Logo do repositório
  • Página Inicial(current)
  • Buscar
    Por Data de PublicaçãoPor AutorPor TítuloPor Assunto
  • Tutoriais
  • Documentos
  • Sobre o RI
  • Eventos
    Repositório Institucional da UFRN: 15 anos de conexão com o conhecimento
  • Padrão
  • Amarelo
  • Azul
  • Verde
  • English
  • Português do Brasil
Entrar

SIGAA

  1. Início
  2. Pesquisar por Autor

Navegando por Autor "Vieira, F. A."

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por página
  • Opções de Ordenação
  • Carregando...
    Imagem de Miniatura
    Artigo
    Effect of Y2O3 addition on the densification and mechanical properties of alumina±niobium carbide composites
    (Elsevier, 2000-04-21) Acchar, Wilson; Greil, P.; Martinelli, Antonio Eduardo; Vieira, F. A.; Bressiani, A. H. A.; Bressiani, José Carlos
    Alumina-based composites reinforced with refractory carbides are potential cutting tool materials. They exceed the capabilities of cemented carbides with respect to hot hardness and thermal stability, resulting in faster cutting speeds. Liquid-phase sintering of Al2O3±NbC composites was investigated as an alternative to pressure-assisted processes. Al2O3 reinforced by NbC (5±40 wt.%) was sintered with 3 wt.% Y2O3. In order to assess the e ect of the formation of a liquid phase on the properties of the composites, sintering was carried out either below or above the Al2O3±Y2O3 eutectic temperature, at 1650 and 1800 C, respectively. Density, hardness, fracture toughness and wear resistance of the composite materials were evaluated. Liquid phase sintering did not affect the fracture toughness, but improved both the density and the hardness of the material, regardless of its NbC contents. Higher concentrations of NbC increased the wear resistance of the composite
  • Carregando...
    Imagem de Miniatura
    Artigo
    Sintering behaviour of alumina–tungsten carbide composites
    (Elsevier, 2000-05-31) Acchar, Wilson; Martinelli, Antonio Eduardo; Vieira, F. A.; Cairo, Carlos Alberto Alves
    Alumina reinforced with tungsten carbide has been investigated as an alternative material for metalworking, combining resistance to high service temperatures and improved toughness. Pressureless sintered and hot-pressed Al2O3–WC composites were manufactured and characterised. The use of Y2O3 as a sintering additive has also been evaluated. Additions of up to 30 wt.% WC resulted in limited grain boundary pinning and corresponding high densification. Although the addition of Y2O3 improved sintering, the presence of a residual grain boundary phase (YAG) was harmful to the fracture toughness of the composites, as it affected the effectiveness of the crack deflection mechanism that takes place at the interfaces between Al2O3 and WC grains. Hot-pressing resulted in hardness ∼17.5 GPa and fracture toughness ∼7 MPa m−1/2, which is an improvement compared to alumina reinforced by other refractory carbides
Repositório Institucional - UFRN Campus Universitário Lagoa NovaCEP 59078-970 Caixa postal 1524 Natal/RN - BrasilUniversidade Federal do Rio Grande do Norte© Copyright 2025. Todos os direitos reservados.
Contato+55 (84) 3342-2260 - R232Setor de Repositórios Digitaisrepositorio@bczm.ufrn.br
DSpaceIBICT
OasisBR
LAReferencia
Customizado pela CAT - BCZM