Navegando por Autor "Ramos, Thaís de Almeida Ratis"
Agora exibindo 1 - 2 de 2
- Resultados por página
- Opções de Ordenação
Tese Caracterização computacional de RNAs não codificantes longos a nível unicelular associados com o desenvolvimento do tecido cardíaco e com doenças cardiovasculares(Universidade Federal do Rio Grande do Norte, 2022-08-02) Ramos, Thaís de Almeida Ratis; Coutinho, Vinicius Ramos Henriques Maracajá; Rego, Thais Gaudêncio do; http://lattes.cnpq.br/5684206147354858; https://orcid.org/0000-0002-6699-7742; http://lattes.cnpq.br/4296700516154626; Dalmolin, Rodrigo Juliani Siqueira; https://orcid.org/0000-0002-1688-6155; http://lattes.cnpq.br/4065178015615979; Araújo, Gilderlanio Santana de; Barbosa, Yuri de Almeida MalheirosOs RNAs longos não codificantes (lncRNAs) compreendem as unidades transcricionais mais representativas do genoma dos mamíferos e estão associados ao desenvolvimento de órgãos que podem estar associados ao surgimento de doenças, como as cardiovasculares. A Organização Mundial da Saúde (do inglês, World Health Organization (WHO)), por exemplo, publicou que as doenças cardiovasculares são responsáveis pela morte de 17,9 milhões de pessoas a cada ano, correspondendo a 31% de todas as mortes em todo o mundo. Neste trabalho, foi construída uma base de dados de referência de lncRNAs e transcritos codificantes: foi utilizado uma combinação dos lncRNAs das bases de dados Gencode (M20), Ensembl (GRCm38.95) e Amaral et al (2018) para definir o conjunto de lncRNAs de referência não redundantes, ou seja, lncRNAs que não possuíam sobreposição acima de 50%; ademais, para a base de dados de referência dos transcritos codificantes foi utilizada a base de dados Gencode (M20). Além disso, foram utilizadas abordagens de bioinformática (foi adaptado um pipeline de RNA-seq para análise de dados single-cell), algoritmos de aprendizado de máquina (Hierárquico, Silhueta, PCA e t-SNE) e técnicas estatísticas para definir lncRNAs envolvidos no desenvolvimento cardíaco de mamíferos. Para isso, foi utilizado a base dados de single-cell publicada por DeLaughter et al (2016), no qual havia dados de 4 estágios embrionários (E9.5, E11.5, E14.5, E18.5) e 4 estágios pós-natais (P0, P3, P7, P21) do organismo modelo mus musculus. Neste trabalho, identificamos 8 tipos celulares distintos e novos transcritos marcadores (codificantes e diferentes tipos de lncRNAs) com o auxílio da ferramenta M3Drop e de testes estatísticos (Qui-quadrado e teste de aderência). Além disso, a expressão diferencial e análise de enriquecimento funcional revelaram subpopulações de cardiomiócitos associadas à função cardíaca; enquanto isso, a análise de co-expressão modular revelou insights funcionais específicos de células para lncRNAs durante o desenvolvimento do miocárdio, incluindo uma potencial associação com genes-chave relacionados à doença e ao “programa de genes fetais”. Nossos resultados evidenciam o papel de lncRNAs particulares no desenvolvimento do coração e destacam o uso de abordagens modulares de co-expressão na definição funcional do tipo de célula. Como trabalho futuro, pretende-se identificar os papéis funcionais desses RNAs no desenvolvimento de tecidos cardíacos e em doenças cardiovasculares, utilizando abordagens de validação experimental.Dissertação Desenvolvimento e uso do corazon: ferramenta para normalização e agrupamento de dados de expressão gênica(2018-05-11) Ramos, Thaís de Almeida Ratis; Ortega, José Miguel; Rego, Thais Gaudêncio do; ; ; ; Esteves, Gustavo Henrique; ; Dalmolin, Rodrigo Juliani Siqueira; ; Coutinho, Vinicius Ramos Henriques Maracajá;A criação de enciclopédias de expressão gênica possibilita a compreensão de grupos de genes que são co-expressos em diferentes tecidos e o entendimento de grupos gênicos conforme suas funções e origem. Devido à enorme quantidade de dados em larga escala, gerados em projetos de transcriptômica, houve uma demanda intensa em usar técnicas fornecidas pela inteligência artificial, que tornou-se amplamente utilizada na bioinformática. A aprendizagem não supervisionada é a tarefa de aprendizagem de máquina que analisa os dados fornecidos e determina os objetos que podem ser agrupados. Foi construída uma ferramenta amigável chamada CORAZON (Correlation Analyses Zipper Online), que implementa 3 algoritmos de aprendizagem de máquina não supervisionada (mean shift, k-means e hierárquico), 6 metodologias de normalização (Fragments Per Kilobase Million (FPKM), Transcripts Per Million (TPM), Counts Per Million (CPM), log base-2, normalização pela soma dos valores da instância e normalização pelo maior valor de atributo para cada instância) e uma estratégia para observar a influência dos atributos, para agrupamento de dados de expressão gênica. Os desempenhos dos algoritmos foram avaliados através de 5 modelos comumente usados para validar metodologias de agrupamento, cada um composto por 50 conjuntos de dados gerados aleatoriamente. Os algoritmos apresentaram acurácia variando entre 92-100%. Em seguida, a ferramenta foi aplicada para agrupar tecidos, obter conhecimentos evolutivos e funcionais dos genes, com base no enriquecimento de processos biológicos, e associar com fatores de transcrição. Para selecionar o melhor número de clusters para o k-means e o hierárquico, foram utilizados o critério de informação bayesiana (BIC), seguido da derivada da função discreta e a Silhueta. No hierárquico foi adotado o método do Ward. No total, 3 bases de dados (Uhlen, Encode e Fantom) foram analisadas e, em relação aos tecidos, foram observados grupos relacionados a glândulas, tecidos cardíacos, musculares, relacionados ao sistema reprodutivo e grupos com um único tecido, como testículo, cérebro e medula óssea. Em relação aos grupos de genes, foram obtidos vários grupos com especificidades em suas funções: detecção de estímulos envolvidos na percepção sensorial, reprodução, sinalização sináptica, sistema nervoso, sistema imunológico, desenvolvimento de sistemas e metabólicos. Também foi observado que geralmente grupos com mais de 80% de genes não codificantes, mais de 40% dos seus genes codificantes são recentes, originados em Mammalia e a minoria é do clado Eukaryota. Por outro lado, grupos com mais de 90% de genes codificantes, mais de 40% deles apareceram em Eukaryota e a minoria em Mammalia. Estes resultados mostram o potencial dos métodos do CORAZON, que podem ajudar na análise de grande quantidade de dados genômicos, possibilitando associações dos processos biológicos com RNAs não codificantes e codificantes agrupados juntos, bem como a possibilidade do estudo da história evolutiva. CORAZON está disponível gratuitamente em http://biodados.icb.ufmg.br/corazon ou http://corazon.integrativebioinformatics.me.