Menezes, Fabricio GavaNeri, Jannyely Moreira2017-12-052017-12-052017-07-21NERI, Jannyely Moreira. Derivados quinoxalínicos substituídos por aminoalcoóis com potencial atividade anticâncer e capacidade de estabilização de nanopartículas de prata. 2017. 100f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2017.https://repositorio.ufrn.br/jspui/handle/123456789/24415The study of nitrogen heterocyclic compounds comprises one of the most interesting branch of the organic chemistry. Among several nitrogen heterocycles reported in literature, quinoxaline derivatives have been attracted great attention due their relevant applications, notably in biological and technological fields. There are several synthetic protocols reported in literature for the synthesis of quinoxaline derivatives, in which calls attention the use of compound 2,3-dichloroquinoxaline (1) as synthetic precursor. The present work focus on the synthesis of relevant quinoxaline from compound 1, with the results being divided in two main parts. Many of the presented reactions lead to quinoxaline derivatives with relevance in several areas, especially due their relevant activities against several pathologies. The second part of the work is focused in the obtainment of quinoxaline derivatives from reactions of building block 1 with aminoalcohol, besides other synthetic transformations. They were obtained interesting quinoxaline derivatives, such as compounds 2,3-diethanolaminoquinoxaline (2), 2-(2,3-dihydro-1-oxa-4,9,10-triaza-anthracen-4-yl)-ethanol (3), from the double substitution by the nucleophilic species, compound 3-[bis-(2-hydroxy-ethyl)-amino]-1H-quinoxalin-2-one (4) originated from the hydrolysis of compound 3, among others. An important factor is that while ethanolamine reacts via double nucleophilic N-attack, diethanolamine reacts via intramolecular cyclization process through N- and O-attacks. All products were adequately characterized by 1H and 13C nuclear magnetic resonance spectroscopies. Compounds 2 and 3 had presented interesting activity against colon rectal HT29 cancer cells, in which the activity may be associated to the inhibition of enzyme PI3Kα. Both quinoxalines significantly affected cell viability depending on the lower concentration (3.125 μg / mL), it is possible to see that the growth was delayed. This could also be verified by means of a docking study of the compounds in the active site of the enzyme PI3Kα, which showed that the interaction occurs mainly through hydrogen bonds between the hydroxyls of the ligands and the amino acids valine (Val851) and serine ( Ser854), known to be crucial in this drug-induced inhibitory process. Lastly, the ability of compound 2 as a silver nanoparticle reducing agent (NanoAg), using a factorial design 22, and its performance as a stabilizer in its minimum achieved concentration (0.2 mmol / l) using the glycerol / NaOH, in which derivative 2 was able to stabilize (NanoAg) in basic and neutral (physiological) medium. The results showed that quinoxaline has silver (I) reduction capacity in basic medium, but in slower kinetics. And spectroscopy analyzes in the ultraviolet / visible (UV-Vis) region indicated a formation of spherical NanoAg, and the bandwidth width calculation indicated the formation of more uniform nanoparticles for these assays. Therefore, in both tests the performance of compound 2 against the formation of NanoAg leaves the possibility of future applications of nanostructured systems for cancer therapy.Acesso AbertoQuinoxalina2,3-dicloroquinoxalinaSíntese orgânicaFuncionalizaçãoAtividade anticâncerNanopartículas de prataDerivados quinoxalínicos substituídos por aminoalcoóis com potencial atividade anticâncer e capacidade de estabilização de nanopartículas de pratamasterThesisCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA