Fulco, Umberto LainoSilva, Marcelo Brito da2015-03-032015-02-252015-03-032010-08-12SILVA, Marcelo Brito da. Propriedades críticas do processo epidêmico difusivo com interação de Lévy. 2010. 95 f. Dissertação (Mestrado em Física da Matéria Condensada; Astrofísica e Cosmologia; Física da Ionosfera) - Universidade Federal do Rio Grande do Norte, Natal, 2010.https://repositorio.ufrn.br/jspui/handle/123456789/18588The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DBapplication/pdfAcesso AbertoProcesso epidêmico difusivoInteração de LévyTransição de fase para estado absorventeEscala de tamanho finitoDiffusive epidemic processLévy interactionAbsorbing-state phase transitionFinite size scallingPropriedades críticas do processo epidêmico difusivo com interação de LévymasterThesisCNPQ::CIENCIAS EXATAS E DA TERRA::FISICA