Gomes, Uilame UmbelinoMashhadikarimi, Meysam2017-08-102017-08-102017-07-10MASHHADIKARIMI, Meysam. Obtaining triple layer polycrystalline diamond compact by HPHT method. 2017. 127f. Tese (Doutorado em Ciência e Engenharia de Materiais) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2017.https://repositorio.ufrn.br/jspui/handle/123456789/23749The primary objective of this thesis was to obtain a triple layer polycrystalline diamond compact (PDC) containing a polycrystalline diamond as top layer, a WC 10 wt% Co substrate, and a WC 20 wt% Nb/Ni interface to bond these two layers via high pressure high temperature (HPHT) sintering. To achieve this objective, the project has been done in three different stages. The first stage was producing diamond sintered body with a suitable binder, and finding the best sintering parameters. The second stage of project was done to study the WC 10 wt% Co hardmetal substrate at different sintering conditions, and the third and last stage was done according to the results achieved from previous stages to obtain a triple layer PDC. At the first stage, four different binders were used to sinter diamond under HPHT condition. Binders were Nb/Fe, Nb/Co, Nb/Ni and pure Nb and 10 wt% binder was used. Sintering was carried out at different temperature and under different pressure and holding time. Obtained samples were studies according to relative density, microstructure, and hardness to find the optimum binder and sintering parameters. Studies at this stage showed that Nb is the best binder and T=1750 °C, 7.7 GPa with holding time more than 6 minutes are the best sintering parameters. At the second stage a powder mixture of WC 10 wt% Co was sintered via HPHT at 1500, 1600, 1700, 1800, and 1900°C under 7.7 GPa pressure for 2 and 3 minutes. Microstructural/structural analyses were performed by SEM/EDS and XRD and hardness, Indentation Fracture Toughness (ITF) and compression tests were also carried out to understand effects of different sintering parameters. At this stage, it was found that full density can achieved for high sintering temperature along with abnormal grain growth. High hardness was observed in range starting from 1250 up to 1650 HV. At the third stage, to obtain PDC, a thin layer of WC 20 wt% Nb/Ni was used as an interface between top layer of diamond with pure Nb binder and WC 10 wt% Co substrate. Sintering was done via HPHT method at 1750°C under 7.7 GPa of pressure. Two different holding time of 6 (three successive 2 minutes) and 9 (three successive 3 minutes) were used. Hardness was measured and microstructural/structural studies were done via SEM/EDS. The overall results showed that this new kind of PDC can successfully produce using a new pure Niobium binder for diamond without any graphitization. It was also found that using an interface having the resemblance to both substrate and sintered diamond body caused good adhesion between layers that can results in enhanced performance and improving durability of PDC.Acesso AbertoCompacto de diamante policristalinoPDCAlta pressão e alta temperaturaDiamanteInterfaceSubstrato de WC/CoObtaining triple layer polycrystalline diamond compact by HPHT methoddoctoralThesisCNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA