Kreutz, Marcio EduardoSiqueira, Hadley Magno da Costa2020-11-242020-11-242020-07-31SIQUEIRA, Hadley Magno da Costa. Proposta de arquitetura de alto desempenho para sistemas de tempo real. 2020. 104f. Tese (Doutorado em Ciência da Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2020.https://repositorio.ufrn.br/handle/123456789/30644Precision-Timed Machines (PRET) are architectures intended for use in real-time and cyber physical cyber systems. The main feature of these architectures is that they provide predictability and repeatability for real-time tasks, thus facilitating development, analysis and testing of these systems. The state of the art, at the time of this writing, consists of processors based on the PRET concept. These processors explores thread level parallelism by interleaving threads at a fine-grained leve, i.e. at each clock cycle.This strategy provides good performance when there is parallelism at the thread level, but induces a low performance in the absence of this parallelism. In addition, the switching of threads to each clock cycle leads to high latency. This high latency can make it impossible performing tasks that require low latency. The present work contributes for the state of the art in two ways: first by presenting a proposal for a reconfigurable coarsed-grain reconfigurable array based on the PRET concept. The proposed array is coupled to a PRET processor, providing support for accelerating important parts of an application. The array was designed in such a way that when coupled to the processor do not make the processor lose its original temporal properties. The second contribution of this thesis is the proposal and implementation of a multicore architecture. Each core is composed of a processor coupled to the proposed array. Thus, this work seeks to present a high performance architecture facing embedded real-time systems that have high demand for performance such as avionics, for example. Results show that the proposed architecture it is capable of providing acceleration of more than 10 times for some types of applications. In terms of area, synthesis results for FPGA show that each core occupies less than half of a processor running out of order. In addition, it has an area similar to other arrays used in low-power embedded systemsAcesso AbertoPRETMulticoreCGRASistemas de Tempo RealCyber-FísicoPrecision-Timed MachinesCoarse-Grained Reconfigurably ArraysCyber PhysicalReal-Time SystemsProposta de arquitetura de alto desempenho para sistemas de tempo realdoctoralThesis