Shirlle Katia da Silva NunesMedeiros, Anthonyelle Silva de2025-07-152025-07-152025-07-01ABIEF – ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA DE EMBALAGENS FLEXÍVEIS.Indústria brasileira de embalagens plásticas flexíveis mantém crescimento sustentável no 1º semestrede 2024. São Paulo: ABIEF, ago. 2024. Disponível em:https:/www.abief.org.br/press-release/industria-brasileira-de-embalagens-plasticas-flexiveis-mantemcrescimento-sustentavel-no-1o-semestre-de-2024-2/.BORRELLE, S. B. et al. Predicted growth in plastic waste exceeds eforts to mitigate plasticpollution. Science, v. 369, n. 6510, p. 1515–1518, 2020. https:/doi.org/10.1126/science.aba3656.Disponível em:CHEN, B.; CUI, J.; DONG, W.; YAN, C. Efects of biodegradable plastic film on carbon footprint ofcrop production. Agriculture, https:/doi.org/10.3390/agriculture13040816.13(4), 816, 2023. Disponível em:COLTRO, L. et al. Migration of phthalates and 2,6‑diisopropylnaphthalene from cellulose foodpackaging. Polímeros, v. 31, n. 2, e2021017, 2021. https:/doi.org/10.1590/0104-1428.02321.Disponível em:COTTOM, J. W.; COOK, E.; VELIS, C. A. A local-to-global emissions inventory of macroplasticpollution. Nature, 633, p. https:/doi.org/10.1038/s41586-024-07758-6.2024. 101–108, Disponível em:DONLAN, R. M.; COSTERTON, J. W. Biofilms: survival mechanisms of clinically relevantmicroorganisms. Clinical Microbiology Reviews, v. 15, n. 2, p. 167–193, 2002. Disponível em:https:/doi.org/10.1128/CMR.15.2.167-193.2002.FLEMMING, H. C.; WINGENDER, J. The biofilm matrix. Nature Reviews Microbiology, v. 8, n. 9,p. 623–633, 2010. Disponível em: https:/doi.org/10.1038/nrmicro2415.FREITAS, A. R.; CARVALHO, C. W. P.; ZAGATTO, J. A. B.; GROSSMANN, M. V. E.Biodegradable films based on oxidized and native corn starch. Food Science and Technology, v. 37, n.2, p. 271–276, 2017. Disponível em: https:/doi.org/10.1590/1678-457x.06416.HALL-STOODLEY, L.; COSTERTON, J. W.; STOODLEY, P. Bacterial biofilms: from the naturalenvironment to infectious diseases. Nature Reviews Microbiology, v. 2, n. 2, p. 95–108, 2004.Disponível em: https:/doi.org/10.1038/nrmicro821.HUNTERLAB. CIE Lab Color Scale*. Applications Note 8. Hunter Associates Laboratory, 2008.29KUMAR, S. et al. Recent advances in biodegradable films for sustainable packaging applications: Areview. Journal of Environmental Chemical Engineering, v. 10, n. 6, p. 108682, 2022. Disponível em:https:/doi.org/10.1016/j.jece.2022.108682.LIU, Q. et al. Uptake and accumulation of microplastics in edible plants: A critical review. Science ofthe Total 2022. 820, 153103, Environment, v. p. https:/doi.org/10.1016/j.scitotenv.2022.153103.Disponível em:MADANI, M.; RASHEDINIA, M. Bisphenol A migration from food‑contact materials and itstoxicological efects: A review. Nutrition & Food Science, v. 54, n. 5, p. 984–996, 2024. Disponívelem: https:/doi.org/10.1108/NFS-03-2024-0105.MALI, S.; GROSSMANN, M. V. E.; GARCIA, M. A.; MARTINO, M. N.; ZARITZKY, N. E.Efects of controlled storage on thermal, mechanical and barrier properties of plasticized films fromdiferent starch sources. Polímeros, v. 13, n. 4, p. https:/doi.org/10.1590/S0104-1428201300500001.291–297, 2013. Disponível em:MARTINS, V. F. R.; PINTADO, M. E.; MORAIS, R. M. S. C.; MORAIS, A. M. M. B. Recenthighlights in sustainable bio-based edible films and coatings for fruit and vegetable applications.Foods, 13(2), 318, 2024. Disponível em: https:/doi.org/10.3390/foods13020318.MUNDO NOVO. Biofilmes comestíveis: proteção que vem da fécula. Blog Mundo Novo, 2021.Disponível em: https:/mundonovo.ind.br/post/5/biofilmes-comestiveis-protecao-que-vem-da-fecula.PIRES, J.; ACOSTA, L. Representação esquemática do ângulo de contato por gota séssil. PasseiDireto, 2020. Disponível em: https:/www.passeidireto.com/arquivo/59601797/relatorio-gota-sessil.PNUMA – PROGRAMA DAS NAÇÕES UNIDAS PARA O MEIO AMBIENTE. Beat PlasticPollution: Global Report - World Environment Day 2023. Nairobi: UNEP, 2023.ROCHESTER, J. R. Bisphenol A and human health: A review of the literature. ReproductiveToxicology, v. 42, p. 132–155, 2013. Disponível em: https:/doi.org/10.1016/j.reprotox.2013.08.008.ROCHMAN, C.; BROWNE, M.; HALPERN, B. et al. Classificar resíduos plásticos comoperigosos. Nature, v. 494, p. 169–171, 2013. Disponível em: https:/doi.org/10.1038/494169a.RUDEL, R. A. et al. Food packaging and bisphenol A and bis(2-ethylhexyl) phthalate exposure:findings from a dietary intervention. Environmental Health Perspectives, v. 119, n. 7, p. 914–920,2011. Disponível em: https:/doi.org/10.1289/ehp.1003170.SANTOS, R. F.; OLIVEIRA, M. L.; PEREIRA, T. S. Adoção de filmes biodegradáveis e os30Objetivos de Desenvolvimento Sustentável: um estudo sobre alternativas sustentáveis na agroindústria.Journal of Cleaner Production, v. 384, p. 135610, 2023. https:/doi.org/10.1016/j.jclepro.2023.135610.Disponível em:SILVA, A. O.; FAKHOURY, F. M.; FONSECA, G. G. Development of highly biodegradable andsustainable films based on pequi pulp. Biomass Conversion and Biorefinery, v. 14, p. 10161–10176,2024. Disponível em: https:/doi.org/10.1007/s13399-022-03047-2.SILVA, D. W. et al. Developing a biodegradable film for packaging with lignocellulosic materialsfrom the Amazonian biodiversity. Polymers, v. https:/doi.org/10.3390/polym15173646.15, n. 17, 3646, 2023. Disponível em:SOYDAL, U.; AHMETLI, G.; YILDIRIM, M.; BUL, M. M. Production and characterization ofnovel biodegradable films using fruit industrial waste and aloe vera gel. Polymer Bulletin, v. 81, p.13227–13252, 2024. Disponível em: https:/doi.org/10.1007/s00289-024-05354-2.TREVISAN, D. L. Medidas de molhabilidade de superfícies e determinação da energia livre desuperfície. ResearchGate, 2011. Disponível em:https:/www.researchgate.net/figure/Figura-12-Representacao-esquematica-do-angulo-de-contato-entre-a-gota-de-um-liquido-e_fig3_236945526.VEDOVELLO BIMBATI, T. Â.; CARDOZO, F. L.; GONÇALVES-DIAS, S. L. F. Os limites dareciclagem do plástico e os seus desafios no Brasil. Diálogos Socioambientais, v. 8, n. 21, p. 64–71,2025. Disponível em: https:/doi.org/10.36942/diálogos socioambientais.v8i21.1177.WANG, X. et al. Migration of phthalates from food packaging to ready‑to‑eat food: Efects ofpackaging material and food matrix. Journal of Food Safety, v. 43, n. 2, e13021, 2023. Disponível em:https:/doi.org/10.1111/jfs.13021.https://repositorio.ufrn.br/handle/123456789/64359This study evaluated the effect of adding beeswax on the hydrophobicity of biodegradablefilms produced from cornstarch. The respective films were produced from a standardformulation incorporating beeswax, keeping its concentration constant, analyzing the contactangle, colorimetry and thickness of the films. The method used for production was molding,in which the film-forming solution was prepared, poured into a mold and subjected to dryingunder controlled temperature conditions. The results indicated that the moderate incorporationof beeswax increased the hydrophobicity of the films, evidenced by sampling the contactangle. In addition, it was found that the wax influenced the color and thickness of the films,modifying their optical and mechanical properties. These results suggest that beeswax can actas an effective modifier, enhancing some characteristics of biodegradable films and makingthem more suitable for various applications, from the commercialization of environmentallybeneficial packaging and/or sustainable applications in various sectors, mainly in agriculture.pt-BRAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/filmes biodegradáveishidrofilicidadesustentabilidade.AVALIAÇÃO DE HIDROFILIA EM FILMES DE AMIDO DE MILHO COM ADIÇÃO DE CERA DE ABELHAEVALUATION OF HYDROPHILICITY IN CORN STARCH FILMS WITH ADDITION OF BEESWAXbachelorThesisENGENHARIAS