Matamoros, Efrain PantaleonCabral, Marco Antonio Leandro2017-03-292017-03-292017-01-17CABRAL, Marco Antonio Leandro. Classificação automatizada de falhas tribológicas de sistemas alternativos com o uso de redes neurais artificiais não supervisionadas. 2017. 140f. Tese (Doutorado em Engenharia Mecânica) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2017.https://repositorio.ufrn.br/jspui/handle/123456789/22518Preventing, anticipating, avoiding failures in electromechanical systems are demands that have challenged researchers and engineering professionals for decades. Electromechanical systems present tribological processes that result in fatigue of materials and consequent loss of efficiency or even usefulness of machines and equipment. Several techniques are used in an attempt to minimize the inherent losses of these systems through the analysis of signals from the equipment studied and the consequences of these wastes at unexpected moments, such as an aircraft in flight or a drilling rig in an oil well. Among them we can mention vibration analysis, acoustic pressure measurement, temperature monitoring, particle analysis of lubricating oil etc. However, electromechanical systems are complex and may exhibit unexpected behavior. Reliability-centric maintenance requires ever faster, more efficient and robust technological resources to ensure its efficiency and effectiveness. Failure Mode Effect Analysis (FMEA) techniques in equipment are used to increase the reliability of preventive and predictive maintenance system. Artificial neural networks (ANNs) are computational tools that find applicability in several segments of the research and signal analysis, where it is necessary to handle large amounts of data, associating statistics and computation in the optimization of dynamic processes and a high degree of reliability. They are artificial intelligence systems that have the ability to learn, are robust to failures, and can deliver realtime results. This work aims at the use of artificial neural networks to treat signals from the monitoring of tribological parameters through the use of a test bench to simulate contact failures in an air compressor in order to create an automated fault detection and classification system, unsupervised, with the use of self-organized maps, or SOM, applied to the preventive and predictive maintenance of electromechanical processes.Acesso AbertoTribologiaDesgasteSistemas eletromecânicosManutençãoAnálise de sinaisRedes neurais artificiaisMapas de KohonenSegmentação de imagensFMEAConfiabilidadeClassificação automatizada de falhas tribológicas de sistemas alternativos com o uso de redes neurais artificiais não supervisionadasdoctoralThesisCNPQ::ENGENHARIAS::ENGENHARIA MECANICA