Nascimento, José Heriberto Oliveira doGalvão, Felipe Mendonça Fontes2022-02-082021-09-17GALVÃO, Felipe Mendonça Fontes. Otimização e aplicação de nanorevestimento superhidrofóbico e supercapacitivo de grafeno/fluoropolímero via spray mist coating em tecido poliéster. 2021. 207f. Dissertação (Mestrado em Engenharia Têxtil) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021.https://repositorio.ufrn.br/handle/123456789/45890The knowledge of the fundamental structure and bonds of graphene oxide, as well as the scope of its applications, such as in the fields of physics, chemistry and materials science, has had a significant scientific growth in the last decade. With applications in renewable energy, microelectronics, heterogeneous photocatalysis, sensors, biomedical, biotechnology, among others, it has made this material one of the most studied with patent factors today. Advances in these areas were driven by improvements in the methods used to synthesize and characterize graphene oxide (GO) as well as its reduced phase, RGO. Thus, this work synthesized GO by the Hummers and Hoffman's method and then performed its reduction (RGO) with the reducing agents: ascorbic acid, sodium hydrosulfite, Inorganic Salt and Polysaccharide. The reduced samples were characterized by DRX, RAMAN, FTIR, BET, HRTEM and MEV-FEG and the most sustainable was selected and used in all the following experimental phases. Thus, this work had as main objective to obtain RGO via ecological reducing agent and with that, to obtain a superhydrophobic and supercapacitive textile. A Box-Behken experimental design was applied with the variables evaluated in the spray coating mist application method for nanomaterials on polyester fabric (PET), being: RGO/Fluorpolymer ratio (mass/mass) of 1/5, 3/15 and 5/25; fixation temperature in infrared vines of 100ºC, 125ºC and 150ºC and fixation time of 2, 6 and 10 minutes, with the contact angle value as a response variable. PET fabric samples with superhydrophobic behavior and control were characterized by microstructural and colorimetric modification. It was proven that the PET fabric functionalization method was promising, obtaining a superhydrophobic behavior with a contact angle greater than 150ºC and durable to washing and friction testing. It is concluded that the optimized functionalization was responsible for obtaining a superhydrophobic textile material with industrial application capacity.Acesso EmbargadoÓxido de grafenoÓxido de grafeno reduzidoTêxteis inteligentesNanotecnologiaSuperhidrofóbicoSupercapacitoresOtimização e aplicação de nanorevestimento superhidrofóbico e supercapacitivo de grafeno/fluoropolímero via spray mist coating em tecido poliéstermasterThesis