Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Silva, Robercy Alves da"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Tese
    Recomendação automática da estrutura de comitês de classificadores usando meta-aprendizado
    (2020-02-07) Silva, Robercy Alves da; Canuto, Anne Magaly de Paula; ; ; Araújo, Daniel Sabino Amorim de; ; Nascimento, Diego Silveira Costa; ; Cavalcanti, George Darmiton da Cunha; ; Abreu, Marjory Cristiany da Costa;
    Estamos constantemente preocupados em classificar coisas, pessoas e a tomar decisões, que quando nos deparamos com problemas com um alto grau de complexidade, tendemos buscar opiniões de outras pessoas, geralmente de pessoas que tenham certo conhecimento ou até mesmo, na medida do possível, sejam especialistas no domínio do problema em questão, de forma que nos auxiliem efetivamente no nosso processo de tomada de decisão. Em uma analogia às estruturas de classificação, temos um comitê de pessoas e ou especialistas (classificadores) que toma decisões e, com base nestas respostas, uma decisão final é tomada (agregador). Assim, podemos dizer que um comitê de classificadores é formado por um conjunto de classificadores (especialistas), organizados paralelamente, que recebem uma informação de entrada (padrão ou instância), e tomam uma decisão individual. Com base nestas decisões, o agregador escolhe a decisão final, única, do comitê. Uma questão importante no projeto de comitês de classificadores é a definição de sua estrutura, mais especificamente, a quantidade e o tipo de classificadores, e o método de agregação, para se obter o maior desempenho possível. Geralmente, é necessário um processo exaustivo de teste e avaliação para se definir esta estrutura, e tentando auxiliar nessa linha de pesquisa, este trabalho propõe duas novas abordagens para sistemas de recomendação automática da estrutura de comitês de classificadores, usando o meta-aprendizado para recomendar três desses parâmetros: o classificador, o número de classificadores e o agregador.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM