Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Lopes, C. E. Ferreira"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 10 de 10
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Artigo
    New Suns in the Cosmos II: differential rotation in Kepler Sun-like stars
    (Royal Astronomical Society, 2016) Chagas, M. L. das; Bravo, J. P.; Costa, A. D.; Lopes, C. E. Ferreira; Sobrinho, R. Silva; Paz-Chinchón, F.; Leão, I. C.; Valio, A.; Freitas, D. B. de; Martins, B. L. Canto; Lanza, A. F.; Medeiros, José Renan de
    The present study reports the discovery of Sun-like stars, namely main-sequence stars with Teff, log g and rotation periods Prot similar to solar values, presenting evidence of surface differential rotation (DR). An autocorrelation of the time series was used to select stars presenting photometric signal stability from a sample of 881 stars with light curves collected by the Kepler space-borne telescope, in which we have identified 17 stars with stable signals. A simple two-spot model together with a Bayesian information criterion were applied to these stars in the search for indications of DR; in addition, for all 17 stars, it was possible to compute the spot rotation period P, the mean values of the individual spot rotation periods and their respective colatitudes, and the relative amplitude of the DR.
  • Carregando...
    Imagem de Miniatura
    Artigo
    New suns in the cosmos?
    (IOP Publishing, 2013) Freitas, D. B. de; Leao, Izan de Castro; Lopes, C. E. Ferreira; Paz-Chinchon, F.; Martins, Bruno Leonardo Canto; Alves, S.; Medeiros, José Renan de; Catelan, M.
    The present work reports on the discovery of three stars that we have identified to be rotating Sun-like stars, based on rotational modulation signatures inferred from light curves from the CoRoT mission’s Public Archives. In our analysis, we performed an initial selection based on the rotation period and position in the period–Teff diagram. This revealed that the stars CoRoT IDs 100746852, 102709980, and 105693572 provide potentially good matches to the Sun with a similar rotation period. To refine our analysis, we applied a novel procedure, taking into account the fluctuations of the features associated with photometric modulation at different time intervals and the fractality traces that are present in the light curves of the Sun and of these “New Sun” candidates alike. In this sense, we computed the so-called Hurst exponent for the referred stars, for a sample of 14 CoRoT stars with sub- and super-solar rotational periods, and for the Sun itself in its active and quiet phases. We found that the Hurst exponent can provide a strong discriminant of Sun-like behavior, going beyond what can be achieved with solely the rotation period itself. In particular, we find that CoRoT ID 105693572 is the star that most closely matches the solar rotation properties as far as the latter’s imprints on light curve behavior are concerned. The stars CoRoT IDs 100746852 and 102709980 have significant smaller Hurst exponents than the Sun, notwithstanding their similarity in rotation periods.
  • Carregando...
    Imagem de Miniatura
    Artigo
    Overview of semi-sinusoidal stellar variability with the CoRoT satellite
    (Astronomy & Astrophysics, 2013) Medeiros, José Renan de; Lopes, C. E. Ferreira; Leão, Izan de Castro; Martins, Bruno Leonardo Canto; Catelan, M.; Baglin, A.; Vieira, S.; Bravo, J. P.; Cortés, C.; Freitas, D. B. de; Janot-Pacheco, E.; Maciel, S. C.; Melo, C. H. F.; Osorio, Y.; Mello, G. F. Porto de; Valio, A.
    Context. To date, the CoRoT space mission has produced more than 124 471 light curves. Classifying these curves in terms of unambiguous variability behavior is mandatory for obtaining an unbiased statistical view on their controlling root-causes. Aims. The present study provides an overview of semi-sinusoidal light curves observed by the CoRoT exo-field CCDs. Methods. We selected a sample of 4206 light curves presenting well-defined semi-sinusoidal signatures. The variability periods were computed based on Lomb-Scargle periodograms, harmonic fits, and visual inspection. Results. Color–period diagrams for the present sample show the trend of an increase of the variability periods as long as the stars evolve. This evolutionary behavior is also noticed when comparing the period distribution in the Galactic center and anti-center directions. These aspects indicate a compatibility with stellar rotation, although more information is needed to confirm their rootcauses. Considering this possibility, we identified a subset of three Sun-like candidates by their photometric period. Finally, the variability period versus color diagram behavior was found to be highly dependent on the reddening correction.
  • Carregando...
    Imagem de Miniatura
    Artigo
    Rotation period distribution of CoRoT and Kepler Sun-like stars
    (Astronomy & Astrophysics, 2015) Leão, Izan de Castro; Pasquini, L.; Lopes, C. E. Ferreira; Neves, V.; Valcarce, A. A. R.; Oliveira, L. L. A. de; Silva, D. Freire da; Freitas, D. B. de; Martins, Bruno Leonardo Canto; Janot-Pacheco, E.; Baglin, A.; Medeiros, José Renan de
    Aims. We study the distribution of the photometric rotation period (Prot), which is a direct measurement of the surface rotation at active latitudes, for three subsamples of Sun-like stars: one from CoRoT data and two from Kepler data. For this purpose, we identify the main populations of these samples and interpret their main biases specifically for a comparison with the solar Prot. Methods. Prot and variability amplitude (A) measurements were obtained from public CoRoT and Kepler catalogs, which were combined with public data of physical parameters. Because these samples are subject to selection effects, we computed synthetic samples with simulated biases to compare with observations, particularly around the location of the Sun in the Hertzsprung-Russel (HR) diagram. Publicly available theoretical grids and empirical relations were used to combine physical parameters with Prot and A. Biases were simulated by performing cutoffs on the physical and rotational parameters in the same way as in each observed sample. A crucial cutoff is related with the detectability of the rotational modulation, which strongly depends on A. Results. The synthetic samples explain the observed Prot distributions of Sun-like stars as having two main populations: one of young objects (group I, with ages younger than ~1 Gyr) and another of main-sequence and evolved stars (group II, with ages older than ~1 Gyr). The proportions of groups I and II in relation to the total number of stars range within 64–84% and 16–36%, respectively. Hence, young objects abound in the distributions, producing the effect of observing a high number of short periods around the location of the Sun in the HR diagram. Differences in the Prot distributions between the CoRoT and Kepler Sun-like samples may be associated with different Galactic populations. Overall, the synthetic distribution around the solar period agrees with observations, which suggests that the solar rotation is normal with respect to Sun-like stars within the accuracy of current data.
  • Carregando...
    Imagem de Miniatura
    Artigo
    Stellar cycles from photometric data: CoRoT stars
    (EDP Sciences, 2015) Lopes, C. E. Ferreira; Leão, Izan de Castro; Freitas, D. B. de; Martins, Bruno Leonardo Canto; Catelan, M.; Medeiros, José Renan de
    Context. Until a few years ago, the amplitude variation in the photometric data had been explored to a limited extent mainly because of time resolution and photometric sensitivity limitations. This investigation is now possible thanks to the Kepler and CoRoT databases which provide a unique set of data for studying the nature of stellar variability cycles. Aims. The present study characterizes the amplitude variation in a sample of main-sequence stars with light curves collected using CoRoT exofield CCDs. Methods. We analyze potential stellar activity cycles by studying the variability amplitude over small boxes. The cycle periods and amplitudes were computed based on the Lomb-Scargle periodogram, harmonic fits, and visual inspection. As a first application of our approach, we considered the photometric data for 16 CoRoT FGK main sequence stars, revisited during the IRa01, LRa01 and LRa06 CoRoT runs. Results. The 16 CoRoT stars appear to follow the empirical relations between activity cycle periods (Pcyc) and the rotation period (Prot) found by previous works. In addition to the so-called A (active) and I (inactive) sequences previously identified, there is a possible third sequence, here named S (short-cycles) sequence. However, recovery fractions estimated from simulations suggest that only a half of our sample has confident cycle measurements. Therefore, more study is needed to verify our results, and Kepler data will clearly be useful for such a study. Overall, our procedure provides a key tool for exploring the CoRoT and Kepler databases to identify and characterize stellar cycle variability.
  • Carregando...
    Imagem de Miniatura
    Artigo
    Stellar parameters for stars of the CoRoT exoplanet field
    (Astronomy & Astrophysics, 2015) Cortés, C.; Maciel, S. C.; Vieira, S.; Lopes, C. E. Ferreira; Leão, I. C.; Oliveira, G. P. de; Correia, C.; Martins, Bruno Leonardo Canto; Catelan, M.; Medeiros, José Renan de
    Context. Spectroscopic observations represent a fundamental step in the physical characterization of stars and, in particular, in the precise location of stars in the HR diagram. Rotation is also a key parameter, impacting stellar properties and evolution, which modulates the interior and manifests itself on the surface of stars. To date, the lack of analysis based on large samples has prevented our understanding of the real impact of stellar parameters and rotation on the stellar evolution as well as on the behavior of surface abundances. The space missions, CoRoT and Kepler, are providing us with rotation periods for thousands of stars, thus enabling a robust assessment of the behavior of rotation for different populations and evolutionary stages. For these reasons, the follow-up programs are fundamental to increasing the returns of these space missions. An analysis that combines spectroscopic data and rotation/modulation periods obtained from these space missions provides the basis for establishing the evolutionary behavior of the angular momentum of solar-like stars at different evolutionary stages, and the relation of rotation with other relevant physical and chemical parameters. Aims. To support the computation and evolutionary interpretation of periods associated with the rotational modulation, oscillations, and variability of stars located in the CoRoT fields, we are conducting a spectroscopic survey for stars located in the fields already observed by the satellite. These observations allow us to compute physical and chemical parameters for our stellar sample. Methods. Using spectroscopic observations obtained with UVES/VLT and Hydra/Blanco, and based on standard analysis techniques, we computed physical and chemical parameters (Teff, log  (g), [Fe/H], vmic, vrad, vsin (i), and A(Li)) for a large sample of CoRoT targets. Results. We provide physical and chemical parameters for a sample comprised of 138 CoRoT targets. Our analysis shows the stars in our sample are located in different evolutionary stages, ranging from the main sequence to the red giant branch, and range in spectral type from F to K. The physical and chemical properties for the stellar sample are in agreement with typical values reported for FGK stars. However, we report three stars presenting abnormal lithium behavior in the CoRoT fields. These parameters allow us to properly characterize the intrinsic properties of the stars in these fields. Our results reveal important differences in the distributions of metallicity, Teff, and evolutionary status for stars belonging to different CoRoT fields, in agreement with results obtained independently from ground-based photometric surveys. Conclusions. Our spectroscopic catalog, by providing much-needed spectroscopic information for a large sample of CoRoT targets, will be of key importance for the successful accomplishment of several different programs related to the CoRoT mission, thus it will help further boost the scientific return associated with this space mission.
  • Carregando...
    Imagem de Miniatura
    Artigo
    The rotational behavior of kepler stars with planets
    (American Astronomical Society, 2015) Paz-Chinchón, F.; Bravo, J. P.; Freitas, D. B. de; Lopes, C. E. Ferreira; Alves, S.; Catelan, M.; Martins, B. L. Canto; Medeiros, José Renan de; Leão, I. C.
    We analyzed the host stars of the present sample of confirmed planets detected by Kepler and Kepler Objects of Interest to compute new photometric rotation periods and to study the behavior of their angular momentum. Lomb–Scargle periodograms and wavelet maps were computed for 3807 stars. For 540 of these stars, we were able to detect rotational modulation of the light curves at a significance level of greater than 99%. For 63 of these 540 stars, no rotation measurements were previously available in the literature. According to the published masses and evolutionary tracks of the stars in this sample, the sample is composed of M- to F-type stars (with masses of 0.48–1.53 M $_{}$) with rotation periods that span a range of 2–89 days. These periods exhibit an excellent agreement with those previously reported (for the stars for which such values are available), and the observed rotational period distribution strongly agrees with theoretical predictions. Furthermore, for the 540 sources considered here, the stellar angular momentum provides an important test of Kraft's relation based on the photometric rotation periods. Finally, this study directly contributes in a direct approach to our understanding of how angular momentum is distributed between the host star and its (detected) planetary system; the role of angular momentum exchange in such systems is an unavoidable piece of the stellar rotation puzzle.
  • Carregando...
    Imagem de Miniatura
    Artigo
    The variability behaviour of CoRoT M-giant stars
    (EDP Sciences, 2015-11-04) Martins, Bruno Leonardo Canto; Lopes, C. E. Ferreira; Neves, V.; Leão, I. C.; Freitas, D. B de; Costa, A. D. da; Paz-Chinchón, F.; Chagas, M. L. das; Baglin, A.; Janot-Pacheco, E.; Medeiros, J. R. de
    Context. For six years the Convection, Rotation, and planetary Transits (CoRoT) space mission has been acquiring photometric data from more than 100 000 point sources towards and directly opposite the inner and outer regions of the Galaxy. The high temporal resolution of the CoRoT data, combined with the wide time span of the observations, enabled the study of short- and long-time variations in unprecedented detail. Aims. The aim of this work is to study the variability and evolutionary behaviour of M-giant stars using CoRot data. Methods. From the initial sample of 2534 stars classified as M giants in the CoRoT databases, we selected 1428 targets that exhibit well defined variability, by visual inspection. Then, we defined three catalogues: C1 – stars with Teff < 4200 K and LCs displaying semi-sinusoidal signatures; C2 – rotating variable candidates with Teff > 4200 K; C3 – long-period variable candidates (with LCs showing a variability period up to the total time span of the observations). The variability period and amplitude of C1 stars were computed using Lomb-Scargle and harmonic fit methods. Finally, we used C1 and C3 stars to study the variability behaviour of M-giant stars. Results. The trends found in the V − I vs. J − K colour–colour diagram are in agreement with standard empirical calibrations for M giants. The sources located towards the inner regions of the Galaxy are distributed throughout the diagram, while the majority of the stars towards the outer regions of the Galaxy are spread between the calibrations of M giants and the predicted position for carbon stars. The stars classified as supergiants follow a different sequence from the one found for giant stars. We also performed a Kolmogorov-Smirnov (KS) test of the period and amplitude of stars towards the inner and outer regions of the Galaxy. We obtained a low probability that the two samples came from the same parent distribution. The observed behaviour of the period-amplitude and period-effective temperature (Teff) diagrams are, in general, in agreement with those found for Kepler sources and ground based photometry, with pulsation being the dominant cause responsible for the observed modulation. We also conclude that short-time variations on M-giant stars do not exist or are very rare, and the few cases we found are possibly related to biases or background stars.
  • Carregando...
    Imagem de Miniatura
    Artigo
    The variability behaviour of CoRoT M-giant stars
    (Astronomy & Astrophysics, 2015) Lopes, C. E. Ferreira; Neves, V.; Leão, I. C.; Freitas, D. B. de; Martins, B. L. Canto; Costa, A. D. da; Paz-Chinchón, F.; Chagas, M. L. das; Baglin, A.; Janot-Pacheco, E.; Medeiros, José Renan de
    Context. For six years the Convection, Rotation, and planetary Transits (CoRoT) space mission has been acquiring photometric data from more than 100 000 point sources towards and directly opposite the inner and outer regions of the Galaxy. The high temporal resolution of the CoRoT data, combined with the wide time span of the observations, enabled the study of short- and long-time variations in unprecedented detail. Aims. The aim of this work is to study the variability and evolutionary behaviour of M-giant stars using CoRot data. Methods. From the initial sample of 2534 stars classified as M giants in the CoRoT databases, we selected 1428 targets that exhibit well defined variability, by visual inspection. Then, we defined three catalogues: C1 – stars with Teff< 4200 K and LCs displaying semi-sinusoidal signatures; C2 – rotating variable candidates with Teff> 4200 K; C3 – long-period variable candidates (with LCs showing a variability period up to the total time span of the observations). The variability period and amplitude of C1 stars were computed using Lomb-Scargle and harmonic fit methods. Finally, we used C1 and C3 stars to study the variability behaviour of M-giant stars. Results. The trends found in the V−I vs. J−K colour–colour diagram are in agreement with standard empirical calibrations for M giants. The sources located towards the inner regions of the Galaxy are distributed throughout the diagram, while the majority of the stars towards the outer regions of the Galaxy are spread between the calibrations of M giants and the predicted position for carbon stars. The stars classified as supergiants follow a different sequence from the one found for giant stars. We also performed a Kolmogorov-Smirnov (KS) test of the period and amplitude of stars towards the inner and outer regions of the Galaxy. We obtained a low probability that the two samples came from the same parent distribution. The observed behaviour of the period-amplitude and period-effective temperature (Teff) diagrams are, in general, in agreement with those found for Kepler sources and ground based photometry, with pulsation being the dominant cause responsible for the observed modulation. We also conclude that short-time variations on M-giant stars do not exist or are very rare, and the few cases we found are possibly related to biases or background stars.
  • Carregando...
    Imagem de Miniatura
    Artigo
    The WFCAM multiwavelength Variable Star Catalog
    (EDP Sciences, 2015) Lopes, C. E. Ferreira; Dékány, I.; Catelan, M.; Cross, N. J. G.; Angeloni, R.; Leão, I. C.; Medeiros, José Renan de
    Context. Stellar variability in the near-infrared (NIR) remains largely unexplored. The exploitation of public science archives with data-mining methods offers a perspective for a time-domain exploration of the NIR sky. Aims. We perform a comprehensive search for stellar variability using the optical-NIR multiband photometric data in the public Calibration Database of the WFCAM Science Archive (WSA), with the aim of contributing to the general census of variable stars and of extending the current scarce inventory of accurate NIR light curves for a number of variable star classes. Methods. Standard data-mining methods were applied to extract and fine-tune time-series data from the WSA. We introduced new variability indices designed for multiband data with correlated sampling, and applied them for preselecting variable star candidates, i.e., light curves that are dominated by correlated variations, from noise-dominated ones. Preselection criteria were established by robust numerical tests for evaluating the response of variability indices to the colored noise characteristic of the data. We performed a period search using the string-length minimization method on an initial catalog of 6551 variable star candidates preselected by variability indices. Further frequency analysis was performed on positive candidates using three additional methods in combination, in order to cope with aliasing. Results. We find 275 periodic variable stars and an additional 44 objects with suspected variability with uncertain periods or apparently aperiodic variation. Only 44 of these objects had been previously known, including 11 RR Lyrae stars on the outskirts of the globular cluster M 3 (NGC 5272). We provide a preliminary classification of the new variable stars that have well-measured light curves, but the variability types of a large number of objects remain ambiguous. We classify most of the new variables as contact binary stars, but we also find several pulsating stars, among which 34 are probably new field RR Lyrae, and 3 are likely Cepheids. We also identify 32 highly reddened variable objects close to previously known dark nebulae, suggesting that these are embedded young stellar objects. We publish our results and all light curve data as the WFCAM Variable Star Catalog.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM