Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Camelo, Henrique do Nascimento"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Tese
    Modelos híbridos estocástico - matemático para previsão de velocidade do vento
    (2018-11-23) Camelo, Henrique do Nascimento; Lucio, Paulo Sérgio; ; ; Alves, José Maria Brabo; ; Leal Júnior, João Bosco Verçosa; ; Sakamoto, Meiry Sayuri; ; Carvalho, Paulo César Marques de;
    Nos últimos dez anos, é possível identificar maiores inserções de recursos renováveis de energias para geração de eletricidade na matriz energética nacional, como é o caso da geração eólica. Isto pode ser justificado em diversos aspectos, por exemplo, em relação à fonte eólica que tem exercido importante função na matriz brasileira ao fornecer uma alternativa financeiramente viável à principal geradora de eletricidade do país, como a fonte hidráulica. Outro ponto a favor da geração eólica trata-se da questão ambiental, a utilização deste recurso deve ser encarada sobretudo neste aspecto. Além disso, no Nordeste do Brasil, há a chamada complementariedade, isto quando as vazões dos rios para gerarem energia são baixas, principalmente, segundo semestre do ano, em grande parte da mesma os ventos são, climatologicamente, mais intensos. A quantidade de trabalhos sobre geração eólica no Brasil cresce a cada dia, trazendo benefícios ao setor em particular e fornecendo garantias de exploração dos ventos locais. Nesse sentido este trabalho tem como objetivo apresentar dois modelos híbridos inovadores os quais poderão auxiliar no setor eólico por serem capazes de realizar previsões das velocidades dos ventos com boa acurácia afirmação baseada em medidas de validações dos modelos. Os modelos foram elaborados a partir das combinações matemáticas de dois modelos clássicos de séries temporais (Auto-Regressivo Integrado de Médias Móveis e Entradas Exógenas (ARIMAX) e suavização exponencial com o HoltWinters (HW)) com um modelo de inteligência artificial (Rede Neural Artificial (RNA)). Nas comparações entre as séries temporais (observada e ajustada em termos de médias mensais e horárias) é possível identificar, por exemplo, valor do coeficiente de eficiência Nash-Sutcliffe (NS) de aproximadamente 98%, e também valor de erro percentual em torno de 4,5%, os quais de acordo com a literatura confirmam a boa acurácia dos modelos. Um grande diferencial dos modelos híbridos propostos quando comparado com outros tradicionais da literatura está no fato de que conseguem incorporar as características (linear e não-linear), as quais são frequentemente encontradas em séries temporais, uma condição importante para proporcionar maiores precisões das velocidades do vento previstas fornecendo, desta maneira, maiores reduções de medidas estatísticas de erros, por exemplo, em alguns casos da ordem de 50%,quando comparado com os modelos clássicos que os compõem. Os modelos híbridos propostos podem representar importantes ferramentas norteadoras aos tomadores de decisão do setor de geração eólica no tocante a exploração dos ventos, entretanto, outras áreas de interesse podem ser analisadas quanto à viabilidade dos mesmos.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM