Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Conde-Ocazionez, Sergio"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 3 de 3
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Artigo
    Neuronal Assembly Detection and Cell Membership Specification by Principal Component Analysis
    (2011) Lopes-dos-Santos, Vítor; Conde-Ocazionez, Sergio; Nicolelis, Miguel A. L.; Ribeiro, Sidarta Tollendal Gomes; Tort, Adriano Bretanha Lopes
  • Nenhuma Miniatura disponível
    Artigo
    Optogenetic inactivation of the medial septum impairs long-term object recognition memory formation
    (Springer Science and Business Media LLC, 2022-06-07) Gonzalez, Maria Carolina; Radiske, Andressa; Rossato, Janine; Conde-Ocazionez, Sergio; Bevilaqua, Lia Rejane Muller; Cammarota, Martin Pablo
    Theta is one of the most prominent extracellular synchronous oscillations in the mammalian brain. Hippocampal theta relies on an intact medial septum (MS) and has been consistently recorded during the training phase of some learning paradigms, suggesting that it may be implicated in hippocampus-dependent long-term memory processing. Object recognition memory (ORM) allows animals to identify familiar items and is essential for remembering facts and events. In rodents, long-term ORM formation requires a functional hippocampus but the involvement of the MS in this process remains controversial. We found that training adult male Wistar rats in a long-term ORM-inducing learning task involving exposure to two different, but behaviorally equivalent novel stimuli objects increased hippocampal theta power, and that suppressing theta via optogenetic MS inactivation caused amnesia. Importantly, the amnesia was specific to the object the animals were exploring when the MS was inactivated. Taken together, our results indicate that the MS is necessary for long-term ORM formation and suggest that hippocampal theta activity is causally linked to this process
  • Carregando...
    Imagem de Miniatura
    Artigo
    PKMζ inhibition disrupts reconsolidation and erases object recognition memory
    (2019-03-06) Rossato, Janine I.; Gonzalez, Maria Carolina; Radiske, Andressa; Apolinário, Gênedy; Conde-Ocazionez, Sergio; Bevilaqua, Lia Rejane Müller; Cammarota, Martín Pablo
    Object recognition memory (ORM) confers the ability to discriminate the familiarity of previously encountered items. Reconsolidation is the process by which reactivated memories become labile and susceptible to modifications. The hippocampus is specifically engaged in reconsolidation to integrate new information into the original ORM through a mechanism involving activation of brain-derived neurotrophic factor (BDNF) signaling and induction of LTP. It is known that BDNF can control LTP maintenance through protein kinase Mζ (PKMζ), an atypical protein kinase C isoform that is thought to sustain memory storage by modulating glutamatergic neurotransmission. However, the potential involvement of PKMζ in ORM reconsolidation has never been studied. Using a novel ORM task combined with pharmacological, biochemical, and electrophysiological tools, we found that hippocampal PKMζ is essential to update ORM through reconsolidation, but not to maintain the inactive recognition memory trace stored over time, in adult male Wistar rats. Our results also indicate that hippocampal PKMζ acts downstream of BDNF and controls AMPAR synaptic insertion to elicit reconsolidation and suggest that blocking PKMζ activity during this process deletes active ORM.SIGNIFICANCE STATEMENT Object recognition memory (ORM) is essential to remember facts and events. Reconsolidation integrates new information into ORM through changes in hippocampal plasticity and brain-derived neurotrophic factor (BDNF) signaling. In turn, BDNF enhances synaptic efficacy through protein kinase Mζ (PKMζ), which might preserve memory. Here, we present evidence that hippocampal PKMζ acts downstream of BDNF to regulate AMPAR recycling during ORM reconsolidation and show that this kinase is essential to update the reactivated recognition memory trace, but not to consolidate or maintain an inactive ORM. We also demonstrate that the amnesia provoked by disrupting ORM reconsolidation through PKMζ inhibition is due to memory erasure and not to retrieval failure.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM