Pergher, SibeleBezerra, Marianne da Costa2016-12-282021-09-272016-12-282021-09-272016-12-13ANBIA, M; NEYZEHDAR, M.; GHAFFARRINEJAD, A. Humidity sensitive behavior of Fe(NO3) – loaded mesoporous silica MCM-41. Sensors and Actuators B: Chemical, v. 193, p. 225-229, 2014. BACHARI K.; GUERROUDJ R. M. Catalytic Behavior of Galium-Containing Mesoporous Silicas (MCM-41) in the Acetylation Reaction. Kinetics and Catalysis, v. 53, n. 3, p. 395–403, 2012. BECK, J S.; SCHMITT, K. D.; HIGGINS, J. B.; SCHLENKERT, J. L. New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc., n. 14, p. 10834-10843, 1992. BECK, J. S.; VARTULI, J. S.; KENNEDY, G. J.; KRESGE, C. T.; ROTH, W. J.; SCHRAMM, S. E. Molecular or Supramolecular Templating: Defining the Role of Surfactant Chemistry in the Formation of Microporous and Mesoporous Molecular Sieves. Chem. Mater, v. 6, p. 1816-1821, 1994. BRUNAUER, S., EMMETT, P. H.; TELLER, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., v. 60, n. 1, p. 309–419, 1938. BOISSIERE C.; LARBOT, A.; PROUZET E., Chem. Mater, v. 12, p. 1937, 2000. CHEN, G.; WANG, L.; LEI, J.; ZHANG, J. F− assistant synthesis of ultra-hydrothermally stable mesoporous silica by using nonionic organosilicon surfactant as templates. Microporous and Mesoporous Materials, v. 124, p. 204-209, 2009. COLLARD, X., LI, L.; LUEANGCHAICHAWENG, W.; BERTRAND, A.; APRILE, C.; PESCARMONA, P. P. Ga-MCM-41 nanoparticles: Synthesis and application of versatile heterogeneous catalysts. Catalysis Today, v. 235, p. 184-192, 2014. CORMA, a.; FORNÉZ, V.; NAVARRO, M.; PÉREZ-PARIENTE, J. Acidity and stability of MCM-41 crystalline aluminosilicates. Journal of catalysis, v.148, p.569-574, 1994.FASOLO, W. V. Peneiras moleculares MCM-41 apresentando propriedades ácidas obtidas por várias técnicas. 2006. 54f (Dissertação de Mestrado em Engenharia Química) UFRRJ – RJ. GIANNETO PACE, G.; REDÓN, A. M.; FLUENTES, G. R. Zeólitas: Características, propiedades y aplicaciones industriales. 2ed. EdIT, Caracas-Venezuela, p. 352, março, 2000. HUO, QISHENG; MARGOLESE, D. I.; CIESLA, U.; DEMUTH, D. G.; FENG, P.; GIER, I. T. E.; SIEGER, P; FIROUZI, S. A.; CHMELKA, BRADLEY F; SCHUTH, F.; J, G. D. S. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chem. Mater, n. 8, p. 1176-1191, 1994. IUPAC TECHNICAL REPORT. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution, Pure Appl. Chem., v. 87(9-10), p. 1051–1069, 2015. JABARIYAN, S.; ZANJANCHI, M. A. A simple and fast sonication procedure to remove surfactant templates from mesoporous MCM- 41. Ultrasonicssonochemistry, v. 19, n. 5, p. 1087–93, 2012. JARONIEC, M.; KRUK, M. Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials. Chem. Mater, v. 13, p. 3169-3183, 2001. KAWI, S.; LAI, M. W. Supercritical fluid extraction of surfactant from Si-MCM-4. Chem. Commun., p. 1407–1408, 1998. KEENE, T. J.; DENOYEL, R.; LLEEWLLYN, P. L. Ozone treatment for the removal of surfactant to form MCM-41 type materials. Chem. Commun., v. 20, p. 2203-2204, 1998. KRESGE, C. T.; LEONOWICZ, M. E.; ROTH, W. J.; VARTULI, J. C.; BECK, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, v. 359, n. 6397, p. 710-712, 1992.https://repositorio.ufrn.br/handle/123456789/38298The MCM-41 mesoporous molecular sieve is a member of the M41S family of materials with controllable pore sizes of 2 to 15 nm. These pores are generated by the removal of the surfactant which mimics the shape and pore size that will be generated. One of the important steps for the control of final material is related with efficient surfactant removal strategies. Thus, three different calcination methodologies and a solvent extraction methodology were used to evaluate the removal of surfactant in mesoporous materials SiMCM-41 and AlMCM-41. Two calcination methodologies employed the use of 5 nitrogen and synthetic air, the first was used a vertical tubular furnace with borosilicate reactor (RN2) while the second methodology was used a muffle furnace (MN2). The third methodology uses only the use of muffle (M) without nitrogen and synthetic air. The samples were characterized by X ray diffraction, thermogravimetric analysis, N2 adsorption and desorption isotherms, Fourier transform infrared spectroscopy, scanning and transmission electronic microscopies. It was observed that the treatments influence the ordering of the material and indicate that calcination with tubular reactor with nitrogen followed by synthetic air (RN2) is the most adequate methodology probably due to the auxiliary action of gravity. Calcination in muffle (M) was promising for future studies, since it does not use gas flow. The solvent extraction destroyed the structure of the synthesized materials.openAccessRemoção de surfactante.MCM-41.Calcinação.Surfactant removal.Calcination.Estudo da eliminação do agente estruturante de materiais mesoporosos do tipo MCM-41bachelorThesisCNPQ::CIENCIAS EXATAS E DA TERRA