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Abstract: Underactuated mechanical systems have several applications in the industrial activity. With that in mind, the
study of controllers suitable for these type of mechanisms is vital. In this article, a controller composed of the combina-
tion of the sliding mode and artificial neural networks techniques is proposed. Being tested on a Furuta pendulum, with
a highly nonlinear dynamic and uncertainties, the results clearly show a great improvement in the overall performance.
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INTRODUCTION

For fully actuated systems, characterized for having the same number of actuator and degrees of freedom, the usage
of traditional control methodologies, such as, feedback linearization (Slotine and Li, 1991) and sliding modes control
(Ashrafiuon and Erwin, 2008), have been shown effective for these type of systems.

However, in underactuated systems, with less actuator than degrees of freedom, the conventional methods cited above
are challenged due to the high number of uncertainties and the dynamic complexity associated with the system (Bessa and
Kreuzer, 2018). Thus, in the last years, the development of control techniques for highly uncertain and nonlinear systems
received more attention. Mainly, the usage of adaptive or intelligent techniques, as well as, modification of already proven
and highly used control methods (Farrel and Polycarpou, 2006).

Also, should be taken into account the determining factor that are responsible for underactuation. Seifried (2013)
expose three factors, design errors, non rigid or unmodeled dynamics and actuator failure. These factor render evident the
necessity of the study and development of controllers capable of tackling such situations and risks. In addition, advance-
ment in the field allows the designer to completely neglect some uncertainties, such as, friction and model parameters,
reduction of energy cost with removal of actuators and viability of certain mechanisms for practical industrial usage, such
as cranes and quadrotors.

Intelligent control has been proved to be effective to deal with nonlinear systems (Bessa and Barrêto, 2010; Bessa et
al., 2012; Tanaka et al., 2013). Therefore, the idea of combining artificial neural networks (ANN) and a sliding modes
controller (SMC) to cope with unmodeled external influences and lack of parameters precision, respectively, is very
appealing and proposed by this article.

METHODOLOGY

Mathematical Equations

Utilizing lagrangian mechanics to obtain the movement equations of mechanical systems, it is possible to write these
equations for a given mechanism, with n degrees of freedom and m actuators, in the following matrix form (Seifried,
2013):

MMM(qqq)q̈qq+ kkk(qqq, q̇qq) = ggg(qqq, q̇qq)+BBB(qqq)uuu (1)

where qqq ∈ Rn is vector of generalized coordinates, uuu ∈ Rm is the actuator gain vector, MMM(qqq) ∈ Rnxn is the inertia matrix,
positive and symmetric, kkk(qqq, q̇qq) ∈Rn represents the influence of centrifugal forces and Coriolis, ggg(qqq, q̇qq) ∈Rn is the vector
of external forces applied in the system and BBB(qqq) ∈ Rnxm is the input vector.

With the objective of simplifying the aplication of the control technique, the Eq.(1) can be reorganized in a new form,
where the actuated and underactuated variables, qqqa and qqqu respectively, are separated and the effect of centrifugal, Coriolis
and generalized forces are merged in a single term. (Ashrafiuon and Erwin, 2008; Seifried and Blajer, 2013).[

MMMaa MMMau
MMMua MMMuu

][
q̈qqa
q̈qqu

]
=

[
fff a +uuu

fff u

]
(2)

where fff a = ggga− kkka and fff u = gggu− kkku.
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Control Methodology

The control law acting in the system should be capable of ensuring that the vector of generalized coordinates, qqq, will
follow the desired trajectory, qqqd . Defining the variable q̃qq = qqq− qqqd as the tracking error vector, the necessary conditions
defined above can be rewritten as: q̃qq→ 0 as t→ 8.

Considering, in the application, the sliding modes control methodology. It is necessary to define the sliding surfaces
for each actuated coordinate of the system. Thus, for sss ∈ Rm in the state space, is defined:

sss(q̃qq) = αa ˙̃qqqa +λaq̃qqa +αu ˙̃qqqu +λuq̃qqu = 0

= αaq̇qqa +αuq̇qqu + sssr = 0
(3)

where sssr =−αaq̇qqd
a−αuq̇qqd

u +λaq̃qqa +λuq̃qqu.

Consequently, the sliding modes controller must satisfy the candidate Lyapunov function and the slidind condition,
presented, respectively, in Eq.(4) and Eq.(5). Which, by definition, guarantee stability and convergence to the tracking
error dynamic(Ashrafiuon and Erwin, 2008).

V (qqq, q̇qq) =
1
2

sss>sss (4)

V̇ (qqq, q̇qq)≤ 0 (5)

On this basis, the control law is defined as (Ashrafiuon and Erwin, 2008):

uuu =−M̂MM
−1
s

[
f̂ff s + ṡssr +κκκsgn(sss)

]
(6)

where M̂MMs and f̂ff s are estimates of MMMs and fff s, matrices that represent the behavior of the real system. The controller
gain, κκκ , must be determined taking into account the model parameters errors, any unmodeled dynamics and external
disturbances (Bessa and Kreuzer, 2018). For the control law described in Eq.(6) to work, the following assumptions are
made. The error in the estimated variables are unknown but bounded, and the vector of generalized coordinates qqq and
desired trajectory qqqd are available.

However, the discontinuous term in Eq.(6), the signal function, creates a well known effect in the actuated variables,
the chattering. A strategy to deal with these unwanted high-frequency oscillations is to substitute the signal function for a
smooth approximation, defined in Eq.(7), nearby the switching surface. The substitution can reduce and, even, completely
eliminate the chattering effect. But renders the controller incapacitated, in other words, there will always be a steady-state
error.

sat(si/φi) =

{
sgn(si) i f |si/φi| ≥ 1

si/φi i f |si/φi| ≤ 1 (7)

where φ ∈ Rmxm is the diagonal matrix defining the boundary layer, sat(·) is the saturation function and κκκ is defined
according to κi ≥ ζ +δi + |d̂i| in order to ensure convergence.

The addition of the compensation term, d̂dds, based in an artificial neural networks, within the smoothed version of the
control law shown in Eq.(6) is proposed.

uuu =−M̂MM
−1
s

[
f̂ff s + d̂dds + ṡssr +κκκ sat(φφφ−1sss)

]
(8)

This compensator has the objective of handling the remaining errors and uncertainties, related to ddds, inside the bound-
ary layer created by the control law presented in Eq.(8). Assuming the form of a RBF neural network (Haykin, 2008), the
approximation d̂dds can be calculated by the Eq.(9).

d̂i(si) = ŴWW
>
i ΨΨΨi(si) (9)

where ŴWW i = [ŵi1 . . . ŵiN ]
> are vectors of weights of all N nodes and each sliding surface, ΨΨΨi(si) = [ψi1(si) . . .ψiN(si)]

>

are the activation function vectors, with ψi j being a gaussian function with determined center and width.

Assuming the existence of a vector of ideal weights W̄WW that perfectly model ddds, and following the procedure as devel-
oped in Bessa et al(2017), is defined a adaptation law that guarantees the best estimate. This is shown in Eq.(10).

˙̂WWW = ηisiΨΨΨi(si) (10)

where η is a positive constant associated to the learning rate.
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APPLIED EXAMPLE

The system chosen to apply the proposed control law is the rotational inverted pendulum (Furuta), demonstrated in
Fig. 1, with the following movement equation.[

−I1− l12m2− l22m2
2 + 1

2 l22m2 cos(2θ2) l1l2m2 cos(θ2)

l1l2m2 cos(θ2) −I2− l22m2

][
θ̈1
θ̈2

]
+[

−l2m2 sin(θ2)θ̇2(2l2 cos(θ2)θ̇1 + l1θ̇2)

l22m2 cos(θ2)sin(θ2)θ̇
2
1

]
=

[
0

l2m2 sin(θ2)g

]
+

[
τ

0

] (11)

where θ j represent angular displacement, m j is the mass associated with that element, with j = 1,2;, respectively
representing the rotation base and the pendulum. I1 is the inertia moment of the rotation base around the Z1 axis, I2 is
the inertia moment of the pendulum around the Y2 axis, l1 is the radius of the rotation base, and l2 is the length of the
pendulum.

Figure 1: Representation of the system modeled
with the fact the only θ1 can be directly controlled by the actuator. Following the proposed methodology by Ashrafiuon
and Erwin (2008), the switching surface by s = αa

˙̃
θ1 +λaθ̃1 +αu

˙̃
θ2 +λuθ̃2, with θ̃1 = θ1−θ d

1 and θ̃2 = θ2−θ d
2 being

the state errors. Then, with the inclusion of the compensation term that, in this case, have the objective to approximate the
unmodeled dynamic of viscous damping, the control law is:

u =−M̂s
[

f̂s + d̂s + ṡr +κsat(s/φ)
]

(12)

where κ is the control gain, φ is associated to the width of the boundary layer, ṡr =−αaθ̈ d
1 −αuθ̈ d

2 +λa
˙̃
θ1 +λu

˙̃
θ2, and

M̂s =
−2(αa(A)+αuD)

−2I1(A)−m2(I2(2l12 + l22)+ l22B)+C(I2 +B)cos(2θ2)

f̂s =
−E(2αaD+αu(2I1 +2l12 +C−C cos(2θ2)))(g+ l2 cos(θ2)θ̇1

2
)

−2I1(A)−m2(I2(2l12 + l22)+ l22B)+C(I2 +B)cos(2θ2)

+
E(4l2 cos(θ2)(αa(A)+αuD)θ̇1θ̇2 +2l1(αa(A+αuD)θ̇2

2
))

−2I1(A)−m2(I2(2l12 + l22)+ l22B)+C(I2 +B)cos(2θ2)

with A = I2 + l22m2, B = (l12 + l22)m2, C = l22m2, D = l1l2m2 cos(θ2), E = l2m2 sin(θ2).
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Fig. 2(a) represents the artificial neural network architecture used to estimate the parameter d̂s for the furuta pen-
dulum. This neural network is composed by: seven nodes centered in [−φ/4 −φ/20 −φ/40 0 φ/40 φ/20 φ/4]>

with the width vector being [ψ/2 ψ/5 ψ/5 ψ/15 ψ/5 ψ/5 ψ/2]>. The formed gaussian functions, using the control
parameters, are shown in Fig. 2(b).

(a) Neural network architecture (b) Activation functions of the neural network

Figure 2: Representation of the RBF neural network

The simulation were executed to verify the influence of the adaptive term in the system’s control. It was employed
the Runge-Kutta method with the sampling rates of 100Hz for the controller and 200Hz for the system dynamics and the
following simulation parameters are considered: m1 = 2.16 kg, m2 = 0.494 kg, l1 = 0.05 m, l2 = 0.2 m, I1 = 0.0027
kgm2, I2 = 0.0016 kgm2, and a viscous damping term,

[
c1θ̇1 c2θ̇2

]> with c1 = 0.003 N ms−1 and c2 = 0.001 N ms−1,
is added to system’s model in Eq.(11). Regarding the control parameters, the following values were chosen: αa = 0.1, αu
= 1, λa = 0.1, λu = 1, φ = 0.4, ψ = 0.4, ζ = 0.1, δ = 0.5, η = 200, and a 15% error in all simulation parameters. The
initial conditions of the system are set to 0o for the rotation base and approximately 23o for the pendulum. Fig. 3 shows
the obtained results.
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(a) Angular position of the rotating base
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(b) Angular position of the pendulum
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(c) Phase portrait, conventional SMC
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(d) Phase portrait, SMC+ANN
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(e) Entry torque applied by the actuator
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Figure 3: Simulation results for control methodology SMC+ANN

As observed in Fig. 3, there is a great difference in efficacy between the traditional SMC and the SMC+ANN method.
Among the benefits, can be cited: reduction in control effort made by the actuator, better stabilization time e decrease in
oscillations to an equilibrium point, in addition to a total elimination of the chattering effect.

Also, it is demonstrated in Fig. 3(f) the capacity of the neural network to estimate the system’s error. Although
the error is not precisely approximated, it is enough for the sliding modes control law, which has a compensator for the
parametric uncertainties giving robustness for the controller, to be able to stabilize the system.

CONCLUSION

This work explores the idea of controlling underactuated mechanical systems with a sliding modes controller and ar-
tificial neural network methodology. Both convergence and stability properties are proven using the Lyapunov’s stability
control. The effectiveness of this control law is verified by numerical simulations with results confirming that for under-
actuated system, the proposed modification to the sliding modes controller is a great form to cope with the uncertainties
and dynamic complexity.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the Brazilian Coordination for the Improvement of Higher
Education Personnel (CAPES) and of the Federal University of Rio Grande do Norte (UFRN).

REFERENCES
Ashrafiuon, H, Erwin, R.S., 2008, “Sliding mode control of underactuated multibody systems and its application to

shape change control”, International Journal of Control, Vol.81, No. 12, pp. 1849–1858.
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