Silva, Ivanovitch Medeiros Dantas daSilva, Jordão Paulino Cassiano da2024-08-052024-08-052024-05-14SILVA, Jordão Paulino Cassiano da. Uma proposta para detecção de buracos com aprendizagem de máquina na borda. Orientador: Dr. Ivanovitch Medeiros Dantas da Silva. 2024. 69f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/58993Potholes in urban roads represent a significant problem, affecting both user safety and vehicle durability. This study addresses the urgent need for effective solutions for pothole detection that can be implemented in real-time using devices with limited computational resources. An innovative approach was developed, integrating machine learning on edge devices, with an emphasis on YOLOv8 and FOMO models within the TinyML context. A specialized dataset, containing annotated images, was used to train these models for accurate pothole detection. The optimization of YOLOv8 and FOMO models’ performance for edge devices ensures real-time efficiency. This work not only provides effectively trained models but also presents an adaptable framework for pothole detection, ensuring practical and efficient implementation. Additionally, a complete pipeline for pothole detection is proposed, validating the models’ accuracy and efficiency. This approach offers a robust solution for the automatic recognition of potholes, significantly contributing to improvements in urban infrastructure maintenance.Acesso AbertoAprendizado de máquina na bordaInfraestrutura urbanaDetecção de buracosOtimização de modelosTinyMLUma proposta para detecção de buracos com aprendizagem de máquina na bordamasterThesisCNPQ::ENGENHARIAS::ENGENHARIA ELETRICA