Instituto Internacional de Física
URI Permanente desta comunidadehttps://repositorio.ufrn.br/handle/123456789/30127
Navegar
Navegando Instituto Internacional de Física por Autor "Cavalcanti, Daniel"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Artigo Efficient and operational quantifier of nondivisibility in terms of channel discrimination(Physical Review A, 2025-02-04) Nery, Ranieri Vieira; Bernardes, Nadja Kolb; Cavalcanti, Daniel; Araújo, Rafael Chaves Souto; Duarte, CristhianoThe understanding of open quantum systems is crucial for the development of quantum technologies. Of particular relevance is the characterization of divisible quantum dynamics, seen as a generalization of Markovian processes to the quantum setting. Here, we propose a way to detect divisibility and quantify how nondivisible a quantum channel is through the concept of channel discrimination. We ask how well we can distinguish generic dynamics from divisible dynamics. We show that this question can be answered efficiently through semidefinite programming, which provides us with an operational and efficient way to quantify nondivisibilityArtigo Statistical properties of the quantum internet(American Physical Society, 2020-05-27) Brito, Samuraí Gomes de Aguiar; Silva, Askery Alexandre Canabarro Barbosa da; Araújo, Rafael Chaves Souto; Cavalcanti, DanielSteady technological advances are paving the way for the implementation of the quantum internet, a network of locations interconnected by quantum channels. Here we propose a model to simulate a quantum internet based on optical fibers and employ network-theory techniques to characterize the statistical properties of the photonic networks it generates. Our model predicts a continuous phase transition between a disconnected and a highly connected phase and that the typical photonic networks do not present the small world property. We compute the critical exponents characterizing the phase transition, provide quantitative estimates for the minimum density of nodes needed to have a fully connected network and for the average distance between nodes. Our results thus provide quantitative benchmarks for the development of a quantum internet