Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Pereira, Rivaldo Fernandes de Albuquerque"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Dissertação
    Uma arquitetura de referência para detecção de anomalias em SDN utilizando inteligência computacional
    (Universidade Federal do Rio Grande do Norte, 2023-11-29) Pereira, Rivaldo Fernandes de Albuquerque; Immich, Roger Kreutz; https://orcid.org/0000-0003-2483-6382; http://lattes.cnpq.br/0535777592588490; http://lattes.cnpq.br/3780460851973036; Macedo, Douglas D. J. de; Pinheiro, Marcos César Madruga Alves; http://lattes.cnpq.br/1682925222063297; Kulesza, Uirá
    Tecnologias emergentes como a Cloud, 5G, Internet of Things (IoT) e computação de borda, necessitam controlar e conectar em rede milhões de dispositivos todos os dias. Configurar redes tradicionais, que podem chegar a vários milhares de equipamentos, é uma tarefa complexa pois exige configurar rotas em cada equipamento da rede. As Redes Definidas por Software (SDN) ajudam na simplificação da configuração e gerenciamento de uma rede com esta quantidade de dispositivos já que dispõe de controlador de rede centralizado. Apesar de promissora, a SDN tem desafios principalmente relacionados a segurança e análise fina de indicadores de rede para detectar problemas, mas muitos estudos demonstram a viabilidade do uso de inteligência computacional (IC) para detectar anomalias em SDN. O objetivo principal deste trabalho foi definir uma arquitetura de referência para validar, promover e explicar, qualquer técnica de IC que melhor se ajuste a cada um dos diferentes tipos de anomalias. A arquitetura proposta é baseada em microsserviços hexagonais, com um modelo de informação único baseado nos frameworks de aplicações e informações e processos do Open Digital Architecture, do TM Forum. A validação e avaliação foi realizada através de um protótipo de prova de conceito que utilizou dois dataset diferentes para treinar sete algoritmos de aprendizagem de máquina. Os resultados deixam claro a necessidade de se ter uma arquitetura flexível, em que seja possível adicionar e remover diferentes modelos de IC para cada cenário específico.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM