Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Barreto, Cephas Alves da Silveira"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Tese
    Seleção e rotulagem de instâncias para métodos semissupervisionados indutivos
    (Universidade Federal do Rio Grande do Norte, 2023-07-24) Barreto, Cephas Alves da Silveira; Canuto, Anne Magaly de Paula; Xavier Júnior, João Carlos; http://lattes.cnpq.br/5088238300241110; http://lattes.cnpq.br/1357887401899097; https://orcid.org/0000-0002-4756-8571; http://lattes.cnpq.br/0693889560532640; Nascimento, Diego Silveira Costa; Cavalcanti, George Darmiton da Cunha; Vale, Karliane Medeiros Ovidio; Bezerra, Leonardo César Teonácio
    Nos últimos anos, a utilização de técnicas de Aprendizado de Máquina (AM) para resolver problemas reais tem se tornado muito comum e um padrão tecnológico adotado em uma infinidade de domínios. Uma série desses domínios, entretanto, não possui dados rotulados suficientes para proporcionar aos métodos de AM um bom desempenho. Para tratar esse problema, foram desenvolvidos os métodos de aprendizado semissupervisionado, um tipo de método capaz de utilizar as instâncias rotuladas e não-rotuladas na construção de seu modelo. Dentre os métodos de aprendizado semissupervisionado, destacam-se os métodos indutivos. Os métodos do tipo wrapper, categoria particular dentre os métodos indutivos, utilizam um processo, muitas vezes iterativo, que envolve: treinamento do método com os dados rotulados; seleção dos melhores dados não-rotulados; e rotulagem dos dados selecionados. Apesar de se mostrar um processo simples e eficiente, é muito comum que erros na seleção ou na rotulagem ocorram, o que acaba por deteriorar o desempenho final do método. Buscando a diminuição dos erros de seleção e rotulagem em métodos indutivos, especialmente os métodos do tipo wrapper, esta pesquisa tem por objetivo estabelecer abordagens de seleção e rotulagem mais robustas e menos suscetíveis a erros. Para tal, são propostas uma abordagem de seleção e rotulagem de instâncias baseada em concordância de classificação e também uma abordagem de seleção e rotulagem baseada na utilização de métrica de distância como fator adicional a um critério de seleção já utilizado (e.g. confiança ou concordância). As abordagens propostas podem ser aplicadas a qualquer método wrapper e foram testadas sobre 42 datasets com os métodos Self-training, Co-training e Boosting. Os resultados obtidos apontam que as propostas trazem ganhos para os métodos em termos de acurácia e também de F-measure.
  • Carregando...
    Imagem de Miniatura
    Dissertação
    Uso de técnicas de aprendizado de máquina para identificação de perfis de uso de automóveis baseado em dados automotivos
    (2018-08-24) Barreto, Cephas Alves da Silveira; Xavier Júnior, João Carlos; Silva, Ivanovitch Medeiros Dantas da; ; ; ; Silva Júnior, Carlos Nascimento; ; Araújo, Daniel Sabino Amorim de;
    A violência no trânsito tem causado grandes prejuízos e, acima de tudo, vitimado muitos cidadãos, usuários ou não de automóveis. Segundo estudos do Observatório Nacional da Segurança Viária (ONSV, 2017), 90% dos acidentes de trânsito são causados por imprudência dos condutores, 5% por defeitos nos automóveis e mais 5% por má condição das rodovias. Uma das alternativas para embasar ações que enfrentam esses problemas é entender como se comportam os condutores de automóveis quando estão ao volante. Usar as informações do veículo para entender o comportamento dos motoristas é uma questão que tem ganhado importância nos últimos anos e, diante dos problemas envolvidos, identificar perfis de utilização de automóveis tem sido, cada vez mais, um tema de pesquisa em todo mundo. Este trabalho apresenta um modelo de utilização de técnicas (descritivas e preditivas) de Aprendizado de Máquina sobre dados de veículos obtidos via On-Board Diagnostics II (OBD-II) para identificação de possíveis perfis de uso automotivo. O modelo criado obteve, após todo o processo de refinamento, mais que 99% de acurácia na identificação de 3 perfis (low, mid e high). Para aplicar o modelo, foi criada uma plataforma baseada numa arquitetura distribuída (Servidor Web, Aplicativo Móvel e API de serviço). Essa plataforma é capaz de capturar os dados de um automóvel e devolver o seu perfil de uso de seu condutor (motorista).
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM