,14]. A high dose of haloperidol (0.3 mg/Kg) lead to a decrease in CAMKII, ZIF- 268 and BDNF [10] after object exploration. In the same study above, the haloperidol injected animals that presented impairment in OR had significant decrease in the REM sleep duration [10]; they also revealed a strong correlation between REM sleep decrease and OR impairment [10]. Besides corroborating previous studies in the field, data from WT mice wereimportant for the comparison with DAT +/− results on memory impairment. DAT +/− mice did not receive major scien- tific attention as did their knockout counterparts, since they only exhibit a mild hyperdopaminergia and exhibit less phenotypic dif- ferences [18]. Nevertheless, in the present study these mice showed a clear impairment in OR. These data are relevant since they indi- cate that a mild hyperdopaminergia can be detrimental enough to cause attention or memory deficits related to novelty recognition. It is important to note that the two strains investigated here, WT and DAT+/−, present different basal levels of dopamine [18]. Because of these different basal synaptic dopamine levels, we expected different sensibility to dopamine antagonists in these two mice strains. A higher sensibility was observed in DAT+/− mice at a low haloperidol dose (0.05 mg/Kg, BE injection), since haloperidol reverted the natural OR deficit phenotype, and notably enhanced object memory formation in this strain. In contrast, in WT we did not detect any difference between haloperidol and vehicle BE, using the ANOVA test. In fact, in this case a trend was revealed by Student’s T test (t = 2.69, df = 14 and p = 0.0176), indicating that haloperidol BE at a low 0.05 mg/kg dose could possibly enhance object recognition in WT mice. We interpret these specific strain variations at low haloperidol doses as different susceptibilities to a minor modulation of dopamine receptors. However, when injected after exploration, haloperidol at the same low dose did not increase OR in DAT +/− mice during the test session. Together, both results suggest that this impairment could most probably be due to DA imbalance during memory acquisition in DAT +/− mice. Conse- quently, since the acquisition phase seems to be directly affected, no further pharmacological intervention after memory acquisition could exert any effect on OR in DAT +/− mice, as we observed with haloperidol injections after object exploration. Interestingly, the same drug that caused memory deficits after exploration in WT mice also caused an increase in this parameter in DAT +/− mice, when used before exploration and at a lower dose. An inverted U-shape activity, in which optimal activity levels enhance performance, is proposed for DA D1 receptor activation, and is related to goal-oriented tasks, memory consolidation and atten- tion [29,30]. In this approach model, both low or high DA receptor activation reduces the performance in these activities, and medium optimal activation produces the best performances. An interesting study conducted in humans indicates the inverted U-shaped, D-2 receptor- based neuroplasticity is also observed [31]. Since we used a drug that is mainly a D2 receptor antagonist, the results can indicate that D2 activation levels may also induce an inverted U-shape performance in mice related to OR. The D2 receptor action may modulate OR both at acquisition and consoli- dation phases. We infer that in the present study, both high and low D2 DA receptor activation levels led to object memory impairment. The high D2 activation could be relative to DAT +/− at basal perfor- mance, which was reverted by haloperidol in pre-exploration (at 0.05 mg\kg). The low activation case could be that of WT, impaired by haloperidol injection after exploration (at 0.3 mg\kg). These results indicate that optimal D2 activity levels can be pharmacologically induced, and can potentially be considered a therapeutic target for dopamine-related dysfunctions. Indeed, the use of D2/D3 family antagonists has been described for reducing the impairment of memory deficits induced by amnesic compounds in rodents [32]. This is also supported by the trend for OR facili- tation in WT injected with 0.05 mg/kg haloperidol. Altogether, the results indicate that D2 family antagonists in low doses can produce memory enhancement. In summary, we report here an OR deficit in DAT +/− mice. Importantly, injection of the D2 DA antagonist before object explo- ration reverted this phenotype. These results are complemented by an haloperidol-induced decrease of OR in WT mice when injected after the training session. This indicates that D2 DA receptors can modulate OR tasks by acting both in attentional processes during acquisition, and during subsequent memory consolidation. More studies could be performed examining other phenotypic charac- teristics of DAT +/− mice, in order to associate these behavioral deficits to molecular and electrophysiological parameters. Further- more, additional pharmacological studies involving DA agonists and antagonists for different receptors are in order to build a more comprehensive understanding of D2 regulation of attention and memory. 216 A.S.C. Franc¸ a et al. / Behavioural Brain Research 308 (2016) 211–216 Conflict of interest None. The authors declare no competing interests. Acknowledgments We thank Marc Caron and Miguel Nicolelis for making the DAT+/− mice available; Valéria Arboes for animal care. We thank to the listo f grants: Grant (1) FAPERN-PPP (Dr. Lobão- Soares: 2013–2014). Grant (2) CNPQ- Universal; Grant number: 484408/2013-5 (Dr. Lobão-Soares).Grant (3) CNPq Universal; Grant number: 481351/2011-6 (Dr. Ribeiro). Grant (4) FINEP Grant num- ber 01.06.1092.00 (Dr. Ribeiro). Grant (5) FAPERN/CNPq Pronem. Grant Number: 003/2011 (Dr. Ribeiro). Grant (6) FAPESP Cen- ter for Neuromathematics Grant number: #2013/07699-08 (Dr. Ribeiro).Grant (7) UFRN. Grant number 00001/2010 (Dr. Ribeiro). (8) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) Research productivity 306604/2012-4. References [1] M. Le Moal, H. Simon, Mesocorticolimbic dopaminergic network: functional and regulatory roles, Physiol. Rev. 71 (1991) 155–234. [2] R.M. Rodriguiz, R. Chu, M.G. Caron, W.C. Wetsel, Aberrant responses in social interaction of dopamine transporter knockout mice, Behav. Brain Res. 148 (2004) 185–198. [3] M. El-Ghundi, B.F. O’Dowd, S.R. George, Insights into the role of dopamine receptor systems in learning and memory, Rev. Neurosci. 18 (2007) 37–66. [4] I. Creese, S.D. Iversen, The role of forebrain dopamine systems in amphetamine induced stereotyped behavior in the rat, Psychopharmacologia 39 (1974) 345–357. [5] J.M. Ryan, Pharmacologic approach to aggression in neuropsychiatric disorders, Semin. Clin. Neuropsychiatry 5 (2000) 238–249. [6] N. Hansen, D. Manahan-Vaughan, Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity, Cereb. Cortex 362 (2012). [7] J.I. Rossato, L.R.M. Bevilaqua, I. Izquierdo, J.H. Medina, M. Cammarota, Dopamine controls persistence of long-term memory storage, Science 325 (2009) 1017–1020. [8] R.A. Wise, Dopamine, learning and motivation, Nat. Rev. Neurosci. 5 (2004) 483–494. [9] E. Morice, J.-M. Billard, C. Denis, F. Mathieu, C. Betancur, J. Epelbaum, et al., Parallel loss of hippocampal LTD and cognitive flexibility in a genetic model of hyperdopaminergia, Neuropsychopharmacology 32 (2007) 2108–2116. [10] A.S.C. Franc¸ a, B. Lobão-Soares, L. Muratori, G. Nascimento, J. Winne, C.M. Pereira, et al., D2 dopamine receptor regulation of learning, sleep and plasticity, Eur. Neuropsychopharmacol. 25 (2015) 493–504. [11] J. Besheer, H.C. Jensen, R.A. Bevins, Dopamine antagonism in a novel-object recognition and a novel-object place conditioning preparation with rats, Behav. Brain Res. 103 (1999) 35–44. [12] M.A. Pezze, H.J. Marshall, K.C.F. Fone, H.J. Cassaday, Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: role of the prelimbic cortex, Eur. Neuropsychopharmacol. 25 (2015) 2145–2156. [13] J.L. Tillerson, W.M. Caudle, J.M. Parent, C. Gong, T. Schallert, G.W. Miller, Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor, Behav. Brain Res. 172 (2006) 97–105. [14] A.S.C. Franc¸ a, G.C. do Nascimento, V. Lopes-dos-Santos, L. Muratori, S. Ribeiro, B. Lobão-Soares, et al., Beta2 oscillations (23–30 Hz) in the mouse hippocampus during novel object recognition, Eur. J. Neurosci. 40 (2014) 3693–3703. [15] S.B. Glickstein, P.R. Hof, C. Schmauss, Mice lacking dopamine D2 and D3 receptors have spatial working memory deficits, J. Neurosci. 22 (2002) 5619–5629. [16] B. Li, Y. Arime, F.S. Hall, G.R. Uhl, I. Sora, Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice, Eur. J. Pharmacol. 628 (2010) 104–107. [17] C. Spielewoy, C. Roubert, M. Hamon, M. Nosten-Bertrand, C. Betancur, B. Giros, Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice, Behav. Pharmacol. 11 (2000) 279–290. [18] B. Giros, M. Jaber, S.R. Jones, R.M. Wightman, M.G. Caron, Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter, Nature 379 (1996) 606–612. [19] F. Li, L.P. Wang, X. Shen, J.Z. Tsien, Balanced dopamine is critical for pattern completion during associative memory recall, PLoS One 5 (2010) e15401. [20] V.M. Pogorelov, R.M. Rodriguiz, M.L. Insco, M.G. Caron, W.C. Wetsel, Novelty seeking and stereotypic activation of behavior in mice with disruption of the Dat1 gene, Neuropsychopharmacology 30 (2005) 1818–1831. [21] S. Mithani, M.T. Martin-Iverson, A.G. Phillips, H.C. Fibiger, The effects of haloperidol on amphetamine- and methylphenidate-induced conditioned place preferences and locomotor activity, Psychopharmacology (Berl.) 90 (1986) 247–252. [22] E. Dere, J.P. Huston, M.A. De Souza Silva, The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents, Neurosci. Biobehav. Rev. 31 (2007) 673–704. [23] W.C.N. da Silva, C.C. Köhler, A. Radiske, M. Cammarota, D1/D5 dopamine receptors modulate spatial memory formation, Neurobiol. Learn. Mem. 97 (2012) 271–275. [24] A. Mele, M. Avena, P. Roullet, E. De Leonibus, S. Mandillo, F. Sargolini, et al., Nucleus accumbens dopamine receptors in the consolidation of spatial memory, Behav. Pharmacol. 15 (2004) 423–431. [25] K. Dzirasa, S. Ribeiro, R. Costa, L.M. Santos, S.-C. Lin, A. Grosmark, et al., Dopaminergic control of sleep-wake states, J. Neurosci 26 (2006) 10577–10589. [26] B.J. Copeland, N.H. Neff, M. Hadjiconstantinou, Enhanced dopamine uptake in the striatum following repeatedrestraint stress, Synapse 57 (2005) 167–174. [27] X. Zhang, E.L. Bearer, B. Boulat, F.S. Hall, G.R. Uhl, R.E. Jacobs, Altered neurocircuitry in the dopamine transporter knockout mouse brain, PLoS One 5 (2010) e11506. [28] J.V. Trinh, D.L. Nehrenberg, J.P.R. Jacobsen, M.G. Caron, W.C. Wetsel, Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice, Neuroscience 118 (2003) 297–310. [29] G.V. Williams, S.A. Castner, Under the curve: critical issues for elucidating D1 receptor function in working memory, Neuroscience 139 (2006) 263–276. [30] S. Vijayraghavan, M. Wang, S.G. Birnbaum, G.V. Williams, A.F.T. Arnsten, Inverted-u dopamine D1 receptor actions on prefrontal neurons engaged in working memory, Nat. Neurosci. 10 (2007) 376–384. [31] S. Fresnoza, E. Stiksrud, F. Klinker, D. Liebetanz, W. Paulus, M.-F. Kuo, et al., Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans, J. Neurosci. 34 (2014) 10701–10709. [32] J. Laszy, I. Laszlovszky, I. Gyertyán, Dopamine D3 receptor antagonists improve the learning performance in memory-impaired rats, Psychopharmacology (Berl.) 179 (2005) 567–575. In Preparation for Journal of Psychopharmacology High Dose of Nicotine Shifts the Object Exploration Preference Arthur S. C. França1,2, Amilcar Reis, Thiago Moulin, Adriano B. L. Tort1, Klas Kullander2*. Running title: High Dose of Nicotine Shifts the Object Preference 1 –Brain Institute, Federal University of Rio Grande do Norte, Brazil. 2 –Developmental Genetics, Department of Neuroscience, Uppsala University, Uppsala, Sweden. Keywords: Nicotine; Object Recognition; Object Preference; Memory Impairment. Introduction The nicotine, originated of Tabaco, is one of the most widely abused drug worldwide (Benowitz, 2008; Kawazoe and Shinkai, 2015; Picciotto, 2003), probably due to the relation of acetylcholine nicotinic receptors with the reward system (Benowitz, 2008; Kawazoe and Shinkai, 2015). The acetylcholine nicotinic receptors are commonly related to modulatory events of synaptic transmission (Dajas-Bailador and Wonnacott, 2004), as like long term potentiation (LTP) events in the hippocampus (Alzoubi et al., 2007; Matsuyama et al., 2000) and calcium permeability change (Dajas-Bailador and Wonnacott, 2004). The usage of pharmacological approach targeting nicotinic receptors subtypes has been related to different roles in the nervous system, to the control of movement (Morrison and Armitage, 1967; Rezvani and Levin, 2004), until the modulation for different cognitive changes (Levin, 2002). More specifically, nicotine has been largely related to improvement of several aspects of spatial memory: encoding (Aren- et al., 1995; Puma et al., 1999; Socci et al., 1995; Sultana et al., 2012), consolidation (Puma et al., 1999; Rezvani and Levin, 2001), reconsolidation (Tian et al., 2015), working memory performance (Levin, 2002), as well pointed as a possible therapeutic drug (Arendash et al., 1995; Decker et al., 1992; Rezvani and Levin, 2001) and also has been related to fear and anxiety behaviors (Gould and Lommock, 2003; Kutlu and Gould, 2015). However, the effect of high-dose of nicotine, common to the addicted In Preparation for Journal of Psychopharmacology motivated users, is one of the aspects that has not been so well studied. The objective in the present study is to investigate the effect of high dose of nicotine in two spatial related tasks, an item recognition task and a spatial recognition task. We choose two different doses, the first dose (0.5 mg/Kg) is slight higher than doses common used in similar tasks that variate among 0.1 to 0.4 mg/Kg (Rezvani and Levin, 2001(Aren- et al., 1995; Puma et al., 1999; Socci et al., 1995; Sultana et al., 2012) and the second dose exponential higher 1.5 mg/Kg (some of mice at 2 mg/Kg dose had seizure and we decrease to 1.5 to avoid this aspect). Using object recognition (OR) task we verified the mice sublimated to treatment of 1.5 mg/Kg before the encoding phase shift the preference of object exploration, but the shift was reverse when we inject the same dose immediately after encoding phase. Both of nicotine 1.5 mg/Kg (before and after encoding) impairs the spatial recognition in the modified T-maze task, indicating that the difference of nicotine interference is related to the tasks. Our results suggest that the nicotine in high dose can interfere spatial related tasks. Method Animals 104 Chrna2-cre(-/-) mice were used in this study. Animals were housed individually, with a 12-h cycle of light and dark (lights on at 06.00 h), and no food or water restriction. All procedures followed guidelines of the National Institutes of Health and approved by All procedures were approved by Uppsala Animal Ethics Committee, Jordbruksverket (C135/14, C132/13) Nicotine Dosage To able to test the interference of nicotine high dose in the object and spatial recognition capacity we use in the present study two doses of nicotine, the dose of 0.5 mg/Kg and the high dose (1.5 mg/Kg). Behavior procedures Object Recognition The OR task is based on the natural behavior of rodents to explore novelty, therefore when the novelty is presented to the animal he will explore more the novelty rather familiarity. In the present study we performed the object recognition task in two sessions. 20 minutes before the training session we submitted animals to an injection of Saline, nicotine 0.5 mg/Kg or nicotine In Preparation for Journal of Psychopharmacology 1.5 mg/Kg. During the training session animals were allowed to explore two similar objects in a round open field. One group, nicotine 1.5 mg/Kg, was submitted to injection immediately after exploration (I.A.E). 24hours latter animals were submitted to the test session, where we replaced one of the objects by a novel object (Figure 1A). Modified T maze To explore other aspect of the natural behavior of rodents to explore novelty, instead of item recognition capacity we submitted animals to recognize novelty spatial environment. The modified T (MT) maze is composed by three arms. The arms were identified by spatial clues (figures with different shapes and contrast colors) in the end of wall and also each arm present different textures in the ground to help animals to differentiate each arm. Similarly to the OR test, the MT maze task was divided in two session and had same experimental groups. During the training session two of the arms were presented to the animals, 24hours latter a third arm (new arm) was presented, therefore we account the exploration time expend in each arm (Figure 2A). Y maze The Y-maze is composed by 3 arms with the same size and together form an Y shape maze (Figure 3A). The y-maze task is based on the natural behavior of exploring novel environments, assuming this, in the y-maze, rodents typically prefer to investigate new arm rather than returning to the previous explored arm. Therefore, we account the number of correct alternation sequence, (i.e. A-B- C, A-C-B, B-A-C), but not the incorrect alternation (i.e. A-B-A; A-C-A, C-B-C). The protocol consists in a single session, 10 minutes, where the animal is freely to explore the maze. It is worth noting that in opposite of the previous behavior tasks (Object Recognition and MT maze) the y-maze have only one session, therefore the group 1.5 mg/Kg I.A.E. is absent. Behavior data During all behavior procedures animals were video recorded and the data collected was analyzed by the Ethovision program. We used as measure of object recognition the percentage of exploration of new and familiar objects. To verify if the nicotine doses interfere in the discrimination capacity of the objects we compare the discrimination index (absolute value of (new obj – familiar obj)/( new obj + familiar obj) among groups, the values of In Preparation for Journal of Psychopharmacology discrimination index variate between 0 (when the animal explore equally the objects) until 1 (when the animal explore only one of the objects), meaning that values near to 1 animals discriminate more the objects. To be able to verify the reward component related to nicotine, we verify the object total exploration time as a measure of interest in the objects. Other nicotine related hole is the relation to the motor activity, therefore we measured the total distance traveled during the object recognition task. In the MT maze we used the discrimination index (new arm / (new arm + Arm A + Arm B). Because the MT maze is composed by 3 arms, the discrimination index that determine the equal time exploring the arms is 0.33 (100/3 ≈ 33%), meaning that animals recognize the new arm if they present discrimination index values higher than 0.33. If they present values equal to 0.33 is an indication that they don’t recognize the new arm. Statistics Firstly, we test all group data set in the Shapiro-Wilk normality test to verify if the data set would match normal distribution characteristics. We verified that all data set of percentage of exploration, discrimination index and total distance traveled passed in the normality test, therefore we used parametric student t-test and we also performed ANOVA comparison, and post hoc of Bonferroni, though the groups. We performed ANOVA to compare the new objects percentage values in the NOR test groups control, nicotine 0.5mg/Kg 30min B.E., 1.5mg/Kg 30min B.E. and 1.5mg/Kg I.A.E. For the total exploration time the data set did not pass in the Shapiro-Wilk normality test, therefore we used Kruskal-Wallis test, and post hoc of Dunn's Multiple Comparison Test, to compare different groups. The ANOVA was performed to compare the discrimination values in the MT maze and we also performed a paired t test to the hypothetical value of 0.33 to be able to verify if the animals recognize or not the new arm. We provide mean ± SEM, statistics test value t and F, degree of freedom and p value as descriptive statistics. Results High dose of nicotine shift the object preference Aiming to study what would be interference of the nicotine high dose to investigate the nicotine effect in the object recognition task we use the In Preparation for Journal of Psychopharmacology percentage of object exploration and discrimination index as parameter of object recognition, the total exploration time as parameter of interest in the animal to explore objects and total distance traveled as parameter of locomotor activity. To verify the nicotine effect on the object recognition capacity we compare all percentage exploration groups values using ANOVA, with Bonferroni’s post hoc. The ANOVA indicate difference among groups (F (3,35) = 15.21, p ≈ 0.0001). Using the Bonferroni post hoc we could verify the control group preferred significantly more the new object in comparison to familiar object (60,06 ± 4.9% and 39,94 ± 4.9%, respectively. t = 3.106, p ≈ 0.05, Figure 1B). The group of 0.5 mg/Kg presented even more difference between the exploration of the new object and familiar object (62.17 ± 5.8% and 37.83 ± 5.8% respectively. t = 3.56, p ≈ 0.01, Figure 1B). Surprisingly, the group 1.5 mg/Kg demonstrate a completely shift in the object preference. The difference saw in the new object and familiar object was significantly (23.71 ± 4.2% and 76.29 ± 4.2% respectively. t = 8.11, p ≈ 0.001, Figure 1B), but in the opposite direction saw in the other groups. Therefore, we tried to verify if the result of the nicotine high dose was due to the action during the object memory acquisition, then we submitted other group to the same dose, but injecting IAE. The Bonferroni post hoc revealed no difference between the exploration of new object and familiar object (56.75 ± 3% and 43.25 ± 3% respectively. t = 1.7, p > 0.05, Figure 1B), but we could verify that the shift in the object exploration was not detected. Clearly the high dose of nicotine injected before the encoding phase shift the preference of object exploration to the familiar object. However, apparently the difference of exploration between objects was bigger in this group. Aiming to verify this aspect we performed comparison among the discrimination index of all groups. The ANOVA revealed difference among groups (F (3,35) = 4.88, p = 0.006, Figure 2C), showing that 1.5 mg/Kg has a higher index. The post hoc of Bonferroni multiple comparison test revealed difference between the 1.5 mg/Kg and 1.5 mg/Kg IAE (t = 3.69, p ≈ 0.01, Figure 2C) but revealed no difference in comparison to the other groups (although the unpaired t test shows difference between 1.5 mg/Kg and the Control group t (18) = 2.4, p = 0.027.). As showed previously, the nicotine affects the locomotor activity (Itzhak and Martin, 1999). Therefore, we verify the In Preparation for Journal of Psychopharmacology total distance traveled to see if the nicotine was affecting the locomotor activity during the test session. The ANOVA revealed no difference among groups (F (3,35) = 0.52, p = 0.66, Figure 2D). The nicotine also interfere in the reward system (Tapper et al., 2004), therefore we verify the object total exploration time to see if the nicotine was increasing the interest to explore the objects. The Kruskal-Wallis test revealed difference among groups (K (4) = 7.87, p = 0.048, Figure 2E), but the Dunn's Multiple Comparison Test post hoc did not revealed where was the difference (although the Mann-Whitney test revealed difference between 1.5 mg/Kg and 0.5 mg/Kg (U = 11, p = Figura 1 – High dose of nicotine shifts object preference and increase object discrimination. A) object recognition schematic. First panel shows the training phase with two similar objects. The lower panel shows the test phase 24 hours apart of training phase two objects, one familiar presented previously and one new object. B) Percentage of object exploration. The inset shows the color separated groups. In yellow the control group; the group subject to injection 20 minutes before the training phase to 0.5 mg/Kg of nicotine is represented in green; light blue represents the group subject to 1.5 mg/Kg 20 minutes before the training phase; In dark blue the group subject to nicotine at dose 1.5mg/Kg immediately after exploration of training phase. The colors indicate the groups in the next sections. C) Object discrimination index. D) Total distance traveled during object recognition task. E) Total exploration of objects. The data is presented by mean ± SEM. ANOVA comparisons were performed in B, C and D. Kruskal-Wallis test was performed in E. *p < 0.05, *** p < 0.001. In Preparation for Journal of Psychopharmacology 0.004), 1.5 mg/Kg IAE (U = 10, p = 0.013) but not with Control group (U = 34, p = 0.24). High dose of nicotine impairs the spatial recognition To verify the if the nicotine would have the same effect in spatial memory we used a modified T-Maze applying the same novelty seek preference as used in the previous task. As described before we use a T-maze with spatial cues in the wall and the ground, presenting two arms in the training phase, then during the test phase we present the third arm, thereafter we account the time exploring each arm (Figure 2A). We found that both treatments of 1.5 mg/Kg (B.E. and I.A.E.) lead to the impairment of spatial recognition. The ANOVA comparison among discrimination index of groups revealed no difference (F (3,39) = 1.88, p = 0.15, Figure 2B). Therefore, we compared the discrimination index with the theoretical mean value of 0.33 (described in the method section) to be able to verify if the animals expend more time in the new arm than the chance to equally explore the three arms. Only the Control group (t(12) = 2.37, p = 0.034) and the 0.5 mg/Kg group (t(9) = 2.25, p = 0.048) revealed difference in comparison to 0.33. The group 1.5 mg/Kg (t(9) = 0.64, p = 0.53) and 1.5 mg/Kg IAE (t(6) = 0.02, p = 0.98) revealed no difference, indicating that the high dose of nicotine impairs the spatial recognition (Figure 2B). Accordingly, we found when we compare the percentage of arm exploration that within groups, only control group had the percentage of exploration in the new arm higher than that found in the mean of the two other familiar arms (39.75 ± 2.8% and 30.13 ± 1.4%, new arm and familiar arms, respectively, t = 2.26, df = 12, p = 0.043) but the 0.5 mg/Kg treatment revealed a strong trend to new arm higher percentage of exploration (39.71 ± 2.9% and 30.15 ± 1.5%, new arm and familiar arms, respectively, t = 2.13, df = 9, p = 0.06). Both 1.5 mg/Kg groups exhibit no difference between % of exploration between the new and familiar arms, as we could verify in the paired comparison between new arm and the mean of familiar arm of 1.5 mg/Kg B.E. group (31.75 ± 2.4% and 34.13 ± 1.2%, new arm and familiar arms, respectively, t = 0.77, df = 9, p = 0.45) and 1.5 mg/Kg I.A.E. (32.87 ± 5.2% and 33.56 ± 2.6%, new arm and familiar arms, respectively, t = 0.087, df = 6, p = 0.93).. In Preparation for Journal of Psychopharmacology Figure 2 – High dose of nicotine impairs spatial recognition in the Modified T-maze. A) MT Maze schematic task, the three arms are identified with different geometric shapes and contrasts in the end of the arm, and also with different texture in the flor as cues. First panel shows the training phase with two different arms presented (open arms) and one arm not allowed to explore (closed arm). The lower panel shows the test phase, 24 hours apart of training phase, with three different arms, two familiar presented previously and one new arm. B) Arm Discrimination index. The inset shows the color labels of the groups. The dashed line represents the 0.33 value (if animals explore the arms equally). The data is presented by mean ± SEM. *comparison of group discrimination index against 0.33, p < 0.05. 3.3 – High dose of nicotine impairs working memory and locomotor activity Assuming that nicotine affect working memory performance, either to enhancing or decreasing performance (Levin and Torry, 1996; Rezvani and Levin, 2001), we investigate the usage of high dose of nicotine in the Y-maze, as a tool to evaluate working memory. Animals were exposed to the Y-maze, composed by 3 arms with same size (Figure 3A), for 10 minutes and the alternation sequences were accounted. We verified that both nicotine acute treatments (0.5 and 1.5 mg/Kg) had lower number of correct sequence in the Y maze, the ANOVA comparison among control (41.36 ± 2.8), 0.5 mg/Kg (22 ± In Preparation for Journal of Psychopharmacology 2.2) and 1.5 mg/Kg (16 ± 2.3) revealed decrease in the number of correct sequence for both treated groups (F(2,27) = 28.53, p ≈ 0.0001, Figure 3B). We also verified if the locomotor activity was altered by the nicotine effect, the ANOVA comparison among control (3.41 ± 0.20), 0.5 mg/Kg (1.60 ± 0.15) and 1.5 mg/Kg (1.12 ± 0.18) revealed decrease in the total distance traveled for both treated groups (F(2,27) = 41.58, p ≈ 0.0001, Figure 3C). Next we verified the relation between the correct alternation sequence and total distance traveled applying the Person correlation between those metrics. The Person correlation revealed a positive correlation between groups (r = 0.83 and p ≈ 0.0001, Figure 3D). Figure 3 – The decrease of correct alternation sequence because of high nicotine injection correlates with the decrease of locomotor activity in the Y-maze working memory task. A) Y- In Preparation for Journal of Psychopharmacology Maze schematic task, the maze in composed by three arms with same size. B) Correct alternation sequence. Panel show the result of ANOVA comparisons among the number of correct alternation sequence in the control and both doses of nicotine, 0.5 and 1.5 mg/Kg. C) Total distance traveled. Panel show the result of ANOVA comparisons among the mean of total distance traveled with the same groups of above. D) Correlation between correct alternation sequence and total distance traveled. *** p < 0.001. 4.0 – Discussion Aiming to investigate the interference of high doses of nicotine in the hippocampal related types of memory, object and spatial recognition, we submitted animals to two different doses (0.5 mg/Kg and 1.5 mg/Kg) in different time points (before and after training session). Both behavioral tasks used here were divided in two different sessions, training and test session. Regarding NOR task, during the training session animals were allowed to explore two objects in the NOR task, 24 hours later one object previous explored was replaced by a new object and other was maintained in the arena, then animals were allowed to explore object for 10 minutes. Using the same principle of recognition of novelty, we used the MT task to evaluate the spatial recognition capacity in mice under high dose nicotine effect. Two arms identified with geometric clues and different ground texture were presented in the training session, 24 hours later a third arm was presented. We found that nicotine high dose caused a shift on the object preference during the test session, while resulted in impairment on spatial recognition in the MT task. Nicotine is one of the most widely abused drug worldwide (Benowitz, 2008; Kawazoe and Shinkai, 2015; Picciotto, 2003). The direct consume, as well the indirect exposure, of nicotine trough smoked Tabaco is linked to several diseases (Law et al., 1997; Oberg et al., 2011). Apparently nicotine has an key role in the dependence development in the smoke consumer because of action on the reward system (Benowitz, 2008; Kawazoe and Shinkai, 2015). Meanwhile, the nicotine is not only related to the reward system, but has a very spread action on the brain (Levin, 2013) and it roles are linked with different subtypes of receptors (Levin, 2013; Rezvani and Levin, 2001) and different subareas in the brain, including limbic system (Berg et al., 2014; Pidoplichko et al., 2013), thalamus (Cannady et al., 2009), and cortical areas In Preparation for Journal of Psychopharmacology (Levin, 2013; Wallace and Bertrand, 2013). The molecular action of nicotine is also very diverse, it been related to both pre synaptic and post synaptic mechanism of action (Berg and Conroy, 2002), also are linked to modulatory events of synaptic transmission (Dajas- Bailador and Wonnacott, 2004), as like long term potentiation (LTP) events in the hippocampus (Alzoubi et al., 2007; Matsuyama et al., 2000), calcium permeability change (Dajas-Bailador and Wonnacott, 2004) and gene expression (Berg and Conroy, 2002). Despite the negative aspect found with the link between nicotine and the drug seek behavior, the major of works appoint increase in the performance of several hippocampal dependent task under effect of moderate doses (Arendash et al., 1995; Gould and Lommock, 2003; Puma et al., 1999; Rezvani and Levin, 2001; Tian et al., 2015). Showing the participation of nicotine acetylcholine network in diverse aspects of memory formation process, to the encoding (Aren- et al., 1995; Puma et al., 1999; Socci et al., 1995; Sultana et al., 2012), passing by the consolidation (Puma et al., 1999; Rezvani and Levin, 2001), reconsolidation (Tian et al., 2015) and retrieval (Cp et al., 1992; Martí Barros et al., 2004). However, the all spectrum of nicotine doses should be investigated to try to mimetic all spectrum of nicotine consume behavior. Therefore, we investigate what was the implication of nicotine high doses in the object and spatial recognition memory. Assuming that nicotine doses between 0.1 to 0.4 mg/Kg were related to the increase of object discrimination memory in the NOR task (Puma et al., 1999; Tian et al., 2015), we tried to verify if the high doses 0.5 mg/Kg, slight higher than doses above, and 1.5 mg/Kg would replicate the same result pattern found in the previous works. First in the NOR task, we verified that our control group, as well the 0.5 mg/Kg group exhibit the pattern to explore more the novel object in the test session, although they did not differ between each other, the 0.5 mg/Kg group exhibit a bigger difference between the exploration of the novel and familiar object (Figure 2), despite that they revealed no difference in the discrimination ratio. Surprisingly, the injection of 1.5 mg/Kg B.E. resulted in the shift of object preference in the NOR task. Animals of this group exhibit lower percentage of new object exploration in comparison to the other groups, but higher discrimination index in comparison to the other groups. We In Preparation for Journal of Psychopharmacology hypothesized that the nicotine was acting in the encoding phase pairing the pleasure of the nicotine with the objects of training phase, adding the reward system to the formation of the memory trace. Aiming to investigate this, we submitted animals to the injection of 1.5 mg/Kg I.A.E. and we verified that animals reversed the preference to the novel object. Although, as showed with place preference task (Grabus et al., 2006; Vastola et al., 2002; Walters et al., 2006), it would be expected that animals that associate pleasure with the object, would spent more time exploring objects, but the comparison with total time exploration revealed that they had the similar time of exploration found in the control group and even lower than the 1.5 mg/Kg I.A.E. group (Figure 2). Nonetheless the participation of reward system in promoting the shift in object explorations seems to be the most probable in this case. In the spatial recognition task, using MT maze, animals of control and 0.5mg/Kg groups exhibit similar recognition capacity found in the NOR task, preferring the novel arm instead the familiar arms. The recognition index comparison revealed that despite no difference among groups was found, animals of control and 0.5 mg/Kg group explored more the new arm than chance (0.33) revealing that they preferred the new arm. But both 1.5 mg/Kg treated groups exhibit no difference in comparison to 0.33. The same trend could be verified in the comparisons within groups that revealed difference, in the control group, between the percentage of exploration in the new arm and the percentage of exploration mean of familiar arm, as well as the trend of 0.5 mg/Kg group (p = 0.06), but not in the groups treated with 1.3 mg/Kg. More studies most be realized to investigate why high doses of nicotine provoked such shift in the object preference, why this not happened with the injection after exploration, why was only found in the object recognition, what is the molecular cascade involved, there is involvement with the reward system? Figures Legends Figure 1 – High dose of nicotine shifts object preference and increase object discrimination. A) object recognition schematic. First panel shows the training phase with two similar objects. The lower panel shows the test phase 24 hours apart of training phase two objects, one familiar presented previously and one new object. B) Percentage of object In Preparation for Journal of Psychopharmacology exploration. The inset shows the color separated groups. In yellow the control group; the group subject to injection 20 minutes before the training phase to 0.5 mg/Kg of nicotine is represented in green; light blue represents the group subject to 1.5 mg/Kg 20 minutes before the training phase; In dark blue the group subject to nicotine at dose 1.5mg/Kg immediately after exploration of training phase. The colors indicate the groups in the next sections. C) Object discrimination index. D) Total distance traveled during object recognition task. E) Total exploration of objects. The data is presented by mean ± SEM. ANOVA comparisons were performed in B, C and D. Kruskal-Wallis test was performed in E. *p < 0.05, *** p < 0.001. Figure 2 – High dose of nicotine impairs spatial recognition in the Modified T-maze. A) MT Maze schematic task, the three arms are identified with different geometric shapes and contrasts in the end of the arm, and also with different texture in the flor as cues. First panel shows the training phase with two different arms presented (open arms) and one arm not allowed to explore (closed arm). The lower panel shows the test phase, 24 hours apart of training phase, with three different arms, two familiar presented previously and one new arm. B) Arm Discrimination index. The inset shows the color labels of the groups. The dashed line represents the 0.33 value (if animals explore the arms equally). C) Percentage of exploration. Figure shows the paired comparisons within groups of the new arms percentage of exploration against the mean of familiar arms percentage of exploration. The data is presented by mean ± SEM. *comparison of group discrimination index against 0.33, p < 0.05. Figure 3 – High dose of nicotine impairs working memory in the Y- maze. A) Y-Maze schematic task, the maze in composed by three arms with same size. B) Correct alternation sequence. Panel show the result of ANOVA comparisons among the number of correct alternation sequence in the control and both doses of nicotine, 0.5 and 1.5 mg/Kg. The inset shows the color labels of the groups. 5.0 – Reference Alzoubi K h., Aleisa A m. and Alkadhi K a. (2007) Nicotine prevents disruption of the late phase LTP- related molecular cascade in adult-onset hypothyroidism. Hippocampus 17(8): 654–664. Aren- GW, Sanberg PR and Sengstock GJ (1995) Nicotine enhances the learning and memory of aged rats. Pharmacology Biochemistry and Behavior 52(3): 517–523. Arendash GW, Sengstock GJ, Sanberg PR, et al. (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Research 674(2): 252–259. Benowitz NL (2008) Neurobiology of Nicotine Addiction: Implications for Smoking Cessation Treatment. The American Journal of Medicine, Update on Smoking Cessation Interventions for the Primary Care Physician 121(4, Supplement): S3–S10. In Preparation for Journal of Psychopharmacology Berg DK and Conroy WG (2002) Nicotinic α7 receptors: Synaptic options and downstream signaling in neurons. Journal of Neurobiology 53(4): 512–523. Berg SA, Sentir AM, Bell RL, et al. (2014) Nicotine effects in adolescence and adulthood on cognition and α4β2-nicotinic receptors in the neonatal ventral hippocampal lesion rat model of schizophrenia. Psychopharmacology 232(10): 1681–1692. Cannady R, Weir R, Wee B, et al. (2009) Nicotinic antagonist effects in the mediodorsal thalamic nucleus: regional heterogeneity of nicotinic receptor involvement in cognitive function. Biochemical Pharmacology 78(7): 788–794. Cp F, Ga de E and Cm B (1992) Modulation of memory retrieval by pre-testing vasopressin: involvement of a central cholinergic nicotinic mechanism. Methods and findings in experimental and clinical pharmacology 14(8): 607–613. Dajas-Bailador F and Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends in Pharmacological Sciences 25(6): 317–324. Decker MW, Majchrzak MJ and Anderson DJ (1992) Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Research 572(1– 2): 281–285. Gould TJ and Lommock JA (2003) Nicotine Enhances Contextual Fear Conditioning and Ameliorates Ethanol-Induced Deficits in Contextual Fear Conditioning. Behavioral Neuroscience 117(6): 1276– 1282. Grabus SD, Martin BR, Brown SE, et al. (2006) Nicotine place preference in the mouse: influences of prior handling, dose and strain and attenuation by nicotinic receptor antagonists. Psychopharmacology 184(3–4): 456–463. Itzhak Y and Martin JL (1999) Effects of cocaine, nicotine, dizocipline and alcohol on mice locomotor activity: cocaine-alcohol cross- sensitization involves upregulation of striatal dopamine transporter binding sites. Brain Research 818(2): 204–211. Kawazoe S and Shinkai T (2015) [Nicotine dependence]. Nihon Rinsho. Japanese Journal of Clinical Medicine 73(9): 1516– 1521. Kutlu MG and Gould TJ (2015) Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders. Biochemical Pharmacology 97(4): 498–511. Law MR, Morris JK and Wald NJ (1997) Environmental tobacco smoke exposure and ischaemic heart disease: an evaluation of the evidence. BMJ 315(7114): 973–980. Levin ED (2002) Nicotinic receptor subtypes and cognitive function. Journal of Neurobiology 53(4): 633–640. In Preparation for Journal of Psychopharmacology Levin ED (2013) Complex relationships of nicotinic receptor actions and cognitive functions. Biochemical Pharmacology, Nicotinic Acetylcholine Receptors as Therapeutic Targets: Emerging Frontiers in Basic Research and Clinical Science (Satellite to the 2013 Meeting of the Society for Neuroscience) 86(8): 1145– 1152. Levin ED and Torry D (1996) Acute and chronic nicotine effects on working memory in aged rats. Psychopharmacology 123(1): 88–97. Martí Barros D, Ramirez MR, dos Reis EA, et al. (2004) Participation of hippocampal nicotinic receptors in acquisition, consolidation and retrieval of memory for one trial inhibitory avoidance in rats. Neuroscience 126(3): 651–656. Matsuyama S, Matsumoto A, Enomoto T, et al. (2000) Activation of nicotinic acetylcholine receptors induces long-term potentiation in vivo in the intact mouse dentate gyrus. European Journal of Neuroscience 12(10): 3741– 3747. Morrison CF and Armitage AK (1967) Effects of Nicotine Upon the Free Operant Behavior of Rats and Spontaneous Motor Activity of Mice. Annals of the New York Academy of Sciences 142(1): 268–276. Oberg M, Jaakkola MS, Woodward A, et al. (2011) Worldwide burden of disease from exposure to second-hand smoke: a retrospective analysis of data from 192 countries. Lancet (London, England) 377(9760): 139–146. Picciotto MR (2003) Nicotine as a modulator of behavior: beyond the inverted U. Trends in Pharmacological Sciences 24(9): 493–499. Pidoplichko VI, Prager EM, Aroniadou- Anderjaska V, et al. (2013) α7- Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability. Journal of Neurophysiology 110(10): 2358–2369. Puma C, Deschaux O, Molimard R, et al. (1999) Nicotine improves memory in an object recognition task in rats. European Neuropsychopharmacology: The Journal of the European College of Neuropsychopharmacology 9(4): 323–327. Rezvani AH and Levin ED (2001) Cognitive effects of nicotine. Biological Psychiatry, Nicotine Mechanisms in Alzheimer’s Disease 49(3): 258–267. Rezvani AH and Levin ED (2004) Adolescent and adult rats respond differently to nicotine and alcohol: motor activity and body temperature. International Journal of Developmental Neuroscience, Developmental Aspects of Addiction 22(5–6): 349–354. Socci DJ, Sanberg PR and Arendash GW (1995) Nicotine enhances morris water maze performance of young and aged rats. Neurobiology of Aging 16(5): 857–860. Sultana R, Ameno K, Jamal M, et al. (2012) Low-dose nicotine In Preparation for Journal of Psychopharmacology facilitates spatial memory in ApoE-knockout mice in the radial arm maze. Neurological Sciences 34(6): 891–897. Tapper AR, McKinney SL, Nashmi R, et al. (2004) Nicotine Activation of α4* Receptors: Sufficient for Reward, Tolerance, and Sensitization. Science 306(5698): 1029–1032. Tian S, Pan S and You Y (2015) Nicotine enhances the reconsolidation of novel object recognition memory in rats. Pharmacology, Biochemistry, and Behavior 129: 14–18. Vastola BJ, Douglas LA, Varlinskaya EI, et al. (2002) Nicotine- induced conditioned place preference in adolescent and adult rats. Physiology & Behavior 77(1): 107–114. Wallace TL and Bertrand D (2013) Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochemical Pharmacology 85(12): 1713–1720. Walters CL, Brown S, Changeux J-P, et al. (2006) The β2 but not α7 subunit of the nicotinic acetylcholine receptor is required for nicotine- conditioned place preference in mice. Psychopharmacology 184(3–4): 339–344.