Madeira, Charles Andryê GalvãoCoelho, João Vítor Venceslau2024-08-202024-08-202024-08-16COELHO, João Vítor Venceslau. Comparação de desempenho das implementações do algoritmo Deep Q-Network em Rust e Python no ambiente Cart Pole. Orientador: Charles Andryê Galvão Madeira. 2024. 64 f. Trabalho de Conclusão de Curso (Graduação em Ciência da Computação) - Departamento de Informática e Matemática Aplicada, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/59498Deep reinforcement learning has gained prominence due to its success in solving complex problems, but its high execution times increase costs, often requiring powerful and expensive hardware. This study aims to reduce these costs by enhancing the efficiency of deep reinforcement learning algorithms using the Rust language, known for its efficient code generation and safe memory management without a garbage collector. We compare a Rust implementation of the Deep Q-Network (DQN) algorithm with the Python implementation from the Stable Baselines3 library in the Cart Pole environment. Results show that the Rust implementation is faster, even with Python bindings, achieving a lower time per step ratio.Attribution-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-sa/3.0/br/Aprendizado por reforço profundoRustDeep Q-NetworkEficiência computacionalComparação de desempenhoDeep reinforcement learningComputational efficiencyPerformance comparisonComparação de desempenho das implementações do algoritmo Deep Q-Network em Rust e Python no ambiente Cart PolePerformance comparison of implementations of the Deep Q-Network algorithm in Rust and Python in the Cart Pole environmentbachelorThesisCNPQ::CIENCIAS EXATAS E DA TERRA