Costa, Eliardo Guimarães daGuanabara, Lucas Matheus Augusto Olimpio2024-04-092024-04-092024-03-12GUANABARA, Lucas Matheus Augusto Olimpio. Integração numérica para funções compostas em domínios multidimensionais através de uma quadratura de Lebesgue. Orientador: Dr. Eliardo Guimarães da Costa. 2024. 68f. Dissertação (Mestrado em Matemática Aplicada e Estatística) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/58069The present dissertation aims to introduce a numerical integration method, whose application will run on domains containing a high number of dimensions. In this regard, the developed methodology seeks to present a Lebesgue quadrature, which is based on partitions of the image of a function, where each weight is associated with a value of the function defined in its image. For Riemann-Integrable functions, we demonstrate the existence of a Lebesgue quadrature and show how to construct quadratures of this type for composite functions, in which the method exhibited good efficiency, surpassing quasi-Monte Carlo methods. The method involves arbitrarily approximating the value of a given finite sum using information generated by a histogram, to demonstrate that the numerical integration of a composite function, whose argument’s density has been previously determined, can be evaluated very easily.Acesso AbertoIntegração numéricaMétodos quase-Monte CarloQuadratura de LebesgueIntegração numérica para funções compostas em domínios multidimensionais através de uma quadratura de LebesguemasterThesisCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA