Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Jefferson Igor Duarte"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Dissertação
    An aI based tool for networks-on-chip design space exploration
    (2018-08-29) Silva, Jefferson Igor Duarte; Kreutz, Márcio Eduardo; ; ; Matos, Débora da Silva Motta; ; Pereira, Monica Magalhães;
    With the increasing number of cores in Systems on Chip (SoCs), bus architectures have suffered some limitations regarding performance. As applications demand more bandwidth and lower latencies, busses could not comply with such requirements due to longer wires and increased capacitancies. Facing this scenario, Networks-on-Chip (NoCs) emerged as a way to overcome limitations found in bus-based systems. NoCs are composed of a set of routers and communication links. Each component has its own characteristics. Fully exploring all possible NoC characteristics settings is unfeasible due to the huge design space to cover. Therefore, some methods to speed up this process are needed. In this work, we propose the usage of Artificial Intelligence techniques to optimize NoC architectures. This is accomplished by developing an AI based tool to explore the design space in terms of area, latency, and power prediction for different NoCs components configuration. Up to now, nine classifiers were evaluated. To evaluate this tool, tests were performed on Audio/Video applications with Bit-Reversal, Butterfly, Uniform, Perfect Shuffle, and Transpose Matrix traffic patterns, with four different communication requirements. The first result show an accuracy up to 88% and to 100%, using Decision Trees to predict latency and area/power values, respectively. As second step, a Genetic Algorithm was applied to explore the design space and the reached results ratify that the solutions found are valid and adequate to the constraints of the designer.
  • Nenhuma Miniatura disponível
    TCC
    Development of a wireless data transmission system for a uniaxial dynamometer
    (Universidade Federal do Rio Grande do Norte, 2022-01-28) Batista, Lucas Damasceno de Araújo; Oliveira, Adilson José de; Silva, Jefferson Igor Duarte; https://orcid.org/0000-0002-4346-1160; http://lattes.cnpq.br/8083389022423202; https://orcid.org/0000-0001-6104-569X; http://lattes.cnpq.br/3158071963293362; https://orcid.org/0000-0002-0547-3718; http://lattes.cnpq.br/3258161610687398; Andrade, Igor Lopes de; http://lattes.cnpq.br/2468601495106389; Souto, Ulisses Borges; http://lattes.cnpq.br/5255022158676985
    Wireless dynamometers are an adequate solution to measure mechanical loads where the use of cables is not practicable. Proprietary solutions are applied in most of the cases found out in the literature on wireless dynamometers. However, these solutions have a high market price, and they are black-box systems, which limit their application in customized conditions. In this context, this study presents the development of a wireless dynamometer based on low market price components and with an open-source technology for real-time monitoring with a suitable sampling rate of 400 Hz (or 32.8 kbps). The proposed dynamometer used a complete Wheatstone bridge configuration and an amplifier circuit with a static gain of 99.8 V / V. Calibration tests and analysis of the performance were carried out according to ISO 376 standard. The proposed wireless dynamometer presented performance indicators of 0.76% for hysteresis, 1.34% for linearity, 4.83 mV / N for sensitivity and 5.22% for repeatability. These results show that the low market price components and open-source technology can be used to build reliable wireless dynamometers able to comply with customized industrial demands.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM