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Abstract
The identification of spatial and temporal rainfall climatology patterns is crucial for hydrometeorological studies over semiarid
watersheds, which frequently face water distribution conflicts and socioeconomic issues due to water scarcity. Thus, the objective
of this study was to propose a comprehensive approach for the characterization of rainfall climatology over semiarid watersheds.
Monthly rainfall time series (1962–2015) with up to 30% of gaps measured in 56 rain gauges in the Piranhas-Açu Watershed—
Brazilian semiarid region—were used. Data gaps were filled through a combination of simple spatial interpolation techniques.
Principal component analysis and cluster analysis identified two homogeneous rainfall subregions in the basin: C1, in the upper
portion, and C2, in the middle and lower portions. Rainfall volumes in C2 were up to 23.5% smaller than those in C1, due to
orographic structures which contribute to aridity in this region. Rainfall anomalies were calculated in each cluster through the
modified Rainfall Anomaly Index (mRAI) and were associated with the phases of the El Niño–Southern Oscillation (ENSO) and
the Atlantic Meridional Mode (AMM). In years when the ENSO (AMM) was in its positive (negative) phase, there was a higher
probability of occurrence of months with above-average rainfall, while the opposite was also true. Results showed that the effects
of the patterns are mutually influenced, which has been previously found at larger scales. Finally, mRAI trends were identified
through the Mann-Kendall test, which indicated significant negative trends in C1 and C2, especially during the wet season.

1 Introduction

Rainfall climatology and its spatial and temporal patterns are
of the uttermost importance to hydroclimatological studies at
the global, regional, and even local scales (Frazier et al. 2016).
Understanding the climatological behavior of rainfall facili-
tates the identification of changes and deviations from patterns

that are normally observed, which in turn usually impact water
provisioning, agriculture, ecosystem services, and the general
population welfare (Gocic and Trajkovic 2014; Lyra et al.
2014; Rodell et al. 2018). The characterization of rainfall pat-
terns is of an even greater importance when oriented towards
regions that suffer from water scarcity, where water conflicts
are recurrent and water distribution is a limiting factor tomany
activities (da Silva et al. 2015; Mutti et al. 2019). Semiarid
regions, which occupy approximately 15% of the globe’s sur-
face, are usually impacted by this type of conflict because they
are extremely vulnerable to human-ecosystem interactions
and global climate change (Huang et al. 2016).

The identification of such spatial and temporal rainfall pat-
terns is usually carried out through the use of renowned statistical
methods with a good applicability at different scales, such as
cluster analysis (Gong and Richman 1995; Lyra et al. 2014;
de Oliveira et al. 2017; Rau et al. 2017; Tinôco et al. 2018),
principal component analysis (PCA) (Eklundh and Pilesjö
1990; Gocic and Trajkovic 2014; Almazroui et al. 2015; Fazel
et al. 2018), and trend analysis through the Mann-Kendall non-
parametric test (Mondal et al. 2012; da Silva et al. 2015, 2018;
Lacerda et al. 2015; de Oliveira et al. 2017; Bezerra et al. 2018),
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among others. Furthermore, the association between rainfall and
large-scale circulationmechanisms such as the ElNiño–Southern
Oscillation (ENSO) and the interhemispheric sea surface temper-
ature gradient in the Tropical Atlantic (AtlanticMeridionalMode
(AMM) also allows a better understanding of how rainfall vari-
ability is modulated by these mechanisms, aiding in rainfall sea-
sonal forecasts (Rao and Hada 1990; Uvo et al. 1998; Hastenrath
2006; Grimm and Tedeschi 2009; Tedeschi et al. 2016;
Timmermann et al. 2018). When combined, the results retrieved
by these characterizations provide valuable information on the
present and possible future rainfall patterns at different spatial
scales. In the case of watersheds located at semiarid environ-
ments, this systematic and detailed approach may be considered
an important water resources management tool.

Arid and semiarid drylands in Brazil, known as the Brazilian
semiarid, are locatedmainly in the northeast region of the coun-
try, between 2.5° S and 16.1° S latitude and 34.8° Wand 46.0°
W longitude, with a total area of approximately 1,542,000 km2,
which encompasses 18.3% of the total Brazilian territory
(Marengo and Bernasconi 2015). The Brazilian semiarid region
is extremely vulnerable to drought and to interannual rainfall
variability, which might be aggravated due to climate change
projected scenarios which indicate a decrease in precipitated
volumes and an increase in aridity until the end of the century
(Marengo and Bernasconi 2015; Marengo et al. 2017b, 2018).
Furthermore, according to the Intergovernmental Panel on
Climate Change (IPCC 2014), the combination of rainfall var-
iability, desertification, land degradation, and low socioeco-
nomic status may increase the vulnerability of the region.
Several studies have been carried out in order to identify and
characterize spatial and temporal rainfall patterns in the north-
east region of Brazil and in its semiarid region, such as drought
characterization (Hastenrath 2012; Marengo and Bernasconi
2015; Costa et al. 2016; Marengo et al. 2017b, 2018; Brito
et al. 2018), extreme rainfall identification (Correia Filho et al.
2016; da Silva et al. 2018), identification of teleconnection
patterns (Rao and Hada 1990; Kane 1997; Uvo et al. 1998;
Hastenrath 2006), trend analysis (Lacerda et al. 2015;
de Oliveira et al. 2017; Dubreuil et al. 2018; da Silva et al.
2018), and spatial and temporal variability characterization
(de Moscati and Gan 2007; Rao et al. 2016; de Oliveira et al.
2017; Tinôco et al. 2018). However, studies in this region
which aim to comprehensively identify such characteristics at
the watershed scale or at scales smaller than global or regional
are still lacking, although some recent efforts can be highlight-
ed, such as the works by da Silva et al. (2009), Lyra et al.
(2014), de Andrade et al. (2016), Bezerra et al. (2018), Melo
et al. (2018), da Silva et al. (2018), and Mutti et al. (2019).

In this context, one of themost important watersheds which
are entirely located in the Brazilian semiarid region is the
Piranhas-Açu Watershed (PAW). This water basin, which en-
compasses the Paraíba (PB) and Rio Grande do Norte (RN)
states, is responsible for the domestic water supply of

approximately 1.3 million people and also for providing water
to irrigation districts which are strategic for the socioeconomic
development of the region (ANA 2014; Mutti et al. 2019).
Furthermore, water conflicts have already been assessed in
this watershed (de Amorim et al. 2016), which reinforces the
relevance of studies on its hydrological processes. However,
reliable measured meteorological data in this region are
scarce, which hampers the development of comprehensive
rainfall characterization studies that end up using interpolated
or reanalyzed data (Chen et al. 2008; Wagner et al. 2012;
Xavier et al. 2016). This increases computational effort and
decreases the reliability of such studies. Still, recent works
such as the ones carried out by de Felix (2015) and Mutti
et al. (2019) proposed to characterize, although preliminarily,
rainfall patterns in the PAW.

Therefore, the objective of this research is to propose a
comprehensive approach for the characterization of rainfall
climatology over the PAW, which may be replicated in other
watersheds, particularly those located in semiarid regions. It
also aims to show that even with a reliable but gapped data-
base, one can obtain valuable information on rainfall spatial
patterns, teleconnections, anomalies, and trends, with low
computational effort and using renowned methods.
Understanding rainfall characteristics at the basin scale might
also retrieve additional information to complement the results
of previous studies carried out at the Brazilian semiarid
at regional scale. Furthermore, a detailed characterization of
rainfall in watersheds can be used to delineate water resource
management policies and to aid in rainfall seasonal forecast
models, helping prevent and mitigate the impacts caused by
interannual rainfall variability over semiarid regions.

2 Material and methods

2.1 Study area

Located entirely in the Brazilian semiarid region, the PAW
comprises part of the RN and PB states (between 38° 75′ W
and 36° 17′ W longitude and 5° 06′ S and 7° 83′ S latitude),
and it is the most important water basin in both states (ANA
2014). The main water course has its source in the Paraíba
state and flows through over 400 km of drylands until
reaching its mouth in the city of Macau (RN), totaling approx-
imately 43,682 km2 of drainage area. Regarding its hydrology,
there are two main water reservoirs worth mentioning:
Coremas-Mãe d’Água in PB and Engenheiro Armando
Ribeiro Gonçalves in RN, which are responsible for over
70% of all water storage capacity in the watershed (ANA
2014) (Fig. 1). These reservoirs guarantee that the main water
course is perennial and therefore are crucial to the establish-
ment of irrigation districts. The most important irrigated areas
are located in the upper portions of the basin (near the
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Coremas-Mãe d’Água reservoir) and in the lower portions of
the river (contiguous to the Armando Ribeiro reservoir), with
mainly fruit crops which make these regions particularly rel-
evant in the context of economic activities in the basin.

There are two main climate classifications that occur in the
PAW (Alvares et al. 2014). In the upper portion, the climate is
tropical with dry summer and annual rainfall reaching up to
1100 mm, while in the rest of the basin, the climate is predom-
inantly arid, with annual rainfall as low as 400 mm. The rain-
fall regime in the PAW is determined mainly by the equatorial
positioning of the Intertropical Convergence Zone (ITCZ)
(Marengo et al. 2011; de Oliveira et al. 2017). The wet season
occurs from February to May due to the ITCZ assuming its
southernmost position (~ 4° S). It then shifts towards the
northern hemisphere (~ 4 to 5° N) from August to October,
which establishes the dry season over the PAW (Hastenrath
2012; de Oliveira et al. 2017). Furthermore, the remarkable
interannual variability observed in the region is mainly asso-
ciated with large-scale circulation mechanisms in the Pacific
Ocean (ENSO) and the Atlantic Ocean (AMM), which are the
main cause of the alternation between extremely dry years and
heavy rainfall years (Marengo et al. 2011, 2017b).

It is important to highlight that a previous understanding of
the mechanisms associated with the climate, and, consequent-
ly, with the rainfall regime in the studied watershed, is crucial
for the adaptation of the proposed methodology to other areas.

For example, other large-scale mechanisms besides ENSO
and AMM should be considered in other regions of the globe.
In addition, the methodology should also be adapted to differ-
ent climatological rainfall patterns, which differ from region to
considered in other regions of the globe. In addition, the meth-
odology should also be adapted to different climatological
rainfall patterns, which differ from region to region, even in
semiarid drylands. Particularly in the Brazilian semiarid, there
is a high spatial variability of precipitation, and at least four
different rainfall patterns (Tinôco et al., 2018), differing ac-
cording to the proximity of the coast, land cover, topography,
and latitudinal position, all of which influence the different
atmospheric systems responsible for rain over these areas.

2.2 Data

Rainfall data were obtained from the National Water
Resources Information System (SNIRH) through the
Hidroweb online platform (http://www.snirh.gov.br/
hidroweb/publico/apresentacao.jsf). The SNIRH provides
access to a nationwide hydrometeorological database, with
data measured in public and private stations and gauges
monitored by different regional and federal agencies. In this
study, we preselected only rain gauges monitored by the
Executive Agency of Water Management of the PB state
(AESA) and the Agricultural Research Company of the RN

Fig. 1 Location of the Piranhas-Açu Watershed and rain gauges used in the study
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state (EMPARN). Based on data availability from these
preselected gauges, we restricted the studied period to 1962–
2015, comprising a total of 54 years of monthly data. One of
the steps of the proposed methodology is to evaluate gap fill-
ing techniques for monthly rainfall data; therefore, we selected
gauges with up to 30% of data gaps in the studied period.
From a total of 191 preselected gauges in the PAW, we kept
56 as follows: 24 with up to 10% of gaps, 13 with 10 to 20%
of gaps, and 19with 20 to 30% of gaps (Fig. 1). The remaining
135 stations either had more than 30% of gaps or did not cover
the entire 1962–2015 period. Figure 1 shows that gauges with
20 to 30% are located mainly in the western portion of the
basin, which indicates that results in this particular region
might present larger uncertainties.

2.3 Data quality control

Data homogeneity and consistency was assessed through
double-mass curve analysis (Searcy et al. 1960). This analysis
is carried out by comparing accumulated rainfall values of a
given rain gauge with accumulated rainfall values of a set of
reference gauges. To this end, two reference gauges were select-
ed in the PB (São João do Rio do Peixe and Piancó) and in the
RN (Caicó and Pedro Avelino), which were considered to have
the most reliable data, with less than 5% of monthly gaps in the
studied period. Thus, gauges located in the PB were compared
with the PB reference gauges, and gauges in the RN were com-
pared with RN reference gauges. When the double-mass curves
showed inconsistencies, such as abrupt slope changes or “steps,”
suspicious data were deleted and marked as missing data (gaps).

After this initial database organization, gaps were filled
through spatial interpolation techniques. In this study, we
opted to use three spatial interpolation methods based on their
simplicity and low computational effort, in such a way that the
method with the highest correlation coefficient (r) in each
target gauge was selected to fill the gap in that particular gauge
and month. The use of multiple spatial interpolation tech-
niques in order to fill monthly rainfall databases has proved
to be highly efficient in several previous studies (Eischeid
et al. 2000; Wagner et al. 2012; Giambelluca et al. 2013;
Frazier et al. 2016). The techniques used in this study were:
multiple regression least absolute deviations (MLAD), single
best estimator (SBE), and inverse distance weighting (IDW).

2.3.1 Multiple regression least absolute deviations

This criterion consists of a more robust variation of the least
squares estimation. Since rainfall data usually do not fit a
normal distribution, which has already been verified with
measured data in Northeast Brazil (Alvares et al. 2014), the
MLAD method has the advantage of not being highly influ-
enced by long tail distributions (Barrodale and Roberts 1973).
The method consists of estimating the missing data by

minimizing the sum of the absolute deviations between neigh-
boring rain gauges and the estimated value. In its equation, the
regression coefficient β is calculated as to minimize the sum
(Eischeid et al. 2000):

∑
i
∑
j
X ijβ j−Y i

�����
����� ð1Þ

whereXij are the i observations in j neighboring gauges and Yi are
the missing data estimations in the target gauge associated with
each i observation. In this study, we chose neighboring gauges
for each target gauge considering the geographical aspect as well
as the correlation coefficient (r) between gauges. A maximum of
four neighbor gauges were selected for each target gauge.

2.3.2 Single best estimator

The SBE method consists of filling missing values with a
value observed in the same period in the nearest neighbor
gauge. Similarly to what was carried out by Eischeid et al.
(2000), we chose the neighbor gauge for the SBE method
based on the highest r correlation.

2.3.3 Inverse distance method

The IDW technique consists of filling the gaps in the target
gauge with the weighed mean of observed values in neighbor-
ing gauges (Chen and Liu 2012):

Y i ¼ ∑
i
wiX i ð2Þ

where the weights (wi) are attributed according to the distance
between gauges:

wi ¼ l−αi
∑il

−α
i

ð3Þ

in which li is the distance between the target gauge and each of
the neighboring gauges and α is the power parameter equal to
2 as default. Since the IDW retrieves estimations exclusively
where and when there is a data gap, the performance of the
method was assessed through leave-one-out cross-validation.
In this case, we ran the method k times, where k is the count of
observations in the original database of each target gauge, and
for each run, we omitted the value of one of the k observations
(Lee et al. 1998). In this way, the method can estimate a value
for each month, allowing the calculation of the r coefficient
for each monthly data.

2.4 Identifying spatial and temporal rainfall patterns

As previously reported, defining groupswith homogeneous rain-
fall spatial patterns at the watershed scale is an important tool for
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water resource management. This type of regionalization also
allows a more comprehensive assessment of teleconnections
and the effects of climate change on water availability in water
basins. An important characteristic to be taken into consideration
in the specific case of arid and semiarid watersheds is rainfall
seasonality. In the northern portion of the Brazilian semiarid, for
example, dry months usually register the complete absence of
rainfall, with a mean value of approximately 10 mm in these
months in the entire region (de Oliveira et al. 2017). In the wet
season, however, monthly rainfall spatial variability is much
more noticeable. Because of this, in order to identify temporal
and spatial rainfall patterns in the PAW, we used an approach
which combined PCA and cluster analysis.

2.4.1 Principal component analysis

This method is mainly used in order to remove correlation
between variables or reduce the size of the database by creating
a new dataset composed of linearly independent components
and ordered according to the amount of variance captured by
them (Daultrey 1976; Stone and Auliciems 1992). These com-
ponents are obtained through the determination of the eigen-
vectors and eigenvalues of the correlation matrix between data,
where normalized eigenvectors (called loadings) represent the
correlation between the original data and the estimated compo-
nents (Gocic and Trajkovic 2014). A complete description of
themethod can be found in Daultrey (1976). The PCA has been
used in several climatological studies for the identification of
temporal and spatial rainfall patterns and even for the delimita-
tion of homogeneous rainfall groups (Eklundh and Pilesjö
1990; Rodriguez-Puebla et al. 1998; Singh 2006; Almazroui
et al. 2015; Fazel et al. 2018). However, in the present study,
PCAwas not used as a clustering method but to prepare data to
be used in cluster analysis. The main objective of using the
PCAwas to remove correlation between data, which is partic-
ularly high in dry season months, restricting the analysis to the
components represented by the months which explain most of
the data variance. Once calculated, the principal components
were rotated by the varimax orthogonal method in order to
facilitate data analysis by maximizing high loadings values
and minimizing low loadings values (Fazel et al. 2018).

2.4.2 Cluster analysis

The new database generated by the PCA was subjected to
cluster analysis in order to define homogeneous rainfall re-
gions in the PAW. Cluster analysis identifies data agglomera-
tions in a way that each group is composed of similar data
within each group but heterogeneous data between each
other group. In other words, this method seeks to minimize
the variance between data clusters. Similarly to the PCA, clus-
ter analysis has also been frequently used in climatological
studies in order to define homogeneous rainfall regions in

different spatial scales, including in Northeast Brazil (Gadgil
and Iyengar 1980; Gong and Richman 1995; Lyra et al. 2014;
de Oliveira et al. 2017; da Silva et al. 2018; Tinôco et al.
2018). A full description of the method can be found in
Anderberg (1973). In the present study, we opted to use the
Euclidean distance as dissimilarity method, in accordance
with other climate data regionalization studies in Brazil
(Teixeira and Satyamurty 2011; de Oliveira et al. 2017). The
Euclidean distance can be calculated as follows:

di j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
k

xik−x
�
jk

� �2r
ð4Þ

where k is the number of clusters and xik and xjk are the
observed values in gauges i and j. Furthermore, also in
accordance with Teixeira and Satyamurty (2011) and
de Oliveira et al. (2017), we usedWard’s hierarchical agglom-
erative method. In this method, each gauge starts off
representing one group, and in each subsequent step, one or
more elements (groups) are merged according to their similar-
ity until only one group containing all gauges is formed. We
then proceed to identify which gauges are part of each group
in a given step according to the optimal number of clusters,
which will be discussed in the following section. The method
aims to minimize the error sum of squares.

2.4.3 Cluster validation

One of the main difficulties in cluster analysis is defining the
optimal number of clusters to be formed (Kannan and Ghosh
2011). In this study, we used the NbClust package of the R
software (Charrad et al. 2014) which indicates the ideal num-
ber of clusters based on a compilation of different indicators.
We also considered the silhouette width value for the valida-
tion of formed groups as it provides a graphical representation
of the results. A complete description for its calculation can be
found in Kannan and Ghosh (2011). The silhouette width
ranges from − 1 to 1, where positive values indicate a good
object allocation and negative values indicate a poor object
allocation. In this study, all objects with a silhouette width
lower than the average were considered for reallocation be-
cause, according to Kaufman and Rousseeuw (1990), they
have a weak structure.

2.5 Trends and anomalies

For each formed cluster, we created a synthetic monthly rain-
fall time series with the average of all gauges in each cluster
and then we analyzed monthly and annual rainfall anomalies.
Currently there are several indices in the scientific literature
that can be used to estimate rainfall anomalies, and the
Standardized Precipitation Index (SPI) is the standard index
for the determination of drought according to the World
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Meteorological Organization (WMO) (Hayes et al. 2011).
However, in the present study, we opted for the modified
version of the Rainfall Anomaly Index (mRAI), developed
by Hänsel et al. (2016) and based on the original index by
van Rooy (1965). The authors showed that the mRAI is highly
correlated with the SPI when considering monthly rainfall
anomalies while demanding less computational effort. Since
this study advocates the use of simpler techniques, the mRAI
suits our needs because it can be calculated at multiple time-
scales and the only input data is rainfall.

The mRAI can be calculated as follows:

mRAI ¼ 1:7
N−N

� �

M−N
� �

2
4

3
5; for positive anomalies ð5Þ

mRAI ¼ −1:7
N−N

� �

m−N
� �

2
4

3
5; for negative anomalies ð6Þ

where N is the observed rainfall in the target month, N is the
median of the complete time series in the target month, M is
the mean of the 10% highest rainfall values in the target
month, and m is the mean of the 10% lowest rainfall values
in the target month. Equation 5 (or 6) should be used if N is
higher (or lower) than the median of the target month. The
mRAI identifies each month as being extremely dry (mRAI ≤
− 2), very dry (− 1.99 <mRAI < − 1), dry (− 0.99 <mRAI < −
0.5), normal (− 0.49 < mRAI < 0.49), wet (0.5 < mRAI <
0.99), very wet (1 < mRAI < 1.99), and extremely wet
(mRAI ≥ 2), according to a classification adapted from the
one initially proposed by Hänsel et al. (2016). Since we aim
to evaluate the historical behavior of anomalies, the entire time
series (54 years) was used as base period for the calculation of
the mRAI.

A well-known issue of using precipitation-based anomaly
indices in semiarid regions is the high number of zero
rainfall values, especially during the dry season (Kumar
et al. 2009; Stagge et al. 2015). In the case of the mRAI,
calculating the m term for dry months results in an index
which is extremely sensitive even to small rainfall volumes.
To overcome this problem, we calculated the mRAI for each
month considering the 6-month and 12-month aggregated
timescales. For that end, we considered a wet 6-month period
(January to June—JFMAMJ) and a dry 6-month period (July
to December—JASOND). Therefore, all seasonal analyses
were carried out considering the 6-month mRAI while annual
analyses considered the 12-month mRAI.

Once anomalies were calculated for each month in the time
series, we could determine their behavior in relation to the
occurrence of phenomena such as El Niño, La Niña, or anom-
alies in the AMM. In the case of the ENSO, we considered the
monthly classification of the phenomenon as El Niño or La

Niña according to the Oceanic Niño Index (ONI) as provided
by the National Oceanic and Atmospheric Administration
(NOAA) of the USA in the website <http://origin.cpc.ncep.
noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.
php>. At the beginning of each period defined as El Niño or
La Niña, we considered a minimum of 12 subsequent months
in the analysis of the mRAI. For the AMM, we used the
Tropical Atlantic sea surface temperature anomaly indices
available at <https://www.esrl .noaa.gov/psd/data/
climateindices/list/>, in which positive anomalies indicate
above average warming of the Northern Tropical Atlantic
Ocean and negative anomalies indicate above average
warming of the Southern Tropical Atlantic Ocean. Strong
AMM anomalous events were defined whenever a period of
at least five consecutive months with the 3-month moving
average of the anomaly index above 2 or below − 2 was ob-
served. Similarly, we analyzed a minimum of 12 subsequent
months after the beginning of a strong AMM event. The be-
havior of rainfall anomalies in each cluster was analyzed ac-
cording to the frequency distribution of the mRAI in each
selected year.

Table 1 shows the years selected as representative of strong
positive and negative ENSO and AMM anomalous events.
Frequency distribution of the mRAI for each pattern (positive
and negative ENSO, positive and negative AMM) was carried
out seasonally (6-month mRAI). In order to test if the distri-
butions found were different in each cluster, we used the chi-
squared test (Plackett 1983). Furthermore, the 12-month
mRAI was used in order to identify the most anomalous years

Table 1 Positive and negative ENSO and AMM years selected for the
anomaly analysis

Pattern Selected years

ENSO + (La Niña) 1964–1965, 1970–1972, 1973–1976,
1983–1985, 1988–1989,
1995–1996, 1998–2001,
2005–2006, 2007–2009,
2010–2012

ENSO − (El Niño) 1963–1964, 1965–1966, 1968–1970,
1972–1973, 1976–1978,
1979–1980, 1982–1983,
1986–1988, 1991–1992,
1994–1995, 1997–1998,
2002–2003, 2004–2005,
2006–2007, 2009–2010,
2014–2015

AMM + (warmer North
Atlantic Ocean)

1962–1963, 1969–1970, 1980–1981,
1995–1997, 2001–2002,
2003–2007, 2010–2013

AMM − (warmer South
Atlantic Ocean)

1963–1965, 1971–1975, 1977,
1982–1987, 1991–1992,
1993–1994, 2002–2003,
2009, 2014–2015
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(in magnitude) and verify which ENSO and AMM patterns
were observed in those years, according to Table 1.

Finally, the non-parametric Mann-Kendall test (Kendall
1938; Mann 1945) was used in order to identify linear trends
in the seasonal and annual values of the mRAI. This test was
reported by Goossens and Berger (1986) as the most adequate
to analyze trends in climate variables, and it has been used in
several studies worldwide and also in Northeast Brazil
(Mondal et al. 2012; da Silva et al. 2015; de Oliveira et al.
2017; Sa’adi et al. 2017; Wu and Qian 2017; Zilli et al. 2017;
Bezerra et al. 2018). The method consists of comparing each
value in the time series with the remaining subsequent values
in order, considering how many times the remaining values
are higher or lower than the value being currently analyzed.
Thus, we have:

S ¼ ∑
n−1

j¼1
∑
n

i¼ jþ1
sgn Ni−N j

� � ð7Þ

where i and j are the years (or seasons) and sgn is defined as
follows:

sgn ¼
1; if Ni−N j

� �
> 0

0; if Ni−N j
� � ¼ 0

−; if Ni−N j
� �

< 0

8<
: ð8Þ

Furthermore, it is known that for databases with n ≥ 8, the S
statistic can be fitted to a normal distribution with a mean of 0
and with variance equal to:

Var Sð Þ ¼ n n−1ð Þ 2nþ 5ð Þ−∑q
i¼1ti ti−1ð Þ 2ti þ 5ð Þ

18
ð9Þ

where ti is the number of equal values found until sample i,
and finally the Z statistic of the Mann-Kendall test is calculat-
ed as:

Z ¼

S−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp ; if S > 0

0; if S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þp ; if S < 0

8>>>><
>>>>:

ð10Þ

3 Results and discussion

3.1 Database gap filling

The overall average performance of the three gap filling
methods shows that SBE presented the worst results, especial-
ly during the months from August to December (Fig. 2). This
result is probably associated with the fact that there are plenty
of gauges with 20 to 30% of gaps densely located in the
western portion of the basin (as previously seen in Fig. 1).

Since the SBE uses data from the nearest gauges, during pe-
riods with lots of gaps, the overall performance of the method
was considerably lower because it ended up using data from
gauges geographically farther. Figure 2 also shows that all
methods performed well during the months from January to
July, with the r coefficient ranging from 0.80 to 0.89. Overall,
the MLAD and IDWmethods presented better results, and the
performance during the driest months (September–December)
was relatively worse, with r ranging from 0.72 to 0.86. As
previously mentioned, semiarid regions usually register zero
rainfall during dry season months. In this case, minor devia-
tions in the interpolated values incur in considerable decreases
in the r coefficient, and therefore, the overall performance in
the dry season is worse than in the other months.

Figure 2 also shows that the overall performance of inter-
polation methods for the gap filling of monthly rainfall data
greatly benefits from the combination of different techniques,
which was also verified in previous studies (Eischeid et al.
2000; Giambelluca et al. 2013). For each month with missing
data in each gauge, we chose the method with the highest r
coefficient in that month and gauge, guaranteeing that the best
performing method would always be chosen and thus increas-
ing the overall skill of the gap filling. The combination of
methods increased the gap filling performance from 3.5% in
April to as much as 18.2% in September in terms of relative
error.

It is important to note that this procedure was carried out
after the initial data filtering which consisted of the visual
analysis of the double-mass curves. The final gap filled data-
base according to the method chosen can be observed in Fig. 3

Apr

Mar
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Jan

Dec

Nov

Oct

Sep

Aug

Jul

Jun

May

1.0 0.9 0.8 0.7 0.6

IDW SBE MLAD Combined

Fig. 2 Monthly distribution of the mean correlation coefficients (r)
between observed and estimated rainfall values
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and is further detailed in Table 2. The total number of missing
values accounted for 10.2% of total data, and approximately
half (49.8%) of these gaps were filled by the IDW method,
followed by 28.3% of gaps filled by the MLAD method, and
21.9% filled by the SBE method.

Figure 3 also reveals a recurrent problem in studies using
observational data in Brazil, particularly in the northeast re-
gion. There are long sequential periods with missing data,
particularly during the 1980s and 1990s. Because of that, the
analysis of long rainfall time series in the region is a true
challenge and reliable gap filling procedures are essential so
that larger amounts of consistent observed data can be used.
As an alternative, gapped time series could also be merged
with gridded reanalyzed data or remotely sensed data, such as
what was carried out by Xavier et al. (2016). In the present
study, we aimed to use simple spatial interpolation techniques
instead of the merging of different databases. However, it is
important to note that the fact that most gauges with 20 to 30%
of gaps are located in the western portion of the basin com-
bined with a large amount of sequential missing values during
the 1980s and 1990s represents a relevant source of uncer-
tainties regarding results found in this particular portion of
the basin.

3.2 Homogeneous rainfall groups

The remarkable seasonal variability of data can be observed in
Fig. 4, where during the wettest months (January to May),
data variability is substantial because it is during this period
that we can observe the most prominent differences between
rainfall volumes throughout the basin. It can also be noted that
even during the wet season there were registers of zero rainfall
in some gauges, which also contributes to show how suscep-
tible the PAW is to interannual and spatial rainfall variability.
Furthermore, the boxplot in Fig. 4 indicates that the data used
could benefit from cluster analysis in order to identify groups
where such variability would be more homogeneous.

In the first step of the proposed clustering procedure, we
used the PCA in our dataset with months organized as

a)

b)

c)

68914791 089186912691 610240022991 01028991

IDW estimated MLAD estimated ObservedSBE estimated

Fig. 3 Data gaps filled by the combination of the inverse distance weighting (IDW), single best estimator (SBE), and multiple regression least absolute
deviations (MLAD) methods. (a) Rain gauges with up to 10% of gaps. (b) Rain gauges with 10 to 20% of gaps. (c) Rain gauges with 20 to 30% of gaps

Table 2 Database quantitative description where n is the number of
months

Total Missing data Gap filling method

IDW SBE MLAD

n 36,288 3685 1835 807 1043

% of n – 10.2* 49.8** 21.9** 28.3**

* In relation to the total count
** In relation to missing data
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Fig. 4 Monthly boxplot of the gap filled database, comprising 3024
values per month (outliers were omitted)
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variables in order to remove correlation between months and
focus on the components which account for the largest amount
of data variability. The PCA indicated that the first component
(PC1) explained 79.6% of total data variance while the second
component (PC2) explained another 13.5%, totaling 93.1%
with only the two first components. Rotated loadings showed
that PC1, which explains most of the variation in data, is
highly correlated with the months from October to March
(Fig. 5). This result shows that rainfall during the transition
from the dry season until the peak of the wet season accounts
for most of data variability, while rainfall fromMay to August
(transition from wet to dry season)—CP2—is more homoge-
neous through the watershed.

Thus, in our cluster analysis, we considered a database
composed of the PC1 and PC2 scores retrieved from the
PCA, which assured that the homogeneous groups would be
formed considering temporal data variability, that is, months
in which heterogeneity between gauges is more clearly notice-
able. The results obtained from the use of the NbClust package
retrieved 2 as the optimal number of clusters. This result was
reaffirmed by the analysis of the silhouette width (Table 3)
considering different numbers of clusters and using the
Euclidean distance and Ward’s method. The average silhou-
ette width for this number of clusters was 0.61 which repre-
sents a reasonable cluster structure (Rau et al. 2017). All other
numbers of clusters had a silhouette width lower than 0.60.
Additionally, only two gauges presented negative silhouette
width, which means no cluster structure and therefore should

be reallocated. Since k = 2 retrieved the best combination be-
tween average silhouette width and the number of negative
silhouette width values, it was chosen as the optimal number
of clusters, which is also coherent considering the two climate
classifications observed in the watershed.

Figure 6 a shows the two clusters initially formed by the
cluster analysis. Data was separated in a coherent spatial pat-
tern, where rain gauges with weaker cluster structure (low
silhouette width) are located in the interface between the two
clusters. Rain gauges with below-average silhouette width and
the two gauges with negative width were considered potential
candidates for reallocation. In total, five rain gauges were
reallocated from cluster 2 (C2) to cluster 1 (C1): the two neg-
ative silhouette width gauges, two gauges with weak structure
(width < 0.30), and one gauge that was reallocated in order to
maintain geographical coherence (Fig. 6a, b). The two final
groups after reallocation are shown in Fig. 6b, in which C1
comprises the upper portion of the watershed and C2 com-
prises its middle and lower portions. The synthetic monthly
rainfall time series for each cluster is shown in the lower right
plot in Fig. 6b. The plot shows that, as expected, a difference
between clusters cannot be explained by rainfall seasonality,
since it is the same in the entire PAW, but by precipitated
volume. Annual accumulated rainfall in the C1 equals to
889.8 mm while in C2 it equals to 681.1 mm, representing a
difference of 23.5% (208.7 mm). It is also important to notice
that because we used PCA prior to cluster analysis, differences
between groups are more evident precisely in the months
which better represented PC1 (October to April), which ex-
plains most of data variations.

There are two possible explanations for the differences ob-
served between precipitated volumes in C1 and C2, although
the entire PAW is mainly under the influence of the ITCZ, as
previously explained (Mutti et al. 2019). The first is that C1 is
in the upper portion of the basin and, as previously observed in
Fig. 1, the region is surrounded by hills and mountains rang-
ing from 500 to 1000 m in altitude. This landscape configu-
ration strongly influences the occurrence of orographic rain-
fall and local convection, which has already proved to be one
of the main factors associated with high rainfall rates in certain
regions of Northeast Brazil (Lyra et al. 2014; de Andrade et al.
2016). On the other hand, the C2 region is located northwest
of a particular mountain formation known as the Borborema
Plateau. Since trade winds in this region blowmainly from the
southeast (Hastenrath 2012), orographic rainfall occurs up-
wind of the Borborema hills (outside the PAW), and dry winds
descend over the C2 region in the PAW, reducing rainfall
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Table 3 Summary of the
silhouette width analysis for 2 to
10 clusters formed by Euclidean
distance and Ward’s method. The
best results are in italic

Number of clusters 2 3 4 5 6 7 8 9 10

Average silhouette width 0.61 0.51 0.51 0.53 0.54 0.58 0.59 0.56 0.58

Negative silhouette number 2 4 3 2 3 2 3 5 3
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volumes in this region (Correia Filho et al. 2016; Reboita et al.
2016; Mutti et al. 2019).

Through the perspective of water resource management, the
cluster configuration and characteristics favor the overall re-
charge of water storages in the basin. Upper portions receive
higher water inputs which favor the recharge of underground
and surface water courses in the lower portions. However, as
the river flows near its mouth, water input from rainfall is much
smaller and the consumption of water in irrigated crops makes
the C2 region more vulnerable to extended drought periods,
which are recurrent in the region (Marengo et al. 2017b).

3.3 Characterizing trends and anomalies

The time series of both 6-month and 12-month mRAI can be
observed in Fig. 7. Remarkably dry and wet periods could be
consistently represented in both timescales. The main drought
episodes occurred in 1979–1984 (D1), 1990–1993 (D2),
1997–1999 (D3), and more recently in 2012–2015 (D4). D1
and D2 were characterized by their extended duration (5 and
4 years) and peak anomalies being registered by the end of the
drought period. D3 was a shorter and less intense episode in

the PAW. D4, on the other hand, which is known to have
lasted until 2016, peaked at the beginning of the episode
(2012). Afterwards, it retreated in intensity and then rose again
by 2015. All this drought episodes have been previously iden-
tified in the Brazilian semiarid region, and it has been reported
that their impacts were catastrophic, with severe agriculture
losses and increasing social conflicts due to water scarcity
(Marengo et al. 2017b; Brito et al. 2018). Furthermore, D4
drought impacted all states in Northeast Brazil (Brito et al.
2018) and is known to have been the most severe ever regis-
tered when considering the entire Brazilian semiarid region,
causing water reservoirs to collapse (Marengo et al. 2017a,
2018). The main difference between drought episodes in C1
and C2 refers to D1 beginning earlier in C2 (early 1979) when
compared with C1 (early 1980).

Regarding anomalously wet episodes, from 1962 to 1978,
a series of low-intensity, short-duration episodes were identi-
fied, with the 1972–1976 episode standing out. Afterwards,
another episode was registered between 1985 and 1987 and
then a long period without any remarkable positive anomaly
was established until 2008–2009. Differences between C1 and
C2 positive events were minor. Extremely wet events were

Fig. 6 (a) Silhouette width
analysis for two clusters. (b) Final
clusters’ definition and their rain-
fall patterns
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shorter (2 to 3 years) and happened mostly during the first half
of the time series. Droughts, on the other hand, lasted longer
and increased in frequency after 1979.

In relation to the 12-month mRAI, Table 4 shows the top
five wettest and driest years in C1 and C2 and the respective
ENSO and AMM phases, with the highest indices being
highlighted in italic. One can observe that in years with the
most negative mRAI value (5 cases), the ENSO was predom-
inantly in its negative (2 cases) or neutral (2 cases) phase,
while in years with the most positive mRAI (7 cases), the
ENSO phase was mostly positive (4 cases). No clear pattern

for the AMM during years with the most negative mRAI (5
cases) could be identified, although in 2012, its phase was
positive despite the establishment of a La Niña in the
Pacific. During years with the most positive mRAI (7 cases),
the AMM phase was always either negative (5 cases) or neu-
tral (2 cases).

Considering the 54 years in the time series, Figs. 8 and 9
show the frequency distribution of the 6-month mRAI during
each ENSO and AMM phase in each cluster and divided by
season (wet or dry, as previously defined). In La Niña years—
positive ENSO phase (Fig. 8 left panels)—there were positive
rainfall anomalies in 60.0% of the cases in C1 and 57.0% of
the cases in C2 during the wet season. During these months,
negative anomalies were less frequent, being 15.0% and
19.0% of the cases in C1 and C2, respectively. In the dry
season of La Niña years, positive anomalies are more frequent
in C2 (43%) than in C1 (32%), but negative anomalies are also
frequent: 31% in C1 and 26% in C2.

In years when the ENSO phase was negative (El Niño), the
mRAI pattern was more negative, but not remarkably more
frequent than positive anomalies. Very dry and extremely dry
months accounted for 31.0% of the cases in C1 and for 34.0%
in C2, while wet or very wet months occurred in 27.0% and
19.0% of the cases in C1 and C2, respectively. In the dry
season, however, the frequency of negative anomalies was
of 44% (C1) and 42 (C2) while the frequency of positive
anomalies was only of 8% (C1) and 15% (C2).

Regarding the AMM, Fig. 9 (left panels) shows the fre-
quency distribution of the mRAI when the AMM phase is
positive, that is, when there are warmer sea surface tempera-
tures in the North Tropical Atlantic Ocean. This pattern favors
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Fig. 7 6-month and 12-month
mRAI time series in the C1 and
C2 regions

Table 4 Condition of the ENSO and AMM phases (+ positive, −
negative, or n neutral) during the top 5 positive and negative annual
rainfall anomalies (12-month mRAI) in each cluster of the Piranhas-
Açu Watershed. Top negative and positive anomalies are in italic

Year Region mRAI ENSO AMM

1964 C2 + 1.3 – –

1967 C1 + 1.4 n n

1974 C1/C2 + 2.2/+ 2.4 + –

1977 C1 + 1.1 – –

1983 C1/C2 − 1.4/− 1.8 – –

1985 C1/C2 + 2.5/+ 1.9 + –

1990 C1/C2 − 1.3/− 1.5 n n

1993 C1/C2 − 1.8/− 2.0 n –

1998 C1/C2 − 1.8/− 1.6 – n

2008 C1/C2 + 1.3/+ 1.2 + n

2009 C2 + 1.7 + –

2012 C1/C2 − 2.1/− 1.7 + +

A detailed framework for the characterization of rainfall climatology in semiarid watersheds



the northern displacement of the ITCZ, which reduces rainfall
in the PAW region. In these cases, the frequency of occurrence
of months with negative mRAI is of 39.0% in C1 and 55.0%

in C2 during the wet season and of 51.0% in C1 and 44% in
C2 during the dry season. It is interesting to highlight that
extremely dry events occurred in the dry season of both
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clusters, which could not be observed in any negative ENSO
phase (Fig. 8 right panels). During this AMM phase, the oc-
currence of positivemRAI range from 12% (C1wet season) to
27% (C2 dry season).

When the AMM is in its negative phase, sea surface tem-
peratures in the South Tropical Atlantic Ocean are warmer,
which favors the southern displacement of the ITCZ and the
intensification of rainfall over Northeast Brazil. In these cases,
the frequency of occurrence of months with positive mRAI in
the wet season was of 49.0% in C1 and 45.0% in C2, and the
frequency of months with negative mRAI was of 17.0% and
22.0% (Fig. 9 right panels). During the dry season, however,
Fig. 9 does not indicate an evident predominance of wet or
very wet months during negative AMM episodes. On the con-
trary, negative mRAI values were predominant. In Table 4, we
noticed that most of the highest positive anomalies happened
during negative AMM years coupled with La Niña. Figures 8
and 9 show that the wet season in particular is strongly influ-
enced by these two phases of the ENSO and the AMM.

Results found in this analysis corroborate with several pre-
vious studies which assessed the effects of sea surface tem-
perature in the Pacific and Atlantic Oceans on rainfall over
Northeast Brazil (Rao and Hada 1990; Uvo et al. 1998;
Marengo and Bernasconi 2015; Costa et al. 2016; Rao et al.
2016). These studies reported the occurrence of higher (lower)
rainfall volumes in years when the ENSO phase was positive
(negative) and the AMM phase was negative (positive). The
results of the present study, particularly the ones regarding
rainfall anomalies during negative AMM phases, also confirm
the conclusions drawn by said authors, which identified that
the effects of sea surface temperature anomalies in the Pacific
and Atlantic Oceans interact, and therefore, it is extremely
difficult to forecast or predict annual rainfall by analyzing only
one of the two large-scale mechanisms.

In the case of the PAW, the analysis of mRAI frequency
distribution by homogeneous rainfall cluster allows to identify
if there is a particular portion of the watershed which is more
or less vulnerable to the effects of the ENSO and the AMM.
Table 5 shows the results of the chi-squared test in which, for
all studied patterns, the p value was higher than 0.05, suggest-
ing the acceptance of the null hypothesis that the frequency
distributions are equal. This means that, by accepting the null
hypothesis, the occurrence of rainfall anomalies in the entire
watershed is equally influenced by large-scale mechanisms.

Positive or negative trends in the mRAI were analyzed
annually and by season considering 1%, 5%, and 10% signif-
icance levels. Figure 10a shows that there is an annual trend
indicating increase in the frequency of negative rainfall anom-
alies in 24 out of 26 rain gauges in C1. Twenty-five percent of
those are negative trends at the 1% level (p value < 0.01), and
71% are non-significant trends (p value > 0.1). Two isolated
rain gauges presented positive non-significant (p value > 0.1)
trends. Figure 10 b and c show trends when considering only

wet season and dry season months, respectively. In these
cases, one can notice that 30.0% of the C1 rain gauges pre-
sented significant negative mRAI trends during the wet sea-
son. This indicates that negative rainfall anomalies are becom-
ing more frequent in part of the upper PAW, which may rep-
resent a risk to the entire watershed because it is its main
recharge zone. Results are less conclusive in the dry season
(Fig. 10c) when most gauges presented non-significant either
positive or negative trends. However, it is important to note
that during the dry season, rainfall ranges from 0 to 20 mm per
month in average, and therefore, even small deviations from
the mean may incur in relevant changes when identifying
anomalies through the mRAI, even when using a 6-month
aggregated timescale. Thus, although results indicate that
some gauges show increase in the frequency of occurrence
of positive anomalies during the dry season, it does not mean
that annual precipitated volumes will be significantly
impacted.

Results were similar in C2, with negative annual mRAI
trends in 26 out of 30 rain gauges (out of which 31% are
significant—p value < 0.1) and four gauges with non-
significant (p value >0.1) positive trends (Fig. 10a). In the
wet season, 33% of total gauges also presented significant (p
value < 0.1) negative mRAI trends (Fig. 10b). It is important
to note that in C2, although there were relatively less gauges
portraying significant trends if compared with C1, they were
well distributed throughout the cluster region. This indicates
that the increase in the occurrence of negative rainfall anom-
alies was captured in all the extension of the basin. Regarding
the dry season, results were similar to the ones found in C1,
with inconclusive results due to the nature of monthly rainfall
during these periods.

Trends found in this study reaffirm results found in previ-
ous studies in Northeast Brazil, which indicated negative
trends in precipitated volumes, including in the semiarid re-
gion, particularly during the wet season (de Oliveira et al.

Table 5 Results of the
chi-squared test between
the frequency of distri-
bution of the 6-month
mRAI in C1 and C2 at a
5% significance level

Pattern p value

ENSO +

Wet season 0.86

Dry season 0.43

ENSO −
Wet season 0.34

Dry season 0.27

AMM +

Wet season 0.23

Dry season 0.38

AMM −
Wet season 0.56

Dry season 0.88
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2014, de Oliveira et al. 2017; Lacerda et al. 2015; Marengo
and Bernasconi 2015; Marengo et al. 2017a, b; Bezerra et al.
2018; Dubreuil et al. 2018; da Silva et al. 2018). The present
study, however, is different in the sense that it found similar
results at the scale of watersheds instead of regional scale. In
the PAW, although not all rain gauges presented significant
trends, the spatial distribution of those that indeed portrayed
negative trends was relatively homogeneous. The few stations
that presented positive anomalies should be looked into indi-
vidually, as they are probably being influenced by local fac-
tors. Results found in C1 seem to be more conclusive as to the
increase of negative rainfall anomalies, especially in the wet
season in the southernmost portions of the basin.

4 Conclusion

The objective of this study was to present a comprehensive
approach for the characterization of rainfall climatology over
watersheds, particularly those located in semiarid regions
lacking consistent measured data, with the PAW as an exam-
ple. This study also advocates the use of renowned but simple
techniques in order to gap fill monthly data time series, iden-
tify homogeneous rainfall subregions, assess monthly and an-
nual rainfall anomalies (through the mRAI) in relation to
teleconnection patterns, and analyze trends in the occurrence
of positive and negative rainfall anomalies. Thus, we hope the
proposed approach might be replicated for the climatological
analysis of rainfall in other watersheds which share similar
climate and data availability characteristics.

Gap filling of monthly data with up to 30% of missing data
performed better when combining different spatial interpolation
techniques. Choosing the best results among the MLAD, SBE,
and IDW for each month and each station improved monthly

gap filling performance up to 18.2% if compared with choosing
only one method. Cluster analysis allowed the identification of
two homogeneous regions with different rainfall patterns.
Regarding teleconnection patterns associated with rainfall
anomalies (mRAI), results corroborated with previous studies
in Northeast Brazil and the semiarid region. In years when the
ENSO (AMM) was in its positive (negative) phase, there was a
higher probability for the occurrence of months with above-
average rainfall, while the opposite was also true. Trend analy-
sis showed that there is evidence of an increase in the occur-
rence of months with negative mRAI, that is, with below-
average rainfall, especially during the wet season. In the C1
region, there were more rain gauges in which significant nega-
tive trends were identified if compared with C2, indicating that
it might be more vulnerable to potential drastic reductions in
rainfall volumes, and therefore, the recharge of water storages
in the rest of the watershed might be compromised.

The main limitations of this study are inherent to the database
itself, which presents gaps of up to 30%. Although they have
been properly and satisfactorily taken care of, important informa-
tion might have been lost due to incomplete database. For exam-
ple, despite rainfall anomalies could have been calculated and
assessed, extreme event analysis at finer scales would be unfea-
sible with the used database. Alternatives could have been
adopted such as the merging of databases of different types (sat-
ellite data or reanalyzed data), although computational effort
would greatly increase. Furthermore, the proposed
teleconnection patterns analysis is rather simple, and more con-
clusive results could have been found usingmore robustmethods
that, for example, would allow the identification of the combined
effect of the two large-scale mechanisms which were considered
in this study. It is also important to take note that this methodol-
ogy should be adapted according to the climatological rainfall
and teleconnection patterns of each watershed and region.

Fig. 10 Trends in the mRAI in C1 and C2 at different significance levels. (a) Annual. (b) Wet season. (c) Dry season. Red symbols represent negative
trends and blue symbols represent positive trends
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