Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Sottolichio, André Felipe Cavalcanti Ferreira"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    TCC
    Métodos numéricos para a solução da equação de Dirac potenciais de oscilador harmônico
    (Universidade Federal do Rio Grande do Norte, 2017-12-07) Sottolichio, André Felipe Cavalcanti Ferreira; Lisbôa, Ronai Machado; Araújo, Jõao Medeiros de; Anselmo, Dory Hélio Aires de Lima
    O Oscilador Harmônico (OH) é um sistema abordado em muitas áreas da Física e com aplicações em vastos campos da ciência. Apresentamos as equações dos OHs para os casos clássico, quântico e relativístico, solucionando-as analiticamente e numericamente. Para tal, aplicamos os métodos de Euler, Runge-Kutta e Numerov para resolvermos as equações diferenciais de segunda ordem (EDOs) dos osciladores, desenvolvendo algoritmos nas linguagens de programação C e Python para as soluções numéricas e empregando o software MATHEMATICA para as soluções analíticas. Comparamos os resultados de ambas as soluções para testar a efetividade destes métodos, chegando à conclusão de que o método Numerov é o mais eficiente. Utilizamos o oscilador harmônico relativístico (OHR) como um modelo físico-matemático para estudar as degenerescências dos níveis de energia e as funções de onda para os limites das exatas simetrias de spin e pseudospin nucleares. Em relação aos autovalores de energia para OHR, a máxima diferença relativa percentual entre os cálculos numérico e analítico foi de aproximadamente $0,1\%$ para o estado fundamental $n=0$ e $2,0\%$ para o estado excitado $n=5$. Ademais, as funções de onda calculadas numericamente foram compatíveis com aquelas obtidas a partir das funções analíticas, nos permitindo mostrar as degenerescências exatas esperadas para os pares de níveis de energia de spin e pseudospin.
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM