Freitas, Júlio Cezar de OliveiraVentura, Rafael Augusto2016-05-122016-05-122015-07-27VENTURA, Rafael Augusto. Avaliação da degradação de pastas de cimento aditivadas com sílica, em ambientes de alta concentração de dióxido de carbono. 2015. 54f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2015.https://repositorio.ufrn.br/jspui/handle/123456789/20437In oil well cementation casing is very important because in addition to ensuring the safety of the well so that it does not collapse, it also promotes the isolation of the rock formations so that there is communication between the adjacente fluids. Thus, it is important that the cement matrix has structural and chemical stability. Carbon dioxide has been an agent that this stability is compromised. In particular oil fields, it can be found in large quantities and in ideal conditions for carbonation and subsequent degradation of the cement matrix, in order to compromise the hydraulic seal between the formations, and may also form preferential paths of fluid to exit the formation the annular space of the oil well. The silica flour has been used frequently in wells that are subjected to high temperatures, be the case in very deep or those which are injected steam as an alternative for enhanced recovery of heavy oil reservoirs. Based on the above, this study aims to evaluate the influence of environments rich in CO2 in the chemical stability of the cement matrix containing silica flour. Pastes containing silica flour and cured for 30 days under temperature of 65°C and pressure of 3000psi (20,7MPa) were prepared. After curing, some of the samples were analyzed chemically and part subjected to CO2 atmosphere in an autoclave for 30 and 60 days and analyzed after this carbonation process. The samples were characterized by Xray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy by Fourier transform (FTIR) and thermogravimetry (TG). The cement pastes cured for 60 days showed the greater carbonated area. The samples cured in saturated CO2 environment suffered greater carbonation compared to samples cured in supercritical environment, which is directly related to CO2 concentration in the environment. Infrared spectra showed characteristic bands of carbonation products cement matrix, with stretch carbonate group at a wavelength of 875cm-1, which is characteristic of calcite. The images obtained by SEM it can be observed the presence of crystal of aragonite (CaCO3). The effect of carbonation in oil wells can greatly affect the microstructure of the cement matrix may compromise the hydraulic seal the well.porAcesso AbertoCimentoPoços de petróleoSílica flourDióxido de carbonoCarbonataçãoAvaliação da degradação de pastas de cimento aditivadas com sílica, em ambientes de alta concentração de dióxido de carbonomasterThesisCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA