Venâncio Neto, Augusto JoséSantos, Kelyson Nunes dos2017-11-072017-11-072016-07-28SANTOS, Kelyson Nunes dos. Utilização de técnicas de aprendizado de máquina para predição de crises epiléticas. 2016. 73f. Dissertação (Mestrado em Sistemas e Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2016.https://repositorio.ufrn.br/jspui/handle/123456789/24209Event prediction from neurophysiological data has many variables which must be analyzed in di erent moments, since data acquisition and registry to its post-processing. Hence, choosing the algorithm that will process these data is a very important step, for processing time and accuracy of results are determinant factors for a diagnosis auxiliary tool. Tasks of classi cation and prediction also help in understanding brain cell's networks interactions. This work uses Supervised Machine Learning techniques with different features to analyze their impact on the task of epileptic seizure prediction from canine neurophysiological data and purposes using of ensembles to optimize the performance of event prediction task through computational low-cost techniques. Epileptic dogs' EEG data were preprocessed throug Fourier transform and only significant frequencies were considered (1 to 30Hz). It was applied a dimensionality reductor and then data was submitted to supervised machine learning techniques. Two scenarios were evaluated: first used raw data resulted from Fourier transform, as the second one transform these data. Algorithms evaluation was made through area under ROC curve (AUC) measure. Best results were to scenario A (a) an heterogeneous ensemble formed by a KNN, a decision tree and a bayesian classifier, scoring 0.7074 and (b) an example of decision tree evaluated in 0.687, and, for scenario B, best results were (a) a setup of decision tree which obtained 0.620 and (b) an heterogeneous ensemble composed by a KNN, a decision tree and a bayesian classifier, scoring 0.612.Acesso AbertoPredição de eventosPredição de crises epiléticasEpilepsiaComitês de classificadoresUtilização de técnicas de aprendizado de máquina para predição de crises epiléticasmasterThesisCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO