Menezes, Fabricio GavaCoutinho, Mayra Silva2019-09-042019-09-042019-07-22COUTINHO, Mayra Silva. Desenvolvimento de sensores cromogênicos baseados em reações enzimáticas e nanopartículas de prata para análise de Ácido Ascórbico e Ferro (III) em meio aquoso. 2019. 104f. Dissertação (Mestrado em Química) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2019.https://repositorio.ufrn.br/jspui/handle/123456789/27642The development of chemical systems aiming detection of specific analytes in solution has attracted great attention due the possibility of fast, low cost and practical implementation. In this context, methods based on enzymatic reactions and nanostructured systems play a relevant role. This work consist in two main parts. Firstly, a new method for detection of ascorbic acid (AA, vitamin C) based on its interfering effect in the quantification of glucose by the enzymatic colorimetric method is presented. This method is based in the inhibition of chromophore quinoneimine, generated by sequential enzymatic processes, which its concentration is proportional to concentration of glucose in the medium. UV-vis analysis showed a linear correlation between decreasing of quinoneimine concentration concomitantly to increasing of AA concentration. The method was validated by quantification of AA from commercial effervescent tablets, with satisfactory errors, from 0.01 to 1.25 %, and limits of detection and quantification of 0.045 and 0.138 mg.L-1, respectively. In the second part of the work, silver nanoparticles functionalized with the natural product rutin (AgNPsRUT+AA) were employed in the detection of Fe3+ ions in solution, in the presence of AA. In the best experimental condition (AgNO3, 0,2mM; AA, 0,1 mM; NaOH, 0,1 M e AA, 1mM), according to UV-vis analysis, small but polydisperse nanoparticles (4.1 nm), as verified by transmission electronic microscopy. In the presence of Fe3+, these nanoparticles increase in size (14.7 nm average) and undergo aggregation, as verified by TEM. These effects are not verified in the presence of Al3+, Ba2+, Cd2+, Co2+, Cr3+, Cu+ , Cu2+ Hg2+, Mg2+, Na+ , Ni2+, Pb2+, Sr2+, Sn2+, Fe3+. Mechanistically, adsorption of anionic RUT to silver surface via 5-hydroxychromen-4-one moiety, since it is the main site to coordinate to metal, while addition of Fe3+ induces to the formation of a coordination complex through anionic catechol group, in which at least 2:1 ligand-Fe3+ stoichiometry is required for aggregative effect. In this process, AA has a crucial role for selective detection and two possible explanation include avoid of previous oxidation of RU by silver and/or coordination of ascorbate do other cations. UV-vis analysis showed a linear correlation between concentration of Fe3+ ions in solution (1-10 μM) and the decreasing in the surface plasmon resonance band (396 nm) associated to AgNPs-RUT+AA. Limits of detection and quantification for quantification of Fe3+ were found to be 0.017 e 0.056 µmol.L-1, respectively.Acesso AbertoSensoresReações enzimáticasNanopartículasÁcido ascórbicoFerro (III)Desenvolvimento de sensores cromogênicos baseados em reações enzimáticas e nanopartículas de prata para análise de Ácido Ascórbico e Ferro (III) em meio aquosomasterThesisCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA