Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Maria Karolaynne"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    TCC
    Identification of Promiscuous T cell Epitopes on Mayaro virus structural proteins using immunoinformatics, molecular modeling, and QM:MM approaches
    (Universidade Federal do Rio Grande do Norte, 2021-03-10) Silva, Maria Karolaynne; Oliveira, Jonas Ivan Nobre; Oliveira, Jonas Ivan Nobre; Oliveira, Claudio Bruno Silva de; Bezerra, Katyanna Sales
    The Mayaro virus (MAYV) belongs to genus Alphavirus (family Togaviridae) and has been reported in several countries, especially in tropical regions of America. Due to its outbreaks and potential lack of medication, an effective vaccine formulation is strongly required. This study aimed to predict promiscuous T cell epitopes from structural polyproteins of MAYV using an immunoinformatics approach. For this purpose, consensus sequences were used to identify short protein sequences capable of binding to MHC class I and class II alleles. Our analysis pointed out 4 MHC-I/TCD8+ and 21 MHC-II/TCD4+ epitopes on capside (1;3), E1 (2;5), E2 (1;10), E3 (0;2), and 6K (0;1) proteins. These predicted epitopes were characterized by high antigenicity, immunogenicity, conservancy, non-allergenic, non-toxic, and good population coverage rate values for North and South American geographical areas. Afterwards, we used the crystal structure of human toll-like receptor 3 (TLR3) ectodomain as a template to predict, through docking essays, the placement of a vaccine prototype at the TLR3 receptor binding site. Finally, classical and quantum mechanics/molecular mechanics (QM:MM) computations were employed to improve the quality of docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. These results provide important insights into the advancement of diagnostic platforms, the development of vaccines, and immunotherapeutic interventions.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM