FACISA - Artigos publicados em periódicos
URI Permanente para esta coleçãohttps://repositorio.ufrn.br/handle/1/2974
Navegar
Navegando FACISA - Artigos publicados em periódicos por Autor "Araújo, John Fontenele"
Agora exibindo 1 - 1 de 1
- Resultados por página
- Opções de Ordenação
Artigo Hippocampal and cortical communication around micro-arousals in slow-wave sleep(Nature Publishing Group, 2019-04-10) Lima, Gustavo Zampier dos Santos; Lobão-Soares, Bruno; Corso, Gilberto; Belchior, Hindiael Aeraf; Lopes, Sergio Roberto Lopes; Prado, Thiago de Lima; Nascimento, George Carlos do; Araújo, John Fontenele; Ivanov, Plamen Ch.Sleep plays a crucial role in the regulation of body homeostasis and rhythmicity in mammals. Recently, a specific component of the sleep structure has been proposed as part of its homeostatic mechanism, named micro-arousal. Here, we studied the unique progression of the dynamic behavior of cortical and hippocampal local field potentials (LFPs) during slow-wave sleep-related to motor-bursts (micro-arousals) in mice. Our main results comprised: (i) an abrupt drop in hippocampal LFP amplitude preceding micro-arousals which persisted until the end of motor-bursts (we defined as t interval, around 4s) and a similar, but delayed amplitude reduction in cortical (S1/M1) LFP activity occurring at micro-arousal onset; (ii) two abrupt frequency jumps in hippocampal LFP activity: from Theta (6–12 Hz) to Delta (2–4 Hz), also t seconds before the micro-arousal onset, and followed by another frequency jump from Delta to Theta range (5–7 Hz), now occurring at micro-arousal onset; (iii) a pattern of cortico-hippocampal frequency communication precedes micro-arousals: the analysis between hippocampal and cortical LFP fluctuations reveal high coherence during τ interval in a broader frequency band (2–12 Hz), while at a lower frequency band (0.5–2 Hz) the coherence reaches its maximum after the onset of micro-arousals. In conclusion, these novel findings indicate that oscillatory dynamics pattern of cortical and hippocampal LFPs preceding micro-arousals could be part of the regulatory processes in sleep architecture