Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Suprano, Alessia"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 7 de 7
  • Resultados por página
  • Opções de Ordenação
  • Nenhuma Miniatura disponível
    Artigo
    Ab initio experimental violation of Bell inequalities
    (Physical Review Research, 2022-02-28) Poderini, Davide; Polino, Emanuele; Rodari, Giovanni; Suprano, Alessia; Araújo, Rafael Chaves Souto; Sciarrino, Fabio
    The violation of a Bell inequality is the paradigmatic example of device-independent quantum information: The nonclassicality of the data is certified without the knowledge of the functioning of devices. In practice, however, all Bell experiments rely on the precise understanding of the underlying physical mechanisms. Given that, it is natural to ask: Can one witness nonclassical behavior in a truly black-box scenario? Here, we propose and implement, computationally and experimentally, a solution to this ab initio task. It exploits a robust automated optimization approach based on the stochastic Nelder-Mead algorithm. Treating preparation and measurement devices as black boxes, and relying on the observed statistics only, our adaptive protocol approaches the optimal Bell inequality violation after a limited number of iterations for a variety photonic states, measurement responses, and Bell scenarios. In particular, we exploit it for randomness certification from unknown states and measurements. Our results demonstrate the power of automated algorithms, opening a venue for the experimental implementation of device-independent quantum technologies
  • Nenhuma Miniatura disponível
    Artigo
    Causal Networks and Freedom of Choice in Bell’s Theorem
    (PRX Quantum, 2021-11-03) Araújo, Rafael Chaves Souto; Moreno Filho, Marcos George Magalhães; Polino, Emanuele; Poderini, Davide; Agresti, Iris; Suprano, Alessia; Barros, Mariana Rodrigues; Carvacho, Gonzalo; Wolfe, Elie; Canabarro, Askery; Spekkens, Robert W.; Sciarrino, Fabio
    Bell’s theorem is typically understood as the proof that quantum theory is incompatible with local-hidden-variable models. More generally, we can see the violation of a Bell inequality as witnessing the impossibility of explaining quantum correlations with classical causal models. The violation of a Bell inequality, however, does not exclude classical models where some level of measurement dependence is allowed, that is, the choice made by observers can be correlated with the source generating the systems to be measured. Here, we show that the level of measurement dependence can be quantitatively upper bounded if we arrange the Bell test within a network. Furthermore, we also prove that these results can be adapted in order to derive nonlinear Bell inequalities for a large class of causal networks and to identify quantumly realizable correlations that violate them.
  • Nenhuma Miniatura disponível
    Artigo
    Device-independent witness for the nonobjectivity of quantum dynamics
    (Physical Review A, 2023-09-05) Araújo, Rafael Chaves Souto; Rodari, Giovanni; Moreno Filho, Marcos George Magalhães; Polino, Emanuele; Nery, Ranieri Vieira; Suprano, Alessia; Duarte, Cristhiano; Sciarrino, Fabio; Poderini, Davide
    Quantum Darwinism offers an explanation for the emergence of classical objective features (those we are used to at macroscopic scales) from quantum properties at the microscopic level. The interaction of a quantum system with its surroundings redundantly proliferates information to many parts of the environment, turning it accessible and objective to different observers. However, given that one cannot probe the quantum system directly, only its environment, how to determine whether an unknown quantum property can be deemed objective? Here we propose a probabilistic framework to analyze this question and show that objectivity implies a Bell-like inequality. Among several other results, we show quantum violations of this inequality, a device-independent proof of the nonobjectivity of quantum correlations. We also implement a photonic experiment where the temporal degree of freedom of photons is the quantum system of interest, while their polarization acts as the environment. Employing a fully black-box approach, we achieve the violation of a Bell-like inequality, thus certifying the nonobjectivity of the underlying quantum dynamics in a fully device-independent framework
  • Nenhuma Miniatura disponível
    Artigo
    Experimental genuine tripartite nonlocality in a quantum triangle network
    (PRX Quantum, 2022-09-21) Araújo, Rafael Chaves Souto; Poderini, Davide; Polino, Emanuele; Agresti, Iris; Vera, Gonzalo Alfredo Carvacho; Canabarro, Askery; Wolfe, Elie; Suprano, Alessia; Sciarrino, Fabio
    Quantum networks are the center of many of the recent advances in quantum science, not only leading to the discovery of new properties in the foundations of quantum theory but also allowing for novel communication and cryptography protocols. It is known that networks beyond that in the paradigmatic Bell’s theorem imply new and sometimes stronger forms of nonclassicality. Due to a number of practical difficulties, however, the experimental implementation of such networks remains far less explored. Going beyond what has been previously tested, here we verify the nonlocality of an experimental triangle network, consisting of three independent sources of bipartite entangled photon states interconnecting three distant parties. By performing separable measurements only and evaluating parallel chained Bell inequalities, we show that such networks can lead to a genuine form of tripartite nonlocality, where classical models are unable to mimic the quantum predictions even if some of the parties are allowed to communicate
  • Nenhuma Miniatura disponível
    Artigo
    Experimental nonclassicality in a causal network without assuming freedom of choice
    (Nature Communications, 2023-02-17) Polino, Emanuele; Poderini, Davide; Rodari, Giovanni; Agresti, Iris; Suprano, Alessia; Carvacho, Gonzalo; Wolfe, Elie; Canabarro, Askery; Moreno Filho, Marcos George Magalhães; Milani, Giorgio; Spekkens, Robert W.; Araújo, Rafael Chaves Souto; Sciarrino, Fabio
    In a Bell experiment, it is natural to seek a causal account of correlations wherein only a common cause acts on the outcomes. For this causal structure, Bell inequality violations can be explained only if causal dependencies are modeled as intrinsically quantum. There also exists a vast landscape of causal structures beyond Bell that can witness nonclassicality, in some cases without even requiring free external inputs. Here, we undertake a photonic experiment realizing one such example: the triangle causal network, consisting of three measurement stations pairwise connected by common causes and no external inputs. To demonstrate the nonclassicality of the data, we adapt and improve three known techniques: (i) a machine-learning-based heuristic test, (ii) a data-seeded inflation technique generating polynomial Bell-type inequalities and (iii) entropic inequalities. The demonstrated experimental and data analysis tools are broadly applicable paving the way for future networks of growing complexity
  • Nenhuma Miniatura disponível
    Artigo
    Experimental test of quantum causal influences
    (Sciance Advances, 2022-02-25) Agresti, Iris; Poderini, Davide; Polacchi, Beatrice; Miklin, Nikolai; Gachechiladze, Mariami; Suprano, Alessia; Polino, Emanuele; Milani, Giorgio; Carvacho, Gonzalo; Araújo, Rafael Chaves Souto; Sciarrino, Fabio
    Since Bell’s theorem, it is known that local realism fails to explain quantum phenomena. Bell inequality violations manifestly show the incompatibility of quantum theory with classical notions of cause and effect. As recently found, however, the instrumental scenario—a pivotal tool in causal inference—allows for nonclassicality signatures going beyond this paradigm. If we are not limited to observational data and can intervene in our setup, then we can witness quantum violations of classical bounds on the causal influence among the involved variables even when no Bell-like violation is possible. That is, through interventions, the quantum behavior of a system that would seem classical can be demonstrated. Using a photonic setup—faithfully implementing the instrumental causal structure and switching between observation and intervention run by run—we experimentally witness such a nonclassicality. We also test quantum bounds for the causal influence, showing that they provide a reliable tool for quantum causal modeling
  • Carregando...
    Imagem de Miniatura
    Artigo
    Experimental violation of n-locality in a star quantum network
    (Nature Research, 2020-05-18) Poderini, Davide; Agresti, Iris; Marchese, Guglielmo; Polino, Emanuele; Giordani, Taira; Suprano, Alessia; Valeri, Mauro; Milani, Giorgio; Spagnolo, Nicolò; Carvacho, Gonzalo; Araújo, Rafael Chaves Souto; Sciarrino, Fábio
    The launch of a satellite capable of distributing entanglement through long distances and the first loophole-free violation of Bell inequalities are milestones indicating a clear path for the establishment of quantum networks. However, nonlocality in networks with independent entanglement sources has only been experimentally verified in simple tripartite networks, via the violation of bilocality inequalities. Here, by using a scalable photonic platform, we implement star-shaped quantum networks consisting of up to five distant nodes and four independent entanglement sources. We exploit this platform to violate the chained n-locality inequality and thus witness, in a device-independent way, the emergence of nonlocal correlations among the nodes of the implemented networks. These results open new perspectives for quantum information processing applications in the relevant regime where the observed correlations are compatible with standard local hidden variable models but are nonclassical if the independence of the sources is taken into account
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM