Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Martins, Sinara da Rocha"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Dissertação
    Estudo avaliativo de um algoritmo genético auto-organizável e multiobjetivo utilizando aprendizado de máquina para aplicações de telecomunicações
    (Universidade Federal do Rio Grande do Norte, 2012-08-15) Martins, Sinara da Rocha; Silva, Cláudio Rodrigues Muniz da; ; http://lattes.cnpq.br/6968371254983355; ; http://lattes.cnpq.br/8512732282852768; Costa, José Alfredo Ferreira; ; http://lattes.cnpq.br/9745845064013172; Silva, Sandro Gonçalves da; ; http://lattes.cnpq.br/6122570451445215; Pereira, Alexandre da Costa; ; http://lattes.cnpq.br/5259454403464034
    Este trabalho apresenta um estudo avaliativo dos efeitos da utilização de uma técnica de aprendizado de máquina nas características principais de um algoritmo genético (GA) multiobjetivo e auto-organizável. Um GA típico pode ser visto como uma técnica de busca que é normalmente aplicada em problemas que envolvem complexidade não polinomial. Originalmente, estes algoritmos foram idealizados para criar métodos que buscam soluções aceitáveis para problemas em que os ótimos globais são inacessíveis ou são de difícil obtenção. A princípio, os GAs consideravam apenas uma função de avaliação e um único objetivo de otimização. Hoje, entretanto, são comuns as implementações que consideram diversos objetivos de otimização simultaneamente (algoritmos multiobjetivos), além de permitir a alteração de diversos componentes do algoritmo dinamicamente (algoritmos autoorganizáveis). Ao mesmo tempo, são comuns também as combinações dos GAs com técnicas de aprendizado de máquina para melhorar algumas de suas características de desempenho e utilização. Neste trabalho, um GA com recursos de aprendizado de máquina foi analisado e aplicado em um projeto de antena. Utilizou-se uma técnica variante de interpolação bicúbica, denominada Spline 2D, como técnica de aprendizado de máquina para estimar o comportamento de uma função de fitness dinâmica, a partir do conhecimento obtido de um conjunto de experimentos realizados em laboratório. Esta função de fitness é também denominada de função de avaliação e é responsável pela determinação do grau de aptidão de uma solução candidata (indivíduo) em relação às demais de uma mesma população. O algoritmo pode ser aplicado em diversas áreas, inclusive no domínio das telecomunicações, como nos projetos de antenas e de superfícies seletivas de frequência. Neste trabalho em particular, o algoritmo apresentado foi desenvolvido para otimizar o projeto de uma antena de microfita, comumente utilizada em sistemas de comunicação sem fio e projetada para aplicação em sistemas de banda ultra larga (Ultra-Wideband - UWB). O algoritmo permitiu a otimização de duas variáveis da geometria da antena - o Comprimento (Ls) e a Largura (Ws) de uma fenda no plano de terra com relação a três objetivos: largura de banda do sinal irradiado, perda de retorno e desvio da frequência central. As duas dimensões (Ls e Ws) são usadas como variáveis em três distintas funções de interpolação, sendo uma Spline para cada objetivo da otimização, para compor uma função de fitness agregada e multiobjetiva. O resultado final proposto pelo algoritmo foi comparado com o resultado obtido de um programa simulador e com o resultado medido de um protótipo físico da antena construída em laboratório. No estudo apresentado, o algoritmo foi analisado com relação ao seu grau de sucesso, no que diz respeito a quatro características importantes de um GA multiobjetivo auto-organizável: desempenho, flexibilidade, escalabilidade e exatidão. Ao final do estudo, observou-se na compilação do algoritmo um aumento no tempo de execução em comparação a um GA comum, por conta do tempo necessário para o processo de aprendizagem. Como ponto positivo, notou-te um ganho sensível com relação a flexibilidade e a exatidão dos resultados apresentados, além de um caminho próspero que indica direções para permitir com que o algoritmo permita a otimização de problemas com η variáveis
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM