Navegando por Autor "Eriksson, Anders"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Artigo Developmental disruption of recurrent inhibitory feedback results in compensatory adaptation in the Renshaw cell - motor neuron circuit(2017-05-08) Enjin, Anders; Perry, Sharn; Hilscher, Markus M; Nagaraja, Chetan; Larhammar, Martin; Gezelius, Henrik; Eriksson, Anders; Leão, Emelie Katarina Svahn; Kullander, KlasWhen activating muscles, motor neurons in the spinal cord also activate Renshaw cells, which provide recurrent inhibitory feedback to the motor neurons. The tight coupling with motor neurons suggests that Renshaw cells have an integral role in movement, a role that is yet to be elucidated. Here we used the selective expression of the nicotinic cholinergic receptor alpha 2 (Chrna2) in mice to genetically target the vesicular inhibitory amino acid transporter (VIAAT) in Renshaw cells. Loss of VIAAT from Chrna2Cre expressing Renshaw cells did not impact any aspect of drug-induced fictive locomotion in the neonatal mouse, nor did it change gait, motor coordination or grip strength in adult mice of both sexes. However, motor neurons from neonatal mice lacking VIAAT in Renshaw cells received spontaneous inhibitory synaptic input with a reduced frequency, showed lower input resistance and had an increased number of proprioceptive glutamatergic and calbindin labeled putative Renshaw cell synapses on their soma and proximal dendrites. Concomitantly, Renshaw cells developed with increased excitability and a normal number of cholinergic motor neuron synapses indicating a compensatory mechanism within the recurrent inhibitory feedback circuit. Our data suggest an integral role for Renshaw cell signaling in shaping the excitability and synaptic input to motor neurons.Artigo OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons(2012-11) Leão, Richardson Naves; Mikulovic, Sanja; Leão, Emelie Katarina Svahn; Munguba, Hermany; Gezelius, Henrik; Enjin, Anders; Patra, Kalicharan; Eriksson, Anders; Loew, Leslie M; Tort, Adriano Bretanha Lopes; Kullander, KlasThe vast diversity of GABAergic interneurons is believed to endow hippocampal microcircuits with the required flexibility for memory encoding and retrieval. However, dissection of the functional roles of defined interneuron types has been hampered by the lack of cell-specific tools. We identified a precise molecular marker for a population of hippocampal GABAergic interneurons known as oriens lacunosum-moleculare (OLM) cells. By combining transgenic mice and optogenetic tools, we found that OLM cells are important for gating the information flow in CA1, facilitating the transmission of intrahippocampal information (from CA3) while reducing the influence of extrahippocampal inputs (from the entorhinal cortex). Furthermore, we found that OLM cells were interconnected by gap junctions, received direct cholinergic inputs from subcortical afferents and accounted for the effect of nicotine on synaptic plasticity of the Schaffer collateral pathway. Our results suggest that acetylcholine acting through OLM cells can control the mnemonic processes executed by the hippocampus.